
MATH 131BH notes 204

37. CONDITIONS FOR STIELTJES INTEGRABILITY

The aim of this section is to give reasonable sufficient conditions for Stieltjes integrability.
However, we start by discussing some basic operations with the integral that are useful
in the overall goal of this section as well.

37.1 Integration by parts and substitution rule.

The Stieltjes integral retains (or extends) various properties valid for the Riemann inte-
gral; namely, the Integration by parts from Corollary 35.9 and the Substitution rule from
Corollary 35.10. The proof of these for the Riemann integral relied on the Fundamental
Theorem of Calculus which for the Stieltjes integral takes the form:

Lemma 37.1 (Reduction to Riemann integral) Let f , g : ra, bs Ñ R be such that
(1) f is Riemann integrable on ra, bs, and
(2) g is continuous on ra, bs, differentiable on pa, bq with g1 Riemann integrable on ra, bs.

Then f is Stieltjes integrable with respect to g on ra, bs and
ª b

a
f dg “

ª b

a
f pxqg1

pxqdx (37.1)

Proof. The proof is very similar to the proof of Theorem 35.7 and so we omit it. ⇤
Note that Lemma 37.1 subsumes the FTCII thanks to the fact that

≥b
a 1dg “ gpbq ´ gpaq,

as follows from Sp1, dg, Pq “ gpbq ´ gpaq for any partition P. While the reduction to the
Riemann integral is often used to evaluate the Stieltjes integral, the Integration by Parts
and Substitution rule we will state and prove next do NOT rely on this reduction and
are thus more general. Indeed, we have:

Lemma 37.2 (Integration by parts) For all f , g : ra, bs Ñ R

f P RSpg, ra, bsq ô g P RSp f , ra, bsq (37.2)

and, if both TRUE, then
ª b

a
f dg “ f pbqgpbq ´ f paqgpaq ´

ª b

a
g df (37.3)

Proof. The key point of the proof is that, for any marked partition P “ pttiu
n
i“0, tt‹

i u
n
i“1q

of ra, bs, the pair P1
“ ptt‹

i u
n`1
i“0 , tti´1u

n`1
i“1 q, where t‹

0 :“ a and t‹
n`1 :“ b, is another marked

partition of ra, bs. A calculation shows

f paqgpaq ` Sp f , dg, Pq “ f paqgpaq `

nÿ

i“1

f pt‹
i q

`
gptiq ´ gpti´1q

˘

“

nÿ

i“0

f pt‹
i qgptiq ´

nÿ

i“0

f pt‹
i`1qgptiq ` f pbqgpbq

“

nÿ

i“0

gptiq
“

f pt‹
i q ´ f pt‹

i`1q
‰

` f pbqgpbq

“ ´Spg, d f , P1
q ` f pbqgpbq

(37.4)
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Now assume that g P RSp f , ra, bsq and pick e ° 0. Then |Spg, d f , P1
q ´

≥b
a gd f | † e

as soon as }P1
} † d, for d related to e as in Definition 31.2. But }P1

} § 2}P} and so
if }P} † d{2, then (37.4) shows that Sp f , dg, Pq is within e of the right-hand side of
(37.3). It follows that f P RSpg, ra, bsq, proving  in (37.2), and that the identity (37.3)
holds. (The equivalence in (37.2) holds by symmetry.) ⇤

Note that writing dg “ g1
pxqdx and d f “ f 1

pxqd f , the previous lemma subsumes the
statement of Corollary 35.9. Note that combining Lemmas 37.2 and 37.2 we get:

Corollary 37.3 Suppose f , g : ra, bs Ñ 8 are such that f is Riemann integrable and g is con-
tinuous on ra, bs. Moreover, assume that g is differentiable on ra, bs with g1 Riemann integrable.
Then g P RSp f , ra, bsq and

ª b

a
g df “ f pbqgpbq ´ f paqgpaq ´

ª b

a
f pxqg1

pxqdx (37.5)

Note that this again amounts to the use of the formal expression dg “ g1
pxqdx. Mov-

ing to the Substitution rule, here we get:

Lemma 37.4 (Substitution) Let g, h : ra, bs Ñ R and, assuming g P RSph, ra, bsq, let

@x P ra, bs : Gpxq :“
ª x

a
g dh (37.6)

Then for all bounded f : ra, bs Ñ R,

f P RSpG, ra, bsq ô f ¨ g P RSph, ra, bsq (37.7)

and, assuming that both sides are TRUE,
ª b

a
f dG “

ª b

a
f ¨ g dh (37.8)

Here p f ¨ gqpxq :“ f pxqgpxq.

