25. UNIFORM AND CAUCHY CONTINUITY

We have seen above that continuous functions are exactly those that convert convergent sequences to convergent sequences. A natural variation on this is: What functions convert Cauchy sequences to Cauchy sequences. We will give these a name:

Definition 25.1 (Cauchy continuity) Let $f: X \to Y$ be a function between metric spaces X and Y. We say that f is Cauchy continuous if

$$\forall \{x_n\}_{n \in \mathbb{N}} \in \text{Dom}(f)^{\mathbb{N}} \colon \{x_n\}_{n \in \mathbb{N}} \text{ Cauchy (in } X) \Rightarrow \{f(x_n)\}_{n \in \mathbb{N}} \text{ Cauchy (in } Y) \quad (25.1)$$

i.e., if f turns Cauchy sequences to Cauchy sequences.

We immediately note:

Lemma 25.2 (AC) A Cauchy continuous function is continuous.

Proof. Let $f: X \to Y$ be Cauchy continuous and let $x \in \text{Dom}(f)$. Consider a sequence $\{x_n\}_{n\in\mathbb{N}} \in \text{Dom}(f)^{\mathbb{N}}$ such that $x_n \to x$ and define $\{y_n\}_{n\in\mathbb{N}}$ by $y_{2n} := x_n$ and $y_{2n+1} := x$. Then also $y_n \to x$. But then $\{f(y_n)\}_{n\in\mathbb{N}}$ is Cauchy which means

$$\rho_Y(f(x_n), f(x)) = \rho_Y(f(y_{2n}), f(y_{2n+1})) \to 0$$
(25.2)

Hence $f(x_n) \rightarrow f(x)$. By Theorem 24.7 (which is where we need to call upon the Axiom of Choice), *f* is continuous at *x*.

However, the converse does not hold. Indeed consider a function $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$ defined by

$$f(x) := \begin{cases} 1, & \text{if } x > 0, \\ 0, & \text{if } x < 0, \end{cases}$$
(25.3)

Then *f* is continuous yet not Cauchy continuous because the sequence $x_n := (-2)^{-n}$ is Cauchy yet $\{f(x_n)\}_{n \in \mathbb{N}}$ is NOT.

The concept of Cauchy continuity is somewhat special and in practice we typically use different concepts that address directly continuity in somewhat quantitative way. The simplest of these is:

Definition 25.3 (Uniform continuity) A function $f: X \to Y$ between metric spaces (X, ρ_X) and (Y, ρ_Y) is said to be uniformly continuous if

$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x, y \in X \colon \rho_X(x, y) < \delta \Rightarrow \rho_Y(f(x), f(y)) < \epsilon \tag{25.4}$$

As it turns out, this differs from the definition of continuity in a rather inconspicuous yet very important way. Indeed, a function $f: X \rightarrow Y$ is continuous if

$$\forall \epsilon > 0 \,\forall x \in X \,\exists \delta > 0 \,\forall y \in X \colon \rho_X(x, y) < \delta \Rightarrow \rho_Y(f(x), f(y)) < \epsilon \tag{25.5}$$

which differs from (25.4) by a swap of $\exists \delta > 0$ and $\forall x \in X$ quantifiers. This swap amounts to the fact that δ in (25.5) may depend on x yet in (25.4) one δ must work for all x (and y) simultaneously. This immediately gives:

Lemma 25.4 A uniformly continuous function is continuous.

Preliminary version (subject to change anytime!)

Again, the converse to this fails as witnessed by the example

$$f(x) := x^2 \tag{25.6}$$

with $\text{Dom}(f) = \mathbb{R}$. Indeed, $(x + \delta)^2 - x^2 = 2x\delta + \delta^2$ which cannot be made smaller than ϵ without restricting the size of x. We in fact have a stronger conclusion:

Lemma 25.5 A uniformly continuous function is Cauchy continuous.

Proof. Let $f: X \to Y$ be uniformly continuous. Given $\epsilon > 0$ let $\delta > 0$ be such that $\rho_X(x,y) < \delta$ implies $\rho_Y(f(x), f(y)) < \epsilon$. Given a Cauchy sequence $\{x_n\}_{n \in \mathbb{N}}$, there exists $n_0 \ge 0$ such that $\rho_X(x_n, x_m) < \delta$ for all $n, m \ge n_0$. But then $\rho_X(f(x_n), f(x_m)) < \epsilon$ for all $n, m \ge n_0$. As this holds for all $\epsilon > 0$, $\{f(x_n)\}_{n \in \mathbb{N}}$ is Cauchy as desired.

