Lecture notes: (WARNING: These can change day to day.)

  1. Continuity
  2. Uniform and Cauchy continuity
  3. Intermediate Value Theorem
  4. Limit of functions
  5. Discontinuities and functions of bounded variation
  6. The derivative
  7. Mean-Value and Taylor's Theorems
  8. Riemann integral
  9. Darboux integral
  10. Sufficient conditions for Riemann integrability
  11. Lebesgue's characterization of Riemann integrability
  12. Fundamental Theorem of Calculus
  13. Stieltjes integral
  14. Conditions for Stieltjes integrability
  15. Lebesgue and Henstock-Kurzweil integrals
  16. Uniform convergence
  17. Applications of uniform convergence
  18. Equicontinuity
  19. Arzelà-Ascoli Theorem
  20. The metric space of continuous functions
  21. Stone-Weierstrass theorem
  22. Analytic functions

Board photos & synopsis of material covered: