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32. DARBOUX INTEGRAL

We proceed to give another version of integration theory pioneered by G. Darboux.
While this version turns out to be equivalent to Riemann’s, some parts of Darboux ap-
proach become useful in their further generalization to the Lebesgue integral (which we
will not discuss in this course as it requires the concept of a measure).

32.1 Darboux integrability and integral.

While Riemann’s approach to integration relies on the (metric) completeness of the reals,
Darboux’s approach is based on the ordering property of the reals and the least upper
bound axiom. We start with:

Definition 32.1 (Upper/lower Darboux sum) Let a † b be reals and f : ra, bs Ñ R a
bounded function. Given a partition P consisting of points ttiu

n
i“1 satisfying (31.1), we

define the upper Darboux sum by

Up f , Pq :“
nÿ

i“1

”
sup

xPrti´1,tis
f pxq

ı
pti ´ ti´1q (32.1)

and its lower Darboux sum by

Lp f , Pq :“
nÿ

i“1

”
inf

xPrti´1,tis
f pxq

ı
pti ´ ti´1q (32.2)

We will write these even for P denoting a marked partition while noting that the sums
do not depend on the marked points.

The following is easy to check:

Lemma 32.2 Let f : ra, bs Ñ R be bounded. Then for any marked partition P, the associated
Riemann sum Rp f , Pq from (31.4) obeys

Lp f , Pq § Rp f , Pq § Up f , Pq (32.3)

Moreover, for each e ° 0 there are marked partitions P and P1 such that

Rp f , Pq • Up f , Pq ´ e ^ Rp f , P1
q § Lp f , Pq ` e (32.4)

The numbers Lp f , Pq and Rp f , Pq mark the interval of values that the Riemann sum can
take for given partition points ttiu

n
i“0. We leave the easy proof as an exercise.

Another way to think of Up f , Pq is as the minimal area under the graphs of func-
tions that exceed (or, more precisely, is no less than) f and are constant on each interval
pti´1, tis. Similarly, Lp f , Pq as then the maximal area for all such functions that are less
(or, more precisely, no larger) than f .

The advantage of the Darboux sums over Riemann’s is that they have several useful
monotonicity properties. The highlight of these is the content of:

Lemma 32.3 Let f : ra, bs Ñ R be bounded and given two partitions P and P1 of ra, bs, write
P Ñ P1 if all partition points of P occur among those of P1. Then for all parititions P and P1,

P Ñ P1
ñ Lp f , Pq § Lp f , P1

q § Up f , P1
q § Up f , Pq (32.5)
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In particular, we have

@P, P1 partitions of ra, bs : Lp f , Pq § Up f , P1
q (32.6)

Proof. We start with (32.5). Here it suffices to assume that P1 consists of P and one
point u that lies in interval rti´1, tis. In this case

Up f , P1
q ´ Up f , Pq “

”
sup

xPrti´1,us
f pxq

ı
pu ´ ti´1q

`

”
sup

xPru,tis
f pxq

ı
pti ´ uq ´

”
sup

xPrti´1,tis
f pxq

ı
pti ´ ti´1q (32.7)

Using that

max
!

sup
xPrti´1,us

f pxq, sup
xPrti´1,us

f pxq

)
§ sup

xPrti´1,tis
f pxq (32.8)

we then get Up f , P1
q ´ Up f , Pq § 0 as desired. The inequality Lp f , Pq § Lp f , P1

q is
proved similarly.

In order to get (32.6) from this, let P and P1 be arbitrary partitions and let P Y P1

be a partition consisting of all the points in both P and P1. Then P Y P1
Ñ P and

P Y P1
Ñ P1 and so

Lp f , Pq § Lp f , P Y P1
q § Up f , P Y P1

q § Up f , P1
q (32.9)

holds by (32.5). ⇤
We now put forward:

Definition 32.4 (Upper/lower Darboux integral) Let f : ra, bs Ñ R be bounded. Then
ª b

a
f pxqdx :“ inf

 
Up f , Pq : P is a partition of [a,b]

(
(32.10)

is the upper Darboux integral while
ª b

a
f pxqdx :“ sup

 
Lp f , Pq : P is a partition of [a,b]

(
(32.11)

is the lower Darboux integral.