The example (25.6) shows that the converse to this does not hold; indeed, the function there is Cauchy continuous yet not uniformly continuous. However, this would not be the case if we restrict that f to any bounded subset of \mathbb{R} . Indeed, we have:

Lemma 25.6 Let X and Y be metric space with X compact. The for all $f: X \to Y$:

 $f \text{ continuous } \Rightarrow f \text{ uniformly continuous}$ (25.7)

(Note that, thanks to Lemma 25.4, we can even write \Leftrightarrow in (25.7).)

Proof. Assume *X* to be compact and let $f: X \to Y$ be continuous. Given $\epsilon > 0$, for each $x \in X$ let

$$\Delta_x := \{ \delta \in (0, \infty) \colon \operatorname{diam} f(B_X(x, 2\delta)) < \epsilon \}$$
(25.8)

The continuity of f at x ensures that $\Delta_x \neq \emptyset$ for all $x \in X$. This, along with the fact that $x \in B_X(x, \delta)$ once $\delta > 0$ shows that $\{B_X(x, \delta) : x \in X \land \delta \in \Delta_x\}$ is an open cover X. The assumed compactness of X ensures existence of $n \in \mathbb{N}$, $z_0, \ldots, z_n \in X$ and $\delta_0, \ldots, \delta_n \in (0, \infty)$ such that

$$X = \bigcup_{i=0}^{n} B_X(z_i, \delta_i) \land \forall i = 0, \dots, n \colon \delta_i \in \Delta_{z_i}$$
(25.9)

Define $\delta := \min_{i=0,...,n} \delta_i$ and note that $\delta > 0$. Then pick any $x, y \in X$ with $\rho_X(x, y) < \delta$ and observe that for

$$i := \min\{j = 0, \dots, n \colon x \in B(z_j, \delta_j)\}$$
(25.10)

we have

$$\rho(y, z_i) \le \rho(x, y) + \rho(x, z_i) < \delta + \delta_i \le 2\delta_i$$
(25.11)

and, since $\rho_X(x, z_i) < \delta \leq \delta_i$, we have $x, y \in B_X(x_i, 2\delta_i)$. The fact that $\delta_i \in \Delta_{z_i}$ then gives

$$\rho_Y(f(x), f(y)) \leq \operatorname{diam} f(B_X(z_i, 2\delta_i)) < \epsilon.$$
(25.12)

As $x, y \in X$ were arbitrary points with $\rho_X(x, y) < \delta$, this proves uniform continuity of f on X.

The assumption of compactness of *X* can be relaxed and the conclusion strengthened to the following form:

Lemma 25.7 Let X and Y be metric space with X totally bounded. The for all $f: X \rightarrow Y$:

$$f$$
 Cauchy continuous \Rightarrow f uniformly continuous (25.13)

Preliminary version (subject to change anytime!)

Typeset: April 13, 2023

We leave the proof of this lemma to homework. A key reason for dealing with all of these concepts comes in:

Theorem 25.8 (AC)(Existence/uniqueness of continuous extension) Let X and Y be metric spaces, $A \subseteq X$ a non-empty set and $f: A \to Y$ a function with Dom(f) = A. Assume:

- (1) A is dense in X; i.e., $\overline{A} = X$,
- (2) Y is complete
- (3) *f* is uniformly continuous (or even just Cauchy continuous).

Then there exists a continuous function \overline{f} : $X \to Y$ *such that*

$$\forall x \in X: \ \bar{f}(x) = f(x) \tag{25.14}$$

Moreover, \overline{f} *is unique in the sense that if* $g: X \to Y$ *is a continuous function with* Dom(g) = X *and* g = f *on* A*, then* $g = \overline{f}$ *on* X*.*

Proof. Let (X, ρ_X) and (Y, ρ_Y) be metric spaces as is the setting of the theorem and assume that *A* and *Y* are such that the conditions (1-2) above apply. Let $f: A \to Y$ be a function with Dom(f) = A and assume that *f* is Cauchy continuous (which is implied by uniform continuity). We start with the construction of \overline{f} .

Recall that $f: X \to Y$ with Dom(f) = A is technically a relation $G \subseteq X \times Y$ of the specific form

$$G := \{ (x, f(x)) \in X \times Y \colon x \in A \}$$
(25.15)

that we typically refer to as the graph of *f*. Next note that $X \times Y$ is a metric space relative to the metric

$$\rho((x,y),(\tilde{x},\tilde{y})) = \rho_X(x,\tilde{x}) + \rho_Y(y,\tilde{y})$$
(25.16)

This permits us to consider the closure \overline{G} of *G* in *X* × *Y*. We now claim:

