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45. ANALYTIC FUNCTIONS

We will now move to discuss a class of analytic functions that contain many standard
functions in analysis. Analytic functions can be thought of as the analyst’s version of the
algebraist’s concept of a polynomial.

45.1 Definition and characterization.

We have shown that polynomials are dense in Cpra, bs, Rq. This leads to the following
question: Given a function f P Cpra, bs, Rq and a sequence of polynomials tPnunPN such
that Pn Ñ f , do the coefficients of the polynomials Pn converge? This turns out to be
true but only for functions identified in the following definition:

Definition 45.1 (Analytic functions) Let f : R Ñ R (with Domp f q general) and x0 P R.
We say that f is (real) analytic at x0 if there exists tcnunPN and r P p0, `8s such that

px0 ´ r, x0 ` rq Ñ Domp f q (45.1)

lim sup
nÑ8

|cn|
1{n

§
1
r

(45.2)

and

@x P px0 ´ r, x0 ` rq : f pxq “

8ÿ

n“0
cnpx ´ x0q

n (45.3)

where (45.2) ensures that the series converges absolutely. We say that f is analytic
on A Ñ R if @x0 P A : f is analytic at x0.

The preffix “real” is sometimes added to make distinction between analyticity of real-
valued functions and that of complex valued functions. Since, as it turns out, there is
actually no significant difference, we will use just the plain adjective “analytic.”

Analytic functions are the nicest functions besides polynomials. Indeed, we have:

Lemma 45.2 Let f : R Ñ R be analytic at x0 with (45.3) for some r ° 0. Then f is arbitrarily
continuously differentiable on px0 ´ r, x0 ` rq and

@n P N : cn “
f pnq

px0q

n!
(45.4)

In particular, the infinite series representation (45.3) is unique.

Proof. By Corollary 40.4, the series in (45.3) is arbitrarily differentiable with

@k P N : f pkq
pxq “

8ÿ

n“k

cn

ˆ k´1π

i“0

pn ´ iq
˙

px ´ x0q
n´k (45.5)

valid for all x P px0 ´ r, x0 ` rq. Setting x :“ x0 only the term with n “ k survives and we
get f pkq

px0q “ ckk!. ⇤
The above shows that (45.3) can be cast as

@x P px0 ´ r, x0 ` rq : f pxq “

8ÿ

n“0

f pnq
px0q

n!
px ´ x0q

n. (45.6)
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The series on the right is then called the Taylor series associated with f at x0. Since this
series is expressed entirely using attributes derived from f , this suggests a natural ques-
tion: Suppose f is arbitrarily continuously differentiable at (and thus in a neighborhood
of) x0 and the associated Taylor series converges on an open interval containing x0. Is
the series equal to f there?

As much as this may sound plausible, the answer to this is in the resolute negative. A
standard counterexample is the function

f pxq :“

#
expt´1{x2

u, if x ‰ 0,
0, if x “ 0,

(45.7)

which is arbitrarily continuously differentiable on R (including at zero) with all deriva-
tives at zero vanishing. This means that the associated Taylor series at x0 “ 0 is zero,
yet f clearly is not.

The question is then: What property (such as growth estimate etc) of the function and
its derivatives ensures analyticity? We answer this in:

Lemma 45.3 Let f : R Ñ R and let x0 P intpDomp f qq. The following are equivalent:
(1) f is analytic at x0,
(2) there exists e ° 0 such that f is arbitrarily differentiable on px0 ´ e, x0 ` eq and

DA P p0, 8q @n • 0 : sup
xPpx0´e,x0`eq

ˇ̌
f pnq

px0q

ˇ̌
§ Ae´nn! (45.8)

In particular,

Proof. For implication (1)ñ(2), assume the representation (45.3) and let r̃ P p0, rq. The
convergence forces the coefficients to be bounded, which means that

A1 :“ sup
nPN

|cn|r̃n
† 8 (45.9)

implying |cn| § A1r̃´n for all n P N. For x P px0 ´ r̃, x0 ` r̃q, formula (45.5) then shows

ˇ̌
f pkq

pxq

ˇ̌
§ A1r̃´k

8ÿ

n“k

ˆ k´1π

i“0

pn ´ iq
˙`

|x ´ x0|{r̃
˘n´k (45.10)

We now interpret the sum on the right-hand side as the k-th derivative of the geometric
series

∞8
n“0 an at a :“ |x ´ x0|{r̃. Indeed, for a P p0, 1q we have

8ÿ

n“k

ˆ k´1π

i“0

pn ´ iq
˙

an´k
“

dk

dak
1

1 ´ a
“

k!
p1 ´ aqk`1 (45.11)

and so
ˇ̌
f pkq

pxq

ˇ̌
§

A1r̃´kk!
p1 ´ r̃´1|x ´ x0|qk`1 “

A1r̃
pr̃ ´ |x ´ x0|qk`1 k! (45.12)

Taking e P p0, r̃{2q, for |x ´ x0| † e we then have r̃ ´ |x ´ x0| ° e and (45.12) is at most
3A1r̃e´1´kk!. This gives (45.8) with A :“ 3A1r̃e´1.
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For (2)ñ(1) we note that, by Taylor’s theorem, for all x P px0 ´ e, x0 ` eq and all n P N

there exists x P px0 ´ e, x0 ` eq — in fact, with x between x and x0 — such that
ˇ̌
ˇ̌ f pxq ´

nÿ

k“0

f pkq
px0q

k!
px ´ x0q

k
ˇ̌
ˇ̌ §

f pn`1q
pxq

pn ` 1q!
|x ´ x0|

n`1 (45.13)

Under the condition (45.8), the right-hand side is bounded by Ap|x ´ x0|{eq
n`1 which

tends to zero as n Ñ 8. The Taylor series associated with f converges and equals f
on px0 ´ e, x0 ` eq proving that x0 is analytic there. ⇤

The key to analyticity is that, not only are the derivatives of f well behaved at x0 to
allow for the Taylor series to converge, but they are similarly well-behaved in a whole
neighborhood of x0. The above argument actually gives us a bit more:

Corollary 45.4 Suppose that f admits the power series representation (45.3) that converges at
all x P px0 ´ r, x0 ` rq. Then f is analytic on px0 ´ r, x0 ` rq.

Proof. Let x P px0 ´ r, x0 ` rq and r̃ P p|x ´ x0|, rq. Let e ° 0 be such that 2e † r̃ ´ |x ´ x0|.
Then for all x̃ P px ´ e, x ` eq, which is a subset of px0 ´ r̃, x0 ` r̃q, the bound (45.12) along
with the fact that r̃ ´ |x̃ ´ x0| • r̃ ´ |x ´ x0| ´ e • e shows | f pkq

px̃q| § A1r̃e´pk`1qk!. This
gives (45.8) with A :“ A1r̃e´1 thus proving that f is analytic at x. ⇤

As a consequence of the above observations we get:

Corollary 45.5 Let f : R Ñ R. The set A :“ tx P Domp f q : f analytic at xu is open. All
derivatives and antiderivatives (a.k.a. primitives) of f are analytic on A.

45.2 Examples.

Let us move to discuss the basic examples of analytic functions. The immediate exam-
ples are the polynomials whose power series representation are the polynomials them-
selves. We have also seen the functions exp, sin and cos that are defined by an every-
where convergent power series (centered at zero) which by Corollary 45.4 means that
they are analytic on all of R. (In complex analysis, they are analytic on all of C and are
thus called entire.)