Proof. Assume g P RSph, ra, bsq. The key point of the proof is the following approximation
claim: For each e ° 0 there is d ° 0 for any marked partition P “ pttiu

n
i“0, tt‹

i u
n
i“1q

with }P} † d, we have
nÿ

i“1

ˇ̌
ˇ̌ gpt‹

i q
“
hptiq ´ hpti´1q

‰
´

ª ti

ti´1

gdh
ˇ̌
ˇ̌ † e (37.9)

To see why this is true, let d ° 0 be related to e ° 0 as in the definition of Stieltjes
integrability. Given a partition P “ pttiu

n
i“0, tt‹

i u
n
i“1q with }P} † d, let

I :“
!

i “ 1, . . . , n :
ª ti

ti´1

gdh ° gpt‹
i q

“
hptiq ´ hpti´1q

‰)
(37.10)

Since g P RSph, rti´1, tisq, for each i P I there is a partition Pi of rti´1, tis such that
ˇ̌
ˇSpg, dh, Piq ´

ª ti

ti´1

gdh
ˇ̌
ˇ †

e

n
(37.11)

Now consider the partition rP that contains all partition points of the partitions P and Pi
for all i P I, and the marked points of P in intervals indexed by i R I and all the marked
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points of the partitions Pi with i P I. The additivity of the Stieltjes sum and the integral
then shows

Sp f , dg, rPq ´

ª b

a
gdh “

nÿ

i“1

ˆ
gpt‹

i q
“
hptiq ´ hpti´1q

‰
´

ª ti

ti´1

gdh
˙`

`

ÿ

iPI

´
Spg, dh, Piq ´

ª ti

ti´1

gdh
¯

(37.12)

where the use of the positive part a` :“ maxt0, au effectively eliminates terms with i P I
from the first sum. Since } rP} † d, the the left-hand side is at least ´e. The fact that
(37.11) holds for each Pi with i P I in turn ensures that the second sum on the right is at
most e. Hence we get

nÿ

i“1

ˆ
gpt‹

i q
“
hptiq ´ hpti´1q

‰
´

ª ti

ti´1

gdh
˙`

† 2e (37.13)

Since the same applies to the sum of the negative parts, we get (37.9) with 4e instead of e
on the right-hand side.

Using (37.9) we now quickly finish the claim. Let f : ra, bs Ñ R and let P be a partition
of ra, bs. Then (37.6) and additivity of the integral give

Sp f ¨ g, dh, Pq ´ Sp f , dG, Pq “

nÿ

i“1

f pt‹
i q

„
gpt‹

i q
“
hptiq ´ hpti´1q

‰
´

ª ti

ti´1

gdh
⇢

(37.14)

Assuming that f is bounded, the right-hand side is bounded by } f } times the quantity
in (37.9). So the convergence of Sp f , dg, Pq as }P} Ñ 0 is equivalent to the convergence
of Sp f , ¨g, dh, Pq and both “limits” (if they exist) are equal. ⇤

As it turns out, the conclusion of Lemma 37.4 may fail when f is unbounded. Indeed,
set a :“ 0, b :“ 1, gpxq “ hpxq :“ x and f pxq :“ 1{x for x ° 0 and f p0q “ 0. Then
Gpxq “

1
2 x2 and f R RSpG, r0, 1sq because f is unbounded on intervals on which G is

non-constant. Yet f ¨ g “ 1 and so f ¨ g P RSph, r0, 1sq. This is clearly because the Stieltjes
integral works only with finite partitions which does not allow us to refine the intervals
near zero so that f pt‹

i qpGptiq ´ Gpti´1qq is summable. This is an aspect that is fixed in
more advanced theories of integration that we will mention in Section 38.