Claim 1: \overline{G} is the graph of a function

Indeed, suppose $(x, y), (x, \tilde{y}) \in \overline{G}$. Then the fact that these are adherent points of *G*, which is the graph of *f*, imply (by the AC) existence of sequences $\{x_n\}_{n \in \mathbb{N}}, \{\tilde{x}_n\}_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ such that

$$(x_n, f(x_n)) \longrightarrow (x, y) \land (\tilde{x}_n, f(\tilde{x}_n)) \longrightarrow (x, \tilde{y})$$
 (25.17)

with the convergences in the metric space $(X \times Y, \rho)$. But this means that $x_n \to x$ and $\tilde{x}_n \to x$ and thus also that the sequence $\{z_n\}_{n \in \mathbb{N}}$ defined by

$$z_{2n} := x_n \wedge z_{2n+1} = \tilde{x}_n \tag{25.18}$$

obeys $z_n \to x$. But the fact that f is Cauchy then implies that $\{f(z_n)\}_{n \in \mathbb{N}}$ is Cauchy and, since also $f(x_n) \to y$ and $f(\tilde{x}_n) \to \tilde{y}$, shows

$$\rho_{Y}(y,\tilde{y}) = \lim_{n \to \infty} \rho_{Y}(f(x_{n}), f(\tilde{x}_{n})) = \lim_{n \to \infty} \rho_{Y}(f(z_{2n}), f(z_{2n+1})) = 0$$
(25.19)

This proves that

$$\forall (x,y), (x,\tilde{y}) \in \overline{G}: \ y = \tilde{y}$$
(25.20)

and so \overline{G} is the graph of a function. Let us denote this function by \overline{f} . Next we note:

Claim 2: $\operatorname{Dom}(\bar{f}) = X$

To prove this, let $x \in X$. Then by (1) above x is adherent to A and so (by the AC) there exists $\{x_n\}_{n\in\mathbb{N}} \in A^{\mathbb{N}}$ such that $x_n \to x$. The Cauchy continuity of f implies that $\{f(x_n)\}_{n\in\mathbb{N}}$

is a Cauchy sequence and so, by the completeness of *Y* assumed in (2) above, there exists $y \in Y$ such that $f(x_n) \to Y$. But then $(x_n, f(x_n)) \to (x, y)$ in $X \times Y$ proving that $(x, y) \in \overline{G}$ and thus $x \in \text{Dom}(\overline{f})$.

Claim 3: \overline{f} *is continuous* Since $G \subseteq \overline{G}$, the function \overline{f} is an extension of f to all points of X. To prove continuity let $x \in X$ assume for contradiction that there is $\{x_n\}_{n \in \mathbb{N}} \in X^N$ such that

$$x_n \to x \land \forall n \in \mathbb{N} \colon \rho_Y(\bar{f}(x_n), \bar{f}(x)) \ge \epsilon$$
 (25.21)

By the construction of \overline{G} , there exists $\{\tilde{x}_n\}_{n \in \mathbb{N}} \in A^{\mathbb{N}}$ such that

$$\forall n \in \mathbb{N} : \rho_X(x_n, \tilde{x}_n) < 2^{-n} \land \rho_Y(\bar{f}(x_n), f(\tilde{x}_n)) < \epsilon/2$$
(25.22)

But then $\tilde{x}_n \to x$ and, by Cauchy continuity of f and completeness of Y, there exists $y \in Y$ such that $f(\tilde{x}_n) \to y$. It follows that $\overline{f}(x) = y$ yet the second halves of (25.21–25.22), $\rho_Y(y, \overline{f}(x)) \ge \epsilon/2$, and thus $y \neq \overline{f}(x)$. As $(x, \overline{f}(x)), (x, y) \in \overline{G}$, this contradicts that \overline{G} is the graph of a function. It follows that \overline{f} is continuous.

For the uniqueness it suffices to note that two continuous functions defined on a closure of the set *A* agree once they agree on *A*. We leave this detail to the reader. \Box

We remark that uniform continuity allows us to avoid the use of the Axiom of Choice in the proof of Claim 1 but does not seem to do that for the rest of the claim, due to the fact that the completeness of Y requires working with Cauchy sequences to begin with.

To demonstrate the power of this result, let us prove one more time the existence of exponential function:

Lemma 25.9 Let a > 0 be real and recall that $f(x) := a^x$ is well defined for all $x \in \mathbb{Q}$. Then f is Cauchy continuous and thus extends continuously to a unique continuous function on \mathbb{R} (still written as $x \mapsto a^x$).

Proof. Assume without (much) loss of generality that $a \ge 1$. We will rely on the fact that $a^{x+y} = a^x a^y$ which is checked algebraically for $x, y \in \mathbb{Q}$. This shows

$$a^{y} - a^{x} = a^{x}(a^{y-x} - 1)$$
(25.23)

Next note that for each $\delta \in (0,1)$ there is $N(\delta) \in \mathbb{N}$ such that $1 - \delta < a^{\frac{1}{N(\delta)+1}} < 1 + \delta$. Indeed, if note than either $a > (1 + \delta)^{1+n}$ for all $n \ge 0$ or $a < (1 - \delta)^{n+1}$ for all $n \ge 0$ which is impossible due to the fact that *a* is positive and finite.