Another standard example of a function that is not analytic everywhere is the function
f pxq :“ 1

1´x with domain Domp f q :“ R r t1u. The geometric series representation

@x P p´1, 1q :
1

1 ´ x
“

8ÿ

n“0
xn (45.14)

shows that f is analytic on p´1, 1q. But the function is actually analytic on its entire
domain as is seen by taking x0 P R r t1u and writing

1
1 ´ x

“
1

1 ´ x0

1
1 ´

x´x0
1´x0

| x´x0
1´x0

|†1
“

8ÿ

n“0

1
p1 ´ x0qn`1 px ´ x0q

n (45.15)

The condition |
x´x0
1´x0

| † 1 translates into |x ´ x0| † |1 ´ x0| which means that we just
need x to be closer to x0 than x0 is to 1; i.e., x P px0 ´ |1 ´ x0|, x0 ` |1 ´ x0|q. The power
series converges on a largest interval centered at x0 that fits into R r t1u.
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A simple variant on this is the function f pxq :“ 1
1`x2 with Domp f q :“ R for which we

get the series representation

@x P p´1, 1q :
1

1 ` x2 “

8ÿ

n“0
p´1q

nx2n (45.16)

This shows that f is analytic on p´1, 1q. The same kind of rewrite as above (albeit more
complicated due to the square getting in the way) shows that f is actually analytic on
all of R. Note, however, that the radius of convergence of the resulting power series is
always finite (e.g., equal to one in (45.16)). This is because the function has singularities
in the complex plane — the denominator vanishes at x “ ˘i — which are “felt” by the
power series even on the real line.

In homework, we introduce the function

logpxq :“
ª x

1

1
t

dt (45.17)

with Domplogq “ p0, 8q and proved that

@x, y P p0, 8q : logpx ¨ yq “ logpxq ` logpyq (45.18)

and that log is the inverse of exp. It will not surprise us that:

Lemma 45.6 log is analytic on its domain, i.e., on p0, 8q.

Proof. We will first prove that log is analytic at x0 “ 1. For this we use the substitu-
tion t fiÑ 1 ´ t to rewrite the defining expression (45.17) as

logpxq “ ´

ª 1´x

0

1
1 ´ t

dt (45.19)

For |1 ´ x| † 1 we may expand the integrand into an infinite power series in t and then
swap the sum with the integral (thanks to uniform convergence) to get

logpxq “ ´

8ÿ

n“0

ª 1´x

0
tndt “ ´

8ÿ

n“0

p1 ´ xq
n`1

n ` 1
“

8ÿ

m“1

p´1q
m´1

m
px ´ 1q

m (45.20)

For general x0 P p0, 8q we then use (45.18) to write assuming x{x0 P p0, 2q that

logpxq “ logpx0q ` logpx{x0q

“ logpx0q `

8ÿ

m“1

p´1q
m´1

m
px{x0 ´ 1q

m

“ logpx0q `

8ÿ

m“1

p´1q
m´1x´m

0
m

px ´ x0q
m

(45.21)

Hence, log is analytic on all of p0, 8q. ⇤

45.3 Operations on analytic functions.

We will now proceed to discuss operations that preserve (perhaps under natural condi-
tions) analyticity. We start by the algebraic operations:
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Lemma 45.7 Suppose f and g are analytic on an open set A Ñ R. Then
(1) f ` g and f ¨ g are analytic on A,
(2) if @x P A : gpxq ‰ 0 then also f {g is analytic on A.

Proof of (1). Pick x0 P A and assume that, for some e ° 0 and all x P px0 ´ e, x0 ` eq,

f pxq “

8ÿ

n“0
anpx ´ x0q

n
^ gpxq “

8ÿ

n“0
bnpx ´ x0q

n (45.22)

with the series absolutely convergent. Mertens’ Theorem for the Cauchy product then
tells us that

f ¨ gpxq “

8ÿ

n“0

´ nÿ

k“0

anbn´k

¯
px ´ x0q

n (45.23)

with the series converging absolutely. ⇤
For the second part, we first prove a more general fact:

Lemma 45.8 Let g : R Ñ R be analytic at x0 and f : R Ñ R analytic at gpx0q. Then f ˝ g is
analytic at x0. In fact, there is d ° 0 such that f ˝ g admits a power series representation

f ˝ gpxq “

8ÿ

`“1

˜
ÿ̀

n“0

ÿ

k1,...,kn•1
k1`¨¨¨`kn“`

´ nπ

i“1

bki

¯¸
px ´ x0q

` (45.24)

that converges absolutely for all x P px0 ´ d, x0 ` dq. (The sums in the large partentheses contain
only finitely many terms.)