37.2 Conditions for Stieltjes integrability.

In our discussion of the Stieltjes integral, we have so far given only one necessary condi-
tion for integrability (namely, (36.13) in Lemma 36.6). Another necessary condition was
proved along with Lemma 37.4:

Corollary 37.5 Let f , g : ra, bs Ñ R be such that f P RSpg, ra, bsq. For each e ° 0 there
is d ° 0 such that if P “ pttiu

n
i“0, tt‹

i u
n
i“1q is a marked partition of ra, bs with }P} † d, then

nÿ

i“1

ˇ̌
ˇ̌ f pt‹

i q
“
gptiq ´ gpti´1q

‰
´

ª ti

ti´1

f dg
ˇ̌
ˇ̌ † e (37.15)

Proof. This follows from (37.13) and a corresponding statement for the negative part. ⇤
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Concerning sufficient conditions for integrability, we had one based on conversion to
the Riemann integral (Lemma 37.1). A useful necessary and sufficient condition is:

Lemma 37.6 (Cauchy criterion for Stieltjes integral) Let f , g : ra, bs Ñ R. Then f P

RSpg, ra, bsq (and equivalently g P RSp f , ra, bsq) if and only if for each e ° 0 there is a d ° 0
such that for all marked partitions P, P1 of ra, bs,

max
 

}P}, }P1
}
(

† d ñ

ˇ̌
Sp f , dg, Pq ´ Sp f , dg, P1

q

ˇ̌
† e. (37.16)

Proof. This is a direct consequence of the definition of Stietljes integrability. ⇤
A somewhat deeper sufficient criterion concerns Stieltjes integrals with respect to

functions of bounded variation:

Lemma 37.7 Let f , g : ra, bs Ñ R be such that f is bounded and g is of bounded variation,
i.e., Vpg, ra, bsq † 8, and such that f and g have no common discontinuity points. If for
each e ° 0 there is a partition P “ ttiu

n
i“0 of ra, bs such that

nÿ

i“1

osc
`

f , rti´1, tis
˘
V

`
g, rti´1, tis

˘
† e (37.17)

then f P RSpg, ra, bsq.

Proof. An earlier version of this statement did not have the requirement of no common
discontinuity points and referred the proof to that of Theorem 32.9. However, this would
prove integrability in the Darboux-Stieltjes sense (and also the Moore-Pollard sense in
Definition 36.7) which works with only the requirement of no common same-sided dis-
continuities, rather than Riemann-Stieltjes sense. We thus have to work a bit harder.

We start by proving that, for f bounded and g bounded variation with no common
discontinuity points,

@e ° 0 Dd ° 0 @s, t P ra, bs : 0 † t ´ s † d ñ osc
`

f , rs, ts
˘
V

`
g, rs, ts

˘
† e. (37.18)

Extend f by f paq to the left of a and by f pbq to the right of b, and similarly for g. Consider
the dyadic intervals In,k :“ rpk ´ 1q2´n, k2n

s indexed by n P N and k P Z. Given e ° 0,
denote

Cn :“
§ 

In,k : oscp f , In,kqVpg, In,kq • e
(

(37.19)

Suppose
ì

nPN Cn ‰ H and let x P
ì

nPN Cn. We claim that neither f nor g is then
continuous at x. Indeed, for each n P N, let kn :“ mintk P t0, . . . , 2n

´ 1u : x P In,ku.
Abbreviate Jn :“ In,kn and note that then @n P N : oscp f , JnqVpg, Jnq • e. This implies
Vpg, Jnq • e{r1 ` suptPra,bs | f ptq|s showing that t fiÑ Vpg, ra, tsq, and thus also t fiÑ gptq is
NOT continuous at x. Similarly we get oscp f , rx ´ d, x ` dsq • e{r1 ` Vpg, ra, bsqs and so
(34.9) shows that f is NOT continuous at x.