Since Up f , Pq is defined using suprema, the upper Darboux integral can be thought
of as a version of “limsup” and, similarly, the lower Darboux integral as a version of
“liminf.” As a consequence of (32.6), we get:

Corollary 32.5 For all bounded f : ra, bs Ñ R we then have
ª b

a
f pxqdx §

ª b

a
f pxqdx (32.12)

We can think of this as the analogy of statement that “liminf” is no larger than the
“limsup.” The existence of the “limit,” which is what we have (albeit in a different form)
associated with Riemann integrability, is then characterized by the “limsup” being equal
to the “liminf:”
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Definition 32.6 (Darboux integrability/integral) We say that a bounded f : ra, bs Ñ R

is Darboux integrable (DI) if
ª b

a
f pxqdx “

ª b

a
f pxqdx (32.13)

The common value of these quantities is then called the Darboux integral.

32.2 Equivalence of Darboux and Riemann integral.

As announced earlier, the two approaches to integral turn out to be equivalent. We state
this along with a convenient necessary and sufficient condition:

Lemma 32.7 (Characterization of Darboux integrability) Let f : ra, bs Ñ R. Then

f DI ô @e ° 0 DP “ partition of ra, bs : Up f , Pq ´ Lp f , Pq † e (32.14)

Proof. For any partition P we have
ª b

a
f pxqdx ´

ª b

a
f pxqdx § Up f , Pq ´ Lp f , Pq (32.15)

With the help of (32.12), this proves  in (32.14).
On the other hand, by the properties of suprema and infima, for each e ° 0 there are

partitions P and P1 such that

Up f , Pq §

ª b

a
f pxqdx ` e ^ Lp f , P1

q •

ª b

a
f pxqdx ´ e. (32.16)

In light of (32.9), the common refinement P2 :“ P Y P1 of P and P1 obeys

Up f , P2
q ´ Lp f , P2

q § Up f , Pq ´ Lp f , P1
q

§

ª b

a
f pxqdx ´

ª b

a
f pxqdx ` 2e “ 2e,

(32.17)

where the last equality follow from (32.13) and the assumption that f is Darboux inte-
grable. This proves ñ in (32.14). ⇤

Note that the previous proof actually shows:

Corollary 32.8 For all f : ra, bs Ñ R bounded,
ª b

a
f pxqdx ´

ª b

a
f pxqdx “ inf

!
Up f , Pq ´ Lp f , Pq : P “ partition of ra, bs

)
(32.18)

An important point in applications is that the quantity Up f , Pq ´ Lp f , Pq can be ex-
pressed using the concept of (unrestricted) oscillation, which for a real-valued function f
on a non-empty set A Ñ Domp f q is defined as

oscp f , Aq :“ sup
 

| f pyq ´ f pxq| : x, y P A
(

(32.19)
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(this corresponds to osc f p f , 8q in our earlier notation). To see why this is relevant for
us, note that

oscp f , Aq “ sup
xPA

f pxq ´ inf
xPA

f pxq (32.20)

and so for any f : ra, bs Ñ 8 and any partition P “ ttiu
n
i“0 of ra, bs,

Up f , Pq ´ Lp f , Pq “

nÿ

i“1

osc
`

f , rti´1, tis
˘
pti ´ ti´1q. (32.21)

The integrability thus (vaguely) corresponds to there being a sequence of partitions
along which the total length of intervals where the oscillation is appreciable can be made
arbitrarily small. Note that, unlike for the Riemann integral, we make no restrictions as
to the mesh of the partition used but, in all but the trivial cases, the partitions P with
small value of Up f , Pq ´ Lp f , Pq will have small mesh.

The main result of this section is:

Theorem 32.9 (Equivalence of Darboux and Riemann) For all f : ra, bs Ñ R be bounded:
(1) Riemann integrability of f on ra, bs implies

@e ° 0 DP “ partition of ra, bs : Up f , Pq ´ Lp f , Pq † e (32.22)

(2) Condition (32.22) implies Riemann integrability of f on ra, bs.
In particular, for all bounded or all f : ra, bs Ñ R,

f RI ô f DI (32.23)

and, if these are TRUE, then the Darboux and the Riemann integrals coincide.

Proof. Let us start with (1). Fix e ° 0. By the arguments underlying the proof of
Lemma 32.2, for any choices of partition points, there are choices of marked points such
that the associated partitions P and P1 obey

Rp f , Pq • Up f , Pq ´ e ^ Rp f , P1
q § Lp f , P1

q ` e (32.24)

Since f is assumed Riemann integrable, the Cauchy criterion for Riemann integrability
(Lemma 31.7) implies that there is d ° 0 such that for any marked partitions }P} † d
and }P1

} † d then ˇ̌
Rp f , Pq ´ Rp f , P1

q

ˇ̌
† e (32.25)

Picking the partition points so that }P} † d and }P1
} † d holds and the marked points

so that (32.24) is TRUE, we then get

Up f , P Y P1
q ´ Lp f , P Y P1

q § Up f , Pq ´ Lp f , P1
q

§

ˇ̌
Rp f , Pq ´ Rp f , P1

q

ˇ̌
` 2e † 3e

(32.26)

where P Y P1 is the common refinement of P and P1 and where the first inequality
follows from (32.9). The claim follows from (32.21) by relabeling 3e as e.