Now let $\{x_n\}_{n\in\mathbb{N}} \in \mathbb{Q}^{\mathbb{N}}$ be a Cauchy sequence. This sequence is bounded by, say, $M \in \mathbb{N}$. Pick $\epsilon > 0$ and set $\delta := \epsilon a^{-M}$. The fact that $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy implies

$$\exists n_0 \in \mathbb{N} \,\forall n, m \ge n_0 \colon |x_n - x_m| < \frac{1}{N(\delta) + 1} \tag{25.24}$$

But then for $m, n \ge n_0$ the above shows

$$|f(x_m) - f(x_n)| = a^{x_m} |a^{x_n - x_m} - 1| < a^M \delta = \epsilon$$
(25.25)

thus proving that $\{f(x_n)\}_{n \in \mathbb{N}}$ is Cauchy. Theorem 25.7 now yields the desired unique continuous extension of *f* to all of \mathbb{R} .

To finish the discussion of uniform continuity, we introduce a couple of standard notions that give a quantitative form of the dependence of δ on ϵ in (25.4).

Preliminary version (subject to change anytime!)

Definition 25.10 (Lipschitz/Hölder functions) Let $f: X \to Y$ be a function between metric spaces (X, ρ_X) and (Y, ρ_Y) . We say that f is Lipschitz continuous if

$$\exists \lambda > 0 \forall x, y \in X: \ \rho_Y(f(x), f(y)) \leq \lambda \rho_X(x, y)$$
(25.26)

and, given $\alpha > 0$, is α -Hölder continuous if

$$\exists \lambda > 0 \forall x, y \in X: \ \rho_Y(f(x), f(y)) \leq \lambda \rho_X(x, y)^{\alpha}$$
(25.27)

Note that Lipschitz continuity is a special case of Hölder continuity (corresponding to $\alpha := 1$) but the vernacular is used in this form throughout mathematics. Both concepts give a quantitative form of dependence of δ on ϵ in (25.4); namely, $\epsilon = \lambda \delta$ for (25.26) and $\epsilon = \lambda \delta^{\alpha}$ in (25.27). A Lipschitz/Hölder continuous function is uniformly continuous and thus also continuous.

The smallest constant λ that one can put into these expression is sometimes called the Lipschitz/Hölder norm. The cases with $\alpha \in (0, 1]$ are most natural because $x, y \mapsto \rho_X(x, y)^{\alpha}$ is a metric. As we will see, this is all there is for functions $\mathbb{R} \to \mathbb{R}$; indeed, an α -Hölder function $\mathbb{R} \to \mathbb{R}$ (relative to Euclidean metric) for $\alpha > 1$ is necessarily constant.

Both properties above try to estimate the distance of function values by a function of the distance of the arguments. This naturally leads to the following generalization:

Definition 25.11 (Modulus of continuity) Given a function $f: X \to Y$ between metric spaces (X, ρ_X) and (Y, ρ_Y) and a continuous non-decreasing map $\omega: [0, \infty) \to [0, \infty)$ with $\omega(0) = 0$ and $\omega(t) > 0$ for t > 0, we say that ω is a modulus of continuity of f if

$$\forall x, y \in X: \ \rho_Y(f(x), f(y)) \le \omega(\rho_X(x, y))$$
(25.28)

So $\omega(t) = \lambda t$ in (25.26) and $\omega(t) = \lambda t^{\alpha}$ in (25.27). The objective above is of course to find a "best" function ω that works for the given f; if for each $\lambda \in (0, 1)$ there is a pair $x, y \in X$ with $\rho_X(x, y) > 0$ and $\rho_Y(f(x), f(y)) \ge \lambda \omega(\rho_X(x, y))$, then we sometimes talk about *the* modulus of continuity of f. (Other interpretations of this term do exist, though.) Another way to study the behavior of functions is using:

Definition 25.12 (Oscillation) Let $f: X \to Y$ be a function between metric spaces (X, ρ_X) and (Y, ρ_Y) and let $A \subseteq X$. The oscillation of f on A is the function $r \mapsto \text{osc}_f(A, r)$ where

$$\operatorname{osc}_{f}(A, r) := \sup \left\{ \rho_{Y}(f(x), f(y)) \colon x, y \in A \land \rho_{X}(x, y) < r \right\}$$
(25.29)

Here *r* is restricted to positive reals.

We note that all of these concepts are just ways to express properties of a function in somewhat more condensed way.