It follows that no such x can exist and so we have
ì

nPN Cn “ H. As I Ñ J implies
oscp f , IqVpg, Iq Ñ oscp f , JqVpg, Jq and each In`1,k is contained in one In,j, the sets tCnunPN

are nested, i.e., @n P N : Cn`1 Ñ Cn. As these sets are also closed and, being subsets
of ra ´ 1, b ` 1s, thus compact, the assumption

ì
nPN Cn “ H forces Dn P N : Cn “ H, by

the Cantor Intersection Property. Given n with Cn ‰ H, any closed interval J contained
in one of In,k obeys oscp f , JqVpg, Jq † e. Performing the same argument with In,k replaced
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by rpk ´ 1{2q2´n, pk ` 1{2q2´n
s shows oscp f , JqVpg, Jq † e for all closed intervals J of

length less than 2´n´1, proving (37.18) with d :“ 2´n´1.
We now move to the proof of f P RSpg, ra, bsq. Given e ° 0, let P :“ ttiu

n
i“1 be

a partition satisfying (37.17). By (37.18), there exists d ° 0 such that 0 † t ´ s † d
implies oscp f , rs, tsqVpg, rs, tsq † e{n. Let P1

“ ptt1
iu

m
i“1, tt‹

i u
m
i“1q be a marked partition

with }P1
} † d and let P2 be the refinement of P1 by points of P using the marked points

of P1 in the intervals they fall into and right-endpoints of intervals that do not contain
a marked point of P1. Let K be the set of those i P t1, . . . , nu such that rt1

i´1, t1
is contains

a partition point of P, write ri for the total number intervals that these partition points
split rt1

i´1, t1
is into and index the right-endpoints of these intervals by tsi,ju

ri
j“1. Then

Sp f , dg, P2
q ´ Sp f , dg, P1

q “

ÿ

iPK

riÿ

j“1

“
f psi,jq ´ f pt‹

i q
‰“

gpti,jq ´ gpti,j´1q
‰

(37.20)

and so
ˇ̌
Sp f , dg, P2

q ´ Sp f , dg, P1
q

ˇ̌
§

ÿ

iPK

riÿ

j“1

ˇ̌
f psi,jq ´ f pt‹

i q

ˇ̌ˇ̌
gpti,jq ´ gpti,j´1q

ˇ̌

§

ÿ

iPK
osc

`
f , rt1

i´1, t1
is

˘ riÿ

j“1

ˇ̌
gpti,jq ´ gpti,j´1q

ˇ̌

§

ÿ

iPK
osc

`
f , rt1

i´1, t1
is

˘
V

`
g, rt1

i´1, t1
is

˘
† e,

(37.21)

where the last inequality comes from our choice of d and the fact that |K| § n.
Endowing P with left-endpoint marked points, a completely analogous derivation

(using that P Ñ P2) in turn shows

ˇ̌
Sp f , dg, P2

q ´ Sp f , dg, Pq

ˇ̌
§

nÿ

i“1

osc
`

f , rti´1, tis
˘
V

`
g, rti´1, tis

˘ (37.17)
† e (37.22)

and so we get that, for all marked partitions P1,

}P1
} † d ñ

ˇ̌
Sp f , dg, P1

q ´ Sp f , dg, Pq

ˇ̌
† 2e. (37.23)

Using the Cauchy criterion (Lemma 37.6), it follows that f P RSpg, ra, bsq. ⇤
Hereby we conclude:

Corollary 37.8 Let f , g : ra, bs Ñ R be such that f is continuous on ra, bs and g is of bounded
variation on ra, bs. Then f P RSpg, ra, bsq as well as g P RSp f , ra, bsq and

ˇ̌
ˇ̌
ª b

a
f dg

ˇ̌
ˇ̌ §

´
sup

xPra,bs

ˇ̌
f pxq

ˇ̌¯
V

`
g, ra, bs

˘
(37.24)

