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25. UNIFORM AND CAUCHY CONTINUITY

We have seen above that continuous functions are exactly those that convert conver-
gent sequences to convergent sequences. A natural variation on this is: What functions
convert Cauchy sequences to Cauchy sequences. We will give these a name:

Definition 25.1 (Cauchy continuity) Let f : X Ñ Y be a function between metric spaces X
and Y. We say that f is Cauchy continuous if

@txnunPN P Domp f q
N : txnunPN Cauchy (in X) ñ t f pxnqunPN Cauchy (in Y) (25.1)

i.e., if f turns Cauchy sequences to Cauchy sequences.

We immediately note:

Lemma 25.2 (AC) A Cauchy continuous function is continuous.

Proof. Let f : X Ñ Y be Cauchy continuous and let x P Domp f q. Consider a se-
quence txnunPN P Domp f q

N such that xn Ñ x and define tynunPN by y2n :“ xn and
y2n`1 :“ x. Then also yn Ñ x. But then t f pynqunPN is Cauchy which means

rY
`

f pxnq, f pxq
˘

“ rY
`

f py2nq, f py2n`1q
˘

Ñ 0 (25.2)

Hence f pxnq Ñ f pxq. By Theorem 24.7 (which is where we need to call upon the Axiom
of Choice), f is continuous at x. ⇤

However, the converse does not hold. Indeed consider a function f : R r t0u Ñ R

defined by

f pxq :“

#
1, if x ° 0,
0, if x † 0,

(25.3)

Then f is continuous yet not Cauchy continuous because the sequence xn :“ p´2q
´n is

Cauchy yet t f pxnqunPN is NOT.
The concept of Cauchy continuity is somewhat special and in practice we typically

use different concepts that address directly continuity in somewhat quantitative way.
The simplest of these is:

Definition 25.3 (Uniform continuity) A function f : X Ñ Y between metric spaces pX, rXq

and pY, rYq is said to be uniformly continuous if

@e ° 0 Dd ° 0 @x, y P X : rXpx, yq † d ñ rY
`

f pxq, f pyq
˘

† e (25.4)

As it turns out, this differs from the definition of continuity in a rather inconspicuous
yet very important way. Indeed, a function f : X Ñ Y is continuous if

@e ° 0 @x P X Dd ° 0 @y P X : rXpx, yq † d ñ rY
`

f pxq, f pyq
˘

† e (25.5)

which differs from (25.4) by a swap of Dd ° 0 and @x P X quantifiers. This swap amounts
to the fact that d in (25.5) may depend on x yet in (25.4) one d must work for all x (and y)
simultaneously. This immediately gives:

Lemma 25.4 A uniformly continuous function is continuous.
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Again, the converse to this fails as witnessed by the example

f pxq :“ x2 (25.6)

with Domp f q “ R. Indeed, px ` dq
2

´ x2
“ 2xd ` d2 which cannot be made smaller

than e without restricting the size of x. We in fact have a stronger conclusion:

Lemma 25.5 A uniformly continuous function is Cauchy continuous.

Proof. Let f : X Ñ Y be uniformly continuous. Given e ° 0 let d ° 0 be such that
rXpx, yq † d implies rYp f pxq, f pyqq † e. Given a Cauchy sequence txnunPN, there ex-
ists n0 • 0 such that rXpxn, xmq † d for all n, m • n0. But then rXp f pxnq, f pxmqq † e for
all n, m • n0. As this holds for all e ° 0, t f pxnqunPN is Cauchy as desired. ⇤

The example (25.6) shows that the converse to this does not hold; indeed, the function
there is Cauchy continuous yet not uniformly continuous. However, this would not be
the case if we restrict that f to any bounded subset of R. Indeed, we have:

Lemma 25.6 Let X and Y be metric space with X compact. The for all f : X Ñ Y:

f continuous ñ f uniformly continuous (25.7)

(Note that, thanks to Lemma 25.4, we can even write ô in (25.7).)

Proof. Assume X to be compact and let f : X Ñ Y be continuous. Given e ° 0, for
each x P X let

Dx :“
 

d P p0, 8q : diam f pBXpx, 2dqq † e
(

(25.8)
The continuity of f at x ensures that Dx ‰ H for all x P X. This, along with the fact that
x P BXpx, dq once d ° 0 shows that tBXpx, dq : x P X ^ d P Dxu is an open cover X. The
assumed compactness of X ensures existence of n P N, z0, . . . , zn P X and d0, . . . , dn P

p0, 8q such that

X “

n§

i“0

BXpzi, diq ^ @i “ 0, . . . , n : di P Dzi (25.9)

