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33. SUFFICIENT CONDITIONS FOR RIEMANN INTEGRABILITY

As noted above, one principal novelty of Riemann’s approach to integration is to make
the existence of the integral a regularity property of the function in its own right. How-
ever, this still leaves us with the need for easily checkable sufficient conditions for Rie-
mann integrability. In this section we go over a list of progressively more demanding
sufficient conditions. This will reveal ideas that will play an important role in our full
characterization of Riemann integrability in the next section.

33.1 Continuous functions and variations thereof.

One of the earlier attempts to make the concept of integral well defined was put forward
by Cauchy, who insisted on working with continuous integrands. It is reassuring that
Cauchy’s treatment becomes subsumed by Riemann’s:

Lemma 33.1 Let f : ra, bs Ñ R. Then

f continuous ñ f Riemann integrable (33.1)

Proof. By the Bolzano-Weierstrass Theorem, a continuous f : ra, bs Ñ R is automatically
bounded and uniformly continuous. This means that

@e ° 0 Dd ° 0 @s, t P ra, bs : 0 † t ´ s † d ñ osc
`

f , rs, ts
˘

†
e

b ´ a
(33.2)

Picking such a d ° 0, ti follows that for any partition P “ ttiu
n
i“1 of ra, bs,

}P} † d ñ

nÿ

i“1

osc
`

f , rti´1, tis
˘
pti ´ ti´1q †

e

b ´ a

nÿ

i“1

pti ´ ti´1q “ e (33.3)

As one such a partition can definitely be constructed, Theorem 32.9 implies that f is
Riemann integrable. ⇤

The previous lemma notwithstanding, Riemann integral does not at all require the
integrand to be continuous. For instance, we have:

Lemma 33.2 Let f : ra, bs Ñ R be bounded with a finite number of discontinuities. Then f is
Riemann integrable on ra, bs and the values of f at the discontinuity points are immaterial for
the Riemann integral.

Proof. Fix e ° 0 and let x1, . . . , xn enumerate the discontinuities of f . Pick d1 with

0 † d1
† min

!1
2

min
0§i†j§n

|xi ´ xj|,
1
n

e

1 ` sup | f |

)
(33.4)

where sup | f | :“ supxPra,bs | f pxq|. Then f is continuous on

A :“ ra, bs r
n§

i“0

pxi ´ d1, xi ` d1
q (33.5)

Since A is closed and, being a subset of a compact set, compact, the Bolzano-Weierstrass
Theorem still applies to give us a d2

° 0 such that

@s, t P A : 0 † t ´ s † d2
^ rs, ts Ñ A ñ osc

`
f , rs, ts

˘
†

e

b ´ a
(33.6)
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Now pick m P N such that md2
° b ´ a and consider the partition P “ ttiu

N
i“1 consisting

of the points xi ´ e and xi ` e for i “ 1, . . . , n and the points of the form a ` j{N indexed
by j “ 0, . . . , m that lie in A. For each i “ 1, . . . , N, the interval rti´1, tis then coincides
with one of rxk ´ d1, xk ` d1

s (because, by our choice of d1, these intervals are disjoint from
each other) or is an interval contained in A of length less than d2. Denote

I :“
 

i “ 1, . . . , N : rti´1, tis Ñ A
(

(33.7)

Then (33.6) gives

ÿ

iPI
osc

`
f , rti´1, tis

˘
pti ´ ti´1q †

e

b ´ a

nÿ

i“1

pti ´ ti´1q †
e

b ´ a

Nÿ

i“1

pti ´ ti´1q † e (33.8)

while d1
† n´1e{p1 ` sup | f |q and oscp f , Eq § 2 sup | f | and N r |I| § n give

ÿ

iRI
osc

`
f , rti´1, tis

˘
pti ´ ti´1q § np2 sup | f |qp2d1

q †
4ne sup | f |

np1 ` sup | f |q
§ 4e (33.9)

Putting (33.8–33.9) together and invoking (32.21) yields Up f , Pq ´ Lp f , Pq † 5e. Theo-
rem 32.9 implies that f is Riemann integrable. ⇤

33.2 More intricate examples.

Thinking about the previous proof, a finite number of discontinuities is not at all the limit
of what the Riemann integral is able to take. For instance, writing all of the rationals into
a sequence tqnunPN, the function

f pxq :“

#
1

n`1 , if x “ qn for some n P N,
0, otherwise,

(33.10)

is Riemann integrable even though it is discontinuous at each rational. This follows from
the following more general fact:

Lemma 33.3 Suppose that f : ra, bs Ñ R is bounded and such that limzÑx f pzq exists for
all x P ra, bs. Then f is Riemann integrable on ra, bs.

While the proof of this is instructive, we can directly shoot for a stronger result than
this and instead state and prove:

Lemma 33.4 Let f : ra, bs Ñ R be bounded and with no discontinuities of the second kind
on pa, bq. Then f is Riemann integrable on ra, bs.