For (2) we pick e ° 0 and let P0 “ ttiu
n
i“0 be a partition of ra, bs such that

Up f , P0q ´ Lp f , P0q † e. (32.27)

Pick d ° 0 satisfying
3nd

´
sup

xPra,bs

ˇ̌
f pxq

ˇ̌¯
† e (32.28)
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Given marked partitions P and P1 such that }P} † d and }P1
} † d, let P0 Y P1,

resp., P0 Y P2 be marked partitions with the partition points of both P0 and P, resp.,
both P0 and P1 and the marked points of P1, resp., P2 in the intervals of P0 Y P1,
resp., P0 Y P2 where the marked points of these partition fall into and left endpoints of
the intervals in those where they do not. The argument underlying (31.33) then shows

ˇ̌
Rp f , P0 Y Pq ´ Rp f , Pq

ˇ̌
`

ˇ̌
Rp f , P0 Y P1

q ´ Rp f , P1
q

ˇ̌
† 2e. (32.29)

But (32.3) and (32.5) give

Lp f , P0q § Lp f , P0 Y Pq § Rp f , P0 Y Pq § Up f , P0 Y Pq § Up f , P0q (32.30)

and similarly for Rp f , P0 Y P1
q. Therefore,

ˇ̌
Rp f , Pq ´ Rp f , P1

q

ˇ̌
§ 2e `

ˇ̌
ˇRp f , P0 Y Pq ´ Rp f , P0 Y P1

q

ˇ̌
ˇ

§ 2e ` Up f , P0q ´ Lp f , P0q † 3e
(32.31)

We have thus verified the Cauchy criterion from Lemma 31.7 and proved that f is Rie-
mann integrable. With f both Riemann and Darboux integrable, the integrals coincide
thanks to (32.3) and the definition of the upper and lower Darboux integral. ⇤

Since the two concepts of integrability are thus shown to be equivalent, we will hence-
forth refer to both Darboux’s and Riemann’s integral simply as the Riemann integral.
Darboux’s integral is often simpler to work with conceptually as it easier to verify its
main criterion for integrability (32.22). (Recall that the harder part of the proof of The-
orem 32.9 was the implication “(32.22) ñ Riemann integrability.”) This gives us the
following simple corollary:

Corollary 32.10 Let f , g : ra, bs Ñ R be bounded. Then
(1) f Riemann integrable ñ | f | Riemann integrable
(2) f , g Riemann integrable ñ f ¨ g Riemann integrable

Proof. This follows from the easy bounds

osc
`
| f |, A

˘
§ osc

`
f , A

˘
(32.32)

and

osc
`

f ¨ g, A
˘

§ } f }osc
`
g, A

˘
` }g}osc

`
f , A

˘
(32.33)

We leave the remaining details to the reader. ⇤
On the other hand, some statements are slightly harder to show in Darboux’s ap-

proach than in Riemann’s approach. One of these is additivity with respect to the inte-
grand which in the context of Darboux integral takes the following form:

Lemma 32.11 Let a † b be reals and f , g : ra, bs Ñ R bounded functions. Then the upper
Darboux integral is subadditivive,

ª b

a
p f ` gqpxqdx §

ª b

a
f pxqdx `

ª b

a
gpxqdx (32.34)
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and the lower Darboux integral is superadditive,
ª b

a
p f ` gqpxqdx •

ª b

a
f pxqdx `

ª b

a
gpxqdx (32.35)

In particular, if both f and g are Darboux integrable, then so is f ` g and the Darboux integral
of f ` g is the sum of Darboux integrals of f and g.

We leave the proof of this lemma to homework while noting that one can also con-
struct non-Darboux integrable f and/or g such that the inequalities in (32.34–32.35) are
strict. The upper/lower Darboux integrals are also positive homogeneous, meaning that
the upper integral of l f is l-multiple of the upper integral of f for all l • 0. On the other
hand, multiplying f by negative l transforms the upper integral of l f to the l-multiple
of the lower integral and vice versa.

The main disadvantage of Darboux’s approach is that is based on the ordering prop-
erty of R, which is unavailable as soon as the integrand takes value in more complicated
sets (such as the generalization of the Riemann integral to vector-valued functions) or
we need to work with the generalization of the Riemann integral to what we will later
call the Stieltjes integral.
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