Define d :“ mini“0,...,n di and note that d ° 0. Then pick any x, y P X with rXpx, yq † d
and observe that for

i :“ min
 

j “ 0, . . . , n : x P Bpzj, djq
(

(25.10)
we have

rpy, ziq § rpx, yq ` rpx, ziq † d ` di § 2di (25.11)
and, since rXpx, ziq † d § di, we have x, y P BXpxi, 2diq. The fact that di P Dzi then gives

rY
`

f pxq, f pyq
˘

§ diam f
`
BXpzi, 2diq

˘
† e. (25.12)

As x, y P X were arbitrary points with rXpx, yq † d, this proves uniform continuity of f
on X. ⇤

The assumption of compactness of X can be relaxed and the conclusion strengthened
to the following form:

Lemma 25.7 Let X and Y be metric space with X totally bounded. The for all f : X Ñ Y:

f Cauchy continuous ñ f uniformly continuous (25.13)
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We leave the proof of this lemma to homework. A key reason for dealing with all of
these concepts comes in:

Theorem 25.8 (AC)(Existence/uniqueness of continuous extension) Let X and Y be met-
ric spaces, A Ñ X a non-empty set and f : A Ñ Y a function with Domp f q “ A. Assume:

(1) A is dense in X; i.e., A “ X,
(2) Y is complete
(3) f is uniformly continuous (or even just Cauchy continuous).

Then there exists a continuous function f̄ : X Ñ Y such that

@x P X : f̄ pxq “ f pxq (25.14)

Moreover, f̄ is unique in the sense that if g : X Ñ Y is a continuous function with Dompgq “ X
and g “ f on A, then g “ f̄ on X.

Proof. Let pX, rXq and pY, rYq be metric spaces as is the setting of the theorem and assume
that A and Y are such that the conditions (1-2) above apply. Let f : A Ñ Y be a function
with Domp f q “ A and assume that f is Cauchy continuous (which is implied by uniform
continuity). We start with the construction of f̄ .

Recall that f : X Ñ Y with Domp f q “ A is technically a relation G Ñ X ˆ Y of the
specific form

G :“
 

px, f pxqq P X ˆ Y : x P A
(

(25.15)
that we typically refer to as the graph of f . Next note that X ˆ Y is a metric space relative
to the metric

r
`
px, yq, px̃, ỹq

˘
“ rXpx, x̃q ` rYpy, ỹq (25.16)

This permits us to consider the closure G of G in X ˆ Y. We now claim:

Claim 1: G is the graph of a function

Indeed, suppose px, yq, px, ỹq P G. Then the fact that these are adherent points of G,
which is the graph of f , imply (by the AC) existence of sequences txnunPN, tx̃nunPN P AN

such that `
xn, f pxnq

˘
›Ñ px, yq ^

`
x̃n, f px̃nq

˘
›Ñ px, ỹq (25.17)

with the convergences in the metric space pX ˆ Y, rq. But this means that xn Ñ x
and x̃n Ñ x and thus also that the sequence tznunPN defined by

z2n :“ xn ^ z2n`1 “ x̃n (25.18)

obeys zn Ñ x. But the fact that f is Cauchy then implies that t f pznqunPN is Cauchy and,
since also f pxnq Ñ y and f px̃nq Ñ ỹ, shows

rYpy, ỹq “ lim
nÑ8 rY

`
f pxnq, f px̃nq

˘
“ lim

nÑ8 rY
`

f pz2nq, f pz2n`1q
˘

“ 0 (25.19)

This proves that
@px, yq, px, ỹq P G : y “ ỹ (25.20)

and so G is the graph of a function. Let us denote this function by f̄ . Next we note:

Claim 2: Domp f̄ q “ X
To prove this, let x P X. Then by (1) above x is adherent to A and so (by the AC) there ex-
ists txnunPN P AN such that xn Ñ x. The Cauchy continuity of f implies that t f pxnqunPN
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is a Cauchy sequence and so, by the completeness of Y assumed in (2) above, there
exists y P Y such that f pxnq Ñ Y. But then pxn, f pxnqq Ñ px, yq in X ˆ Y proving
that px, yq P G and thus x P Domp f̄ q.

Claim 3: f̄ is continuous Since G Ñ G, the function f̄ is an extension of f to all points
of X. To prove continuity let x P X assume for contradiction that there is txnunPN P XN

such that
xn Ñ x ^ @n P N : rYp f̄ pxnq, f̄ pxqq • e (25.21)

By the construction of G, there exists tx̃nunPN P AN such that

@n P N : rXpxn, x̃nq † 2´n
^ rY

`
f̄ pxnq, f px̃nq

˘
† e{2 (25.22)

But then x̃n Ñ x and, by Cauchy continuity of f and completeness of Y, there exists y P Y
such that f px̃nq Ñ y. It follows that f̄ pxq “ y yet the second halves of (25.21–25.22),
rYpy, f̄ pxqq • e{2, and thus y ‰ f̄ pxq. As px, f̄ pxqq, px, yq P G, this contradicts that G is
the graph of a function. It follows that f̄ is continuous.