Proof. Recall that a function has a discontinuity of a second kind at x P ra, bs if a least one
of the one-sided limits of f does not exist. So our f has both left and right limits f px´

q

and f px`
q at each x P pa, bq. The key point is to realize that then

@h ° 0 :
!

x P pa, bq : diampt f pxq, f px`
q, f px´

quq ° h
)

is finite (33.11)

where, we recall, for any A Ñ R we put diampAq :“ supt|x ´ y| : x, y P Au. Leaving the
proof of (33.11) to the reader, pick e ° 0 and let x1, . . . , xn enumerate the set in (33.11)
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for h :“ 1
2 e{pb ´ aq. Picking again d1

° 0 such that d1
† n´1e{p1 ` sup | f |q, let A be as in

(33.5). Then

@z P A : diam
`
t f pzq, f pz`

q, f pz´
qu

˘
§ h “

1
2

e

b ´ a
(33.12)

along with the existence of the right/left limits ensures

@z P A Ddz ° 0 : osc
`

f , rz ´ 2dz, x ` 2dzs
˘

†
e

b ´ a
(33.13)

The intervals tpz ´ dz, z ` dzq : z P Au cover A and, since A is compact, the Heine-Borel
Theorem gives us z1, . . . , zm such that

A Ñ

m§

i“1

pzi ´ dzi , zi ` dzi q (33.14)

Let P “ ttiu
N
i“0 be the partition that consists of a and b, all the points of the form xi ˘ d1,

i “ 1, . . . , n, that lie in ra, bs and also all the points of the form zi ˘ dzi , i “ 1, . . . , m,
that lie in ra, bs. Each interval interval rti´1, tis in the partition is then contained either in
rxj ´ d1, xj ` d1

s for some j “ 1, . . . , n and then oscp f , rti´1, tisq § 2 sup | f |, or lies in some
pzj ´ 2dzj , z ` 2dzj q and then oscp f , rti´1, tisq † e{pb ´ aq. The same calculation as in the
previous proof then gives (33.9) and thus proves Riemann integrability of f on ra, bs. ⇤

As part of the proof, we have actually shown:

Corollary 33.5 Let f : ra, bs Ñ R has has no discontinuities of the second kind. Then
!

x P ra, bs : f NOT continuous at x
)

is finite or countable (33.15)

Proof. This follows by taking the union of the sets in (33.11) for h P t
1

n`1 : n P Nu and
noting that this union exhaust the set of all discontinuities. ⇤

As we will see in Theorem 34.3, under boundedness of f even just (33.15) is sufficient
to conclude Riemann integrability of f . The proof of this is already quite close to the
proof of Theorem 34.3 itself and so we will not present that here. However, once the
cardinality of the set of discontinuities is uncountable, the situation is more complicated.
The extreme example is:

Lemma 33.6 The Dirichlet function 1Q is not integrable on any bounded closed interval.

Proof. Since oscp1Q, rs, tsq “ 1 for all real s † t, for any partition ttiu
n
i“0 of ra, bs,

nÿ

i“1

osc
`
1Q, rti´1, tis

˘
pti ´ ti´1q “ b ´ a (33.16)

thus showing that (32.22) is FALSE. ⇤
However, as it turns out, the cardinality is not the primary culprit here as our next

example shows:

Lemma 33.7 Recall that the Cantor ternary set is defined as

C :“
" 8ÿ

i“0

2si

3i`1 : s P t0, 1u
N

*
(33.17)
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Then the function 1C defined as

1Cpxq :“

#
1, if x P C,
0, if x R C,

(33.18)

is Riemann integrable on r0, 1s while being discontinuous at all points of C, which is uncountable
(in fact, C is of the cardinality of the continuum).

Proof. The defining expression (33.17) states that C is the set of reals in r0, 1s whose base-
3 expansion uses only 0’s and 2’s (and no 1’s). Another way to describe C is to take the
unit interval r0, 1s and remove from it the middle open 1{3-interval, from the resulting
two closed intervals remove their open middle-1{3 interval, etc. To define this formally
we set C0 :“ r0, 1s and for each natural n • 1,

Cn :“
§

s0,...,sn´1Pt0,1u

ˆ n´1ÿ

i“0

2si

3i`1 ` r0, 3´n
s

˙
(33.19)

where we abbreviate x ` A :“ tx ` y : y P Au. Then, being a finite union of closed
intervals, Cn is closed and Cn`1 Ñ Cn holds for each n P N. We have C “

ì
nPN Cn.

To prove the desired statement, use that Cn is the union of 2n closed intervals of
length 3´n each separated by distance at least 3´n from each other. Therefore, the set

Dn :“
!

x P r0, 1s : distpx, Cnq §
1
4

3´n
)

, (33.20)

where distpx, Aq :“ inft|x ´ y| : y P Au, still consists of 2n closed intervals of length 3
2 3´n.

Let Pn be the partition consisting of 0 and 1 and the endpoints of these intervals in r0, 1s.
Since the oscillation is bounded by 1 on the intervals in Dn while it vanishes on the
remaining intervals, we have

Up f , Pnq ´ Lp f , Pnq § 2n 3
2

3´n
“

´2
3

¯n´1
(33.21)

The right-hand side tends to zero as n Ñ 8 and so it is smaller than a given e ° 0 once n
is sufficiently large. Hence, 1C is Riemann integrable by Theorem 32.9.

That C is uncountable follows from it being in one-to-one correspondence with t0, 1u
N,

which is uncountable (in fact, equinumerous to R and so of cardinality of the continuum)
by Cantor’s diagonal argument. To see that 1C is discontinuous at all points of C we note
that C has no isolated points and that r0, 1s r C is dense in r0, 1s. Each point of C is thus
a limit point of C and a limit point of r0, 1srC. (We leave the proofs of these elementary
facts to the reader.) ⇤

To summarize the above observations, what mattered in all the examples above was
that the function of concern was bounded and that the set of its discontinuities of size
larger than any given positive number could be covered by a finite union of intervals
whose total length is less than any given positive number. As we will show in the next
section, this is nearly what in fact characterizes the whole class of Riemann integrable
functions in full generality.
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