Proof. Suppose f and g admit the representation

f pyq “

8ÿ

n“0
an

`
y ´ gpx0q

˘n
^ gpxq “

8ÿ

k“0

bkpx ´ x0q
k (45.25)

where the series are absolutely convergent whenever |x ´ x0| † r0 and |y ´ gpx0q| † r̃0.
The fact that the power series converges means that, given r P p0, r0q and r̃ P p0, r̃0q, there
is A P r1, 8q such that

@n P N : |an| § Ar´n
^ |bn| § Ar̃´n (45.26)

Moreover, given e P p0, rq, there is N0 P N such that forall N • N0,
ˇ̌
ˇ̌ f pyq ´

Nÿ

n“0
an

`
y ´ gpx0q

˘n
ˇ̌
ˇ̌ † e ^

ˇ̌
ˇ̌ gpxq ´ gpx0q ´

Nÿ

k“1

bkpx ´ x0q
k
ˇ̌
ˇ̌ † e{2 (45.27)

whenever |x ´ x0| † r and |y ´ gpx0q| † r̃. Here we used that b0 “ gpx0q.
Using the fact that |gpxq ´ gpx0q| is continuous, we can find d P p0, rq such that

@x P px0 ´ d, x0 ` dq :
ˇ̌
gpxq ´ gpx0q

ˇ̌
† e{2 ^

ˇ̌
ˇ

Nÿ

n“0
bnpx ´ x0q

n
ˇ̌
ˇ † e (45.28)
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where the second bound follows from the first using the second inequality in (45.27).
The formula an

´ bn
“ pa ´ bq

∞n´1
k“0 akbn´k then tells us

sup
xPpx0´d,x0`dq

ˇ̌
ˇ̌
ˇ
`
gpxq ´ gpx0q

˘n
´

ˆ Nÿ

k“1

bkpx ´ x0q
k
˙n

ˇ̌
ˇ̌
ˇ § een´1n “ nen (45.29)

whenever |x ´ x0| † d. Plugging (45.29) in the first series in (45.27) then shows
ˇ̌
ˇ̌
ˇ f ˝ gpxq ´

Nÿ

n“0
an

ˆ Nÿ

k“1

bkpx ´ x0q
k
˙n

ˇ̌
ˇ̌
ˇ §

Nÿ

n“1

n|an|en (45.30)

whenever |x ´ x0| † d. Here the sum on the right starts from n “ 1 because the quantity
on the left of (45.29) vanishes when n “ 0 and so no error arises from there.

The error on the right of (45.30) is bounded readily via (45.26) as:

Nÿ

n“1

n|an|en
§ A

Nÿ

n“1

npe{rq
n

§ A
e{r

p1 ´ e{rq2 (45.31)

where we used that e{r † 1 and invoked (45.11) for k :“ 1. For the N-dependent term
inside the absolute value in (45.30) we use the distributive law to get

Nÿ

n“0
an

ˆ Nÿ

k“1

bkpx ´ x0q
k
˙n

“

Nÿ

n“0
an

ÿ

1§k1,...,kn§N

´ nπ

i“1

bki

¯
px ´ x0q

k1`¨¨¨`kn

“

N2ÿ

`“1

˜ mint`,Nuÿ

n“0

ÿ

1§k1,...,kn§N
k1`¨¨¨`kn“`

´ nπ

i“1

bki

¯¸
px ´ x0q

`

(45.32)

where we curbed the sum over n using the fact that, since all ki’s are at least one, we
must have n § ` under the sums.