Proof. The integrability of f with respect to g is proved using the bound Lemma 37.7
combined with the fact that, by uniform continuity of f , for each e ° 0 there is d °

0 such that oscp f , rs, tsq † e{pb ´ aq whenever t ´ s † d. The integrability of g with
respect to f then follows from Lemma 37.2. The bound on the integral inherited from
the corresponding bound on Sp f , dg, Pq. ⇤
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Note that the additivity of the integral then implies that, for f , f̃ : ra, bs Ñ R continu-
ous and g, g̃ : ra, bs Ñ R bounded variation,

ˇ̌
ˇ̌
ª b

a
f dg ´

ª b

a
f̃ dg̃

ˇ̌
ˇ̌ §

`
sup | f ´ f̃ |

˘
V

`
g, ra, bs

˘
`

`
sup | f |

˘
V

`
g ´ g̃, ra, bs

˘
(37.25)

This is a statement of continuity of f fiÑ
≥b

a f dg in the supremum norm f fiÑ sup | f | and
the continuity of g fiÑ

≥b
a f dg in the variational norm g fiÑ Vpg, ra, bsq.

Lemma 37.9 Let f , g : ra, bs Ñ R be functions and assume that f is bounded and g is of
bounded variation; i.e., Vpg, ra, bsq † 8. Let vg : ra, bs Ñ R be defined by vgptq :“ Vpg, ra, tsq.
Then

f P RS
`
g, ra, bs

˘
ô f P RS

`
vg, ra, bs

˘
(37.26)

and, if both TRUE, then also | f | P RSpvg, ra, bsq and
ˇ̌
ˇ̌
ª b

a
f dg

ˇ̌
ˇ̌ §

ª b

a
| f |dvg (37.27)

We leave the proof of this lemma, with g assumed continuous, to homework. Discon-
tinuities of g are handled by a separate argument. The generalized Stieltjes integrability
fares better in this context.

37.3 Young integral.

The assumption that f is continuous and g is bounded variation, or vice versa, is the one
most commonly made in the literature on the Stieltjes integral. However, this is not the
end of the story; indeed, one can trade regularity of g against regularity of f . This was
pushed by L.C. Young in the 1930s and reappeared quite usefully in stochastic analysis
over the last two decades. The starting point is an inequality that uses the notion of p-
variation of f : ra, bs Ñ R defined, for p ° 0, by

Vp`
f , ra, bs

˘
:“ sup

n•1
sup

P“ttiun
i“0

nÿ

i“1

ˇ̌
f ptiq ´ f pti´1q

ˇ̌p (37.28)

We then have:

Lemma 37.10 (Love-Young inequality) Let a † b be reals and f , g : ra, bs Ñ R functions
such that Vp

p f , ra, bsq † 8 and Vq
pg, ra, bsq † 8. Then for all p, q ° 0, all natural n • 1, all

marked partition P “ pttiu
n
i“0, tt‹

i u
n
i“1q of ra, bs into n intervals and all t P ra, bs,

ˇ̌
ˇSp f , dg, Pq ´ f ptq

“
gpbq ´ gpaq

‰ˇ̌
ˇ

§

ˆ
1 `

n´1ÿ

k“1

1
k1{p`1{q

˙
Vp`

f , ra, bs
˘1{p Vq`

g, ra, bs
˘1{q,

(37.29)

where the sum over k is treated as zero when n “ 1.

Proof. The proof (drawn vaguely from L.C. Young’s paper “An inequality of the Hölder
type, connected with Stieltjes integration” in Acta Mathematica in 1938) hinges on the
following observation: Given a natural n • 1 and reals a1, . . . , an, b1, . . . , bn P r0, 8q,
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let k “ 1, . . . , n be such that akbk “ mini“1,...,n aib1. Then the multivariate AMGM in-
equality