For the uniqueness it suffices to note that two continuous functions defined on a clo-
sure of the set A agree once they agree on A. We leave this detail to the reader. ⇤

We remark that uniform continuity allows us to avoid the use of the Axiom of Choice
in the proof of Claim 1 but does not seem to do that for the rest of the claim, due to the
fact that the completeness of Y requires working with Cauchy sequences to begin with.

To demonstrate the power of this result, let us prove one more time the existence of
exponential function:

Lemma 25.9 Let a ° 0 be real and recall that f pxq :“ ax is well defined for all x P Q. Then f
is Cauchy continuous and thus extends continuously to a unique continuous function on R (still
written as x fiÑ ax).

Proof. Assume without (much) loss of generality that a • 1. We will rely on the fact that
ax`y

“ axay which is checked algebraically for x, y P Q. This shows

ay
´ ax

“ ax
pay´x

´ 1q (25.23)

Next note that for each d P p0, 1q there is Npdq P N such that 1 ´ d † a
1

Npdq`1 † 1 ` d.
Indeed, if note than either a ° p1 ` dq

1`n for all n • 0 or a † p1 ´ dq
n`1 for all n • 0

which is impossible due to the fact that a is positive and finite.
Now let txnunPN P QN be a Cauchy sequence. This sequence is bounded by, say,

M P N. Pick e ° 0 and set d :“ ea´M. The fact that txnunPN is Cauchy implies

Dn0 P N @n, m • n0 : |xn ´ xm| †
1

Npdq ` 1
(25.24)

But then for m, n • n0 the above shows
ˇ̌
f pxmq ´ f pxnq

ˇ̌
“ axm |axn´xm ´ 1| † aMd “ e (25.25)

thus proving that t f pxnqunPN is Cauchy. Theorem 25.7 now yields the desired unique
continuous extension of f to all of R. ⇤

To finish the discussion of uniform continuity, we introduce a couple of standard no-
tions that give a quantitative form of the dependence of d on e in (25.4).
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Definition 25.10 (Lipschitz/Hölder functions) Let f : X Ñ Y be a function between

metric spaces pX, rXq and pY, rYq. We say that f is Lipschitz continuous if

Dl ° 0@x, y P X : rY
`

f pxq, f pyq
˘

§ lrXpx, yq (25.26)

and, given a ° 0, is a-Hölder continuous if

Dl ° 0@x, y P X : rY
`

f pxq, f pyq
˘

§ lrXpx, yq
a (25.27)

Note that Lipschitz continuity is a special case of Hölder continuity (corresponding
to a :“ 1) but the vernacular is used in this form throughout mathematics. Both concepts
give a quantitative form of dependence of d on e in (25.4); namely, e “ ld for (25.26) and
e “ lda in (25.27). A Lipschitz/Hölder continuous function is uniformly continuous
and thus also continuous.

The smallest constant l that one can put into these expression is sometimes called
the Lipschitz/Hölder norm. The cases with a P p0, 1s are most natural because x, y fiÑ

rXpx, yq
a is a metric. As we will see, this is all there is for functions R Ñ R; indeed, an

a-Hölder function R Ñ R (relative to Euclidean metric) for a ° 1 is necessarily constant.
Both properties above try to estimate the distance of function values by a function of

the distance of the arguments. This naturally leads to the following generalization:

Definition 25.11 (Modulus of continuity) Given a function f : X Ñ Y between metric

spaces pX, rXq and pY, rYq and a continuous non-decreasing map w : r0, 8q Ñ r0, 8q

with wp0q “ 0 and wptq ° 0 for t ° 0, we say that w is a modulus of continuity of f if

@x, y P X : rY
`

f pxq, f pyq
˘

§ w
`
rXpx, yq

˘
(25.28)

So wptq “ lt in (25.26) and wptq “ lta in (25.27). The objective above is of course
to find a “best” function w that works for the given f ; if for each l P p0, 1q there is a
pair x, y P X with rXpx, yq ° 0 and rYp f pxq, f pyqq • lwprXpx, yqq, then we sometimes
talk about the modulus of continuity of f . (Other interpretations of this term do exist,
though.) Another way to study the behavior of functions is using:

Definition 25.12 (Oscillation) Let f : X Ñ Y be a function between metric spaces pX, rXq

and pY, rYq and let A Ñ X. The oscillation of f on A is the function r fiÑ osc f pA, rq where

osc f pA, rq :“ sup
!

rY
`

f pxq, f pyq
˘

: x, y P A ^ rXpx, yq † r
)

(25.29)

Here r is restricted to positive reals.

We note that all of these concepts are just ways to express properties of a function in
somewhat more condensed way.
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