Using the bounds (45.26) the product of the bki ’s is at most Anr̃´` while the sum over
ki’s has at most

``
n
˘

terms (by a combinatorial argument of distributing ` balls into n bins
so that each bin receives at least one ball) we have

ˇ̌
ˇ̌
ˇ

mint`,Nuÿ

n“0

ÿ

1§k1,...,kn§N
k1`¨¨¨`kn“`

´ nπ

i“1

bki

¯ˇ̌
ˇ̌
ˇ §

ÿ̀

n“0
An

ˆ
`
n

˙
r̃´`

“
“
pA ` 1q{r̃

‰` (45.33)

where we used the Binomial Theorem in the last step. (This is regardless of N.) Assum-
ing d was chosen so small that

dpA ` 1q{r̃ † 1 (45.34)

the infinite series
8ÿ

`“1

˜
ÿ̀

n“0

ÿ

k1,...,kn•1
k1`¨¨¨`kn“`

´ nπ

i“1

bki

¯¸
px ´ x0q

` (45.35)
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converges uniformly in x P px0 ´ d, x0 ` dq. Moreover, since the restriction to ` § N on
the right of (45.32) effectively nulls the restrictions on N, in this range of x we also get

ˇ̌
ˇ̌
ˇ

Nÿ

n“0
an

ˆ Nÿ

k“1

bkpx ´ x0q
k
˙n

´

8ÿ

`“1

˜
ÿ̀

n“0

ÿ

k1,...,kn•1
k1`¨¨¨`kn“`

´ nπ

i“1

bki

¯¸
px ´ x0q

`

ˇ̌
ˇ̌
ˇ § 2

8ÿ

`“N`1

“
dpA ` 1q{r̃

‰`
(45.36)

where the factor 2 arises from using the bound (45.33) once for ` ° N in the sum in
(45.32) and the second time to the corresponding terms in the series in (45.35).

The right-hand side of (45.36) is less than e ° 0 once N is sufficiently large. We have
thus proved that f ˝ gpxq lies within

e ` A
e{r

p1 ´ e{rq2 (45.37)

of the series in (45.35) uniformly in x P px0 ´ d, x0 ` dq. But e ° 0 was arbitrary (suffi-
ciently small), so f ˝ gpxq equals the series on this interval. ⇤
Proof of (2) in Lemma 45.7. Since hpzq :“ 1{z is analytic away from z “ 0 (see the discus-
sion after (45.14)) and gpx0q ‰ 0, the composition h ˝ g “ 1{g is analytic at x0. By part (1),
so is then f {g. ⇤

Yet more complicated arguments give:

Lemma 45.9 Let f : R Ñ R be analytic at x0 with f 1
px0q ‰ 0. Then f ´1 exists on a neigh-

borhood of f px0q and is analytic there.

The idea of the proof is to use the inversion formula p f ´1
q

1
pxq “ 1{ f 1

p f pxqq to pro-
gressively control all derivatives. Formulas for this exist (and are referred to as the Lan-
grange Inversion Theorem) but the calculations are quite complicated. (Details have in
fact been supplied much later by Bürrman.)

The reason why we do not go into these any further is that all of the above proofs
can be done far more elegantly using complex analysis. Indeed, there one shows that a
function f : C Ñ C defined on a neighborhood of z0 P intpDomp f qq obeys

f analytic at z0 ô lim
zÑz0

f pzq ´ f pz0q

z ´ z0
exists (45.38)

The property on the right, referred to as f being holomorphic at z0, is simply the existence
of a complex derivative. Note, however, that this is not the same as the derivative of a
real-valued functions. Indeed, z can approach z0 from all directions. And, no surprise,
being complex differentiable is much stronger because, once f has a complex derivative,
then (being analytic) it has derivatives of all orders.

Notwithstanding the difference between the real and complex derivatives, the basic
“rules” such as the Chain Rule or Inverse Function Rule remain in force. This yields
proofs of Lemmas 45.8 and 45.9 by basic calculus (and the property (45.38).) We refer
the reader to any basic textbook or a course on complex analysis where these topics are
treated in detail.
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