@x1, . . . , xn • 0 :
´ nπ

i“1

xi

¯1{n
§

1
n

nÿ

i“1

xi (37.30)

gives, for each p, q ° 0, that

akbk §

´ nπ

i“1

ap
i

¯ 1
pn

´ nπ

i“1

bq
i

¯ 1
qn

§
1

n1{p`1{q

´ nÿ

i“1

ap
i

¯1{p´ nÿ

i“1

bq
i

¯1{q
(37.31)

As we will see, this opens up the possibility to prove the claim by induction.
Fix t P ra, bs and reals p, q ° 0. For the base case n “ 1 of partition P consisting of just

one interval ra, bs and a partition point t1, we have

Sp f , dg, Pq ´ f ptq
“
gpaq ´ gpbq

‰
“

“
f pt1

q ´ f ptq
‰ “

gpbq ´ gpaq
‰

(37.32)

Assuming, without simplicity of notation, that t1
° t, then

ˇ̌
f pt1

q ´ f ptq
ˇ̌

“

´ˇ̌
f pt1

q ´ f ptq
ˇ̌p

¯1{p

§

´ˇ̌
f ptq ´ f paq

ˇ̌p
`

ˇ̌
f pt1

q ´ f ptq
ˇ̌p

`

ˇ̌
f pbq ´ f pt1

q

ˇ̌p
¯1{p

§ Vp`
f , ra, bs

˘1{p

(37.33)

and using that, trivially, |gpbq ´ gptq| § Vq`
g, ra, bs

˘1{q gives
ˇ̌
ˇSp f , dg, Pq ´ f ptq

“
gpaq ´ gpbq

‰ˇ̌
ˇ § Vp`

f , ra, bs
˘1{p Vq`

g, ra, bs
˘1{q (37.34)

thus proving the claim for n “ 1.
Next suppose that the claim holds for a natural n and let P “ pttiu

n`1
i“0 , tt‹

i u
n`1
i“1 q be a

partition of ra, bs into n ` 1 intervals. Let k “ 1, . . . , n be the smallest index such that
“

f pt‹
k`1q ´ f pt‹

kq
‰“

gptkq ´ gptk´1q
‰

“ min
i“1,...,n

“
f pt‹

i`1q ´ f pt‹
i q

‰“
gptiq ´ gpti´1q

‰
(37.35)

Now let P1 be a partition obtained by removing partition point ti and marked point t‹
i

from P. The intervals rti´1, tis and rti, ti`1s in P are thus united into rti´1, ti`1s in P1 and
the latter interval now receives marked point t‹

i`1. As all other intervals and marked
points remain the same, this gives

Sp f , dg, P1
q ´ Sp f , dg, Pq “ f pt‹

k`1q
“
gptk`1q ´ gptk´1q

‰

´ f pt‹
k`1q

“
gptk`1q ´ gptkq

‰
´ f pt‹

kq
“
gptkq ´ gptk´1q

‰

“
“

f pt‹
k`1q ´ f pt‹

kq
‰“

gptkq ´ gptk´1q
‰

(37.36)

The inequality (37.31) enabled by (37.35) then gives
ˇ̌
ˇSp f , dg,P1

q ´ Sp f , dg, Pq

ˇ̌
ˇ

§
1

n1{p`1{q

ˆ nÿ

j“1

ˇ̌
f pt‹

i`1q ´ f pt‹
i q

ˇ̌p
˙1{pˆ nÿ

j“1

ˇ̌
gptiq ´ gpti´1q

ˇ̌q
˙1{q

§
1

n1{p`1{q Vp`
f , ra, bs

˘1{p Vq`
g, ra, bs

˘1{q

(37.37)
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Using that
ˇ̌
ˇSp f , dg,Pq ´ f ptq

“
gpbq ´ gpaq

‰ˇ̌
ˇ

§

ˇ̌
ˇSp f , dg, P1

q ´ Sp f , dg, Pq

ˇ̌
ˇ `

ˇ̌
ˇSp f , dg, P1

q ´ f ptq
“
gpbq ´ gpaq

‰ˇ̌
ˇ

(37.38)

the claim for P follows by combining (37.37) with the claim for P1, which is TRUE thanks
to the induction assumption and the fact that P1 partitions ra, bs into only n intervals. ⇤

We now put the above inequality to a good use in:

Theorem 37.11 (L.C. Young) Let a † b be reals and f , g : ra, bs Ñ R functions such that f
is a-Hölder and g is b-Hölder for some a, b ° 0 with a ` b ° 1. Then f P RSpg, ra, bsq

and g P RSp f , ra, bsq.

Proof. Let p ° 1{a and q ° 1{b be such that 1
p `

1
q ° 1. (This is possible thanks to the

assumption a ` b ° 1.) The assumption that f is a-Hölder means that there exists c ° 0
such that @x, y P ra, bs : | f pxq ´ f pyq| § c|x ´ y|

a. Pick any interval rs, ts Ñ ra, bs and
let P “ ttiu

n
i“0 be a partition of rs, ts. Then

nÿ

i“1

ˇ̌
f ptiq ´ f pti´1q

ˇ̌p
§ cp

nÿ

i“1

|ti ´ ti´1|
ap

§ cp
pt ´ sq

ap´1
nÿ

i“1

|ti ´ ti´1| “ cp
pt ´ sq

ap
(37.39)

and so

Vp`
f , rs, ts

˘1{p
§ c|s ´ t|a (37.40)

Similarly we get

Vq`
g, rs, ts

˘1{q
§ c̃|t ´ s|

b (37.41)

where c̃ is the constant such that @x, y P ra, bs : |gpxq ´ gpyq| § c̃|x ´ y|
b.

Let zpsq :“
∞8

n“1
1
ns be the Riemann zeta function where we note the series converges

as soon as s ° 1. Given e ° 0, let d ° 0 be such that

cc̃pb ´ aq
“
1 ` zp1{p ` 1{qq

‰
da`b´1

† e (37.42)

and let P “ pttiu
n
i“0, tt‹

i u
n
i“1q and P “ ptt1

iu
m
i“0, tt‹‹

i u
m
i“1q be partitions of ra, bs satisfy-

ing }P}, }P1
} † d. Assuming first that P1 obeys P Ñ P1, for each i “ 1, . . . , m, let P1

i be
the partition of rti´1, tis induced by P1. Lemma 37.10 now gives

ˇ̌
ˇSp f , dg, P1

iq´ f pt‹
i q

“
gptiq ´ gpti´1q

ˇ̌
ˇ

§
“
1 ` zp1{p ` 1{qq

‰
Vp`

f , rti´1, tis
˘1{p Vq`

g, rti´1, tis
˘1{q

§ cc̃
“
1 ` zp1{p ` 1{qq

‰
pti ´ ti´1q

a`b
†

e

b ´ a
pti ´ ti´1q

(37.43)
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where we also invoked (37.40–37.41) and used ti ´ ti´1 † d along with (37.42). Hereby
we get

ˇ̌
ˇSp f , dg, P1

q ´ Sp f , dg, Pq

ˇ̌
ˇ §

nÿ

i“1

ˇ̌
ˇSp f , dg, P1

iq ´ f pt‹
i q

“
gptiq ´ gpti´1q

ˇ̌
ˇ

§

nÿ

i“1

e

b ´ a
pti ´ ti´1q “ e

(37.44)

When P1 is not a refinement of P, then by going to their common refinement we bound
the difference instead by 2e. As e ° 0 was arbitrary, the Cauchy criterion (cf Lemma 37.6)
now implies f P RSpg, ra, bsq and, by Lemma 37.6, also g P RSp f , ra, bsq. ⇤

A slightly more sophisticated argument shows that the finiteness of the p-variation
of f and q-variation of g for some p, q ° 0 with 1

p `
1
q ° 1 are sufficient for integrability

of f with respect to g and vice versa. Young also showed that assuming this for p, q ° 0
with 1

p `
1
q “ 1 is not enough. The Stieltjes integral derived under these conditions is

sometimes referred to as the Young integral even though what Young’s work does is to
provide a useful sufficient condition for Stieltjes integrability rather than defining a new
integration theory in its own right.
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