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30. MEAN-VALUE AND TAYLOR’S THEOREMS

Equipped with the concept of the derivative and, in particular, the characterization of
local extrema by the first derivative test, we will now draw a couple of interesting con-
clusions. The key words are the Mean-Value Theorem and Taylor’s theorem.

30.1 Mean-Value Theorems.

We start with with a theorem that goes back to M. Rolle in 1691 albeit with a rigorous
proof first given by A.L. Cauchy in 1823. The name Mean-Value Theorem is usually use
to refer to the version attributed to J.-L. Lagrange.

Theorem 30.1 (Mean-Value Theorems of Rolle, Lagrange and Cauchy) Let a † b be
reals and f : ra, bs Ñ R a function (with Domp f q “ ra, bs) that is continuous on ra, bs and
differentiable on pa, bq. Then
(1) (Rolle’s Theorem)

f paq “ f pbq ñ Dx P pa, bq : f 1
pxq “ 0 (30.1)

(2) (Lagrange’s Theorem)

Dx P pa, bq : f 1
pxq “

f pbq ´ f paq

b ´ a
(30.2)

(3) (Cauchy’s Theorem) If also g : ra, bs Ñ R (with Domp f q “ ra, bs) is continuous on ra, bs

and differentiable on pa, bq, then

@x P pa, bq : g1
pxq ‰ 0 (30.3)

implies

gpbq ‰ gpaq ^ Dx P pa, bq :
f 1

pxq

g1pxq
“

f pbq ´ f paq

gpbq ´ gpaq
(30.4)

Proof. We start with (1). Suppose f is as given with f paq “ f pbq. Then one of the three
alternatives occur

sup
xPra,bs

f pxq ° f paq _ inf
xPra,bs

f pxq † f paq _ @x P ra, bs : f pxq “ f paq (30.5)

Since (by Corollary 24.17) a continuous real-valued function on a compact set achieves
its minimum and maximum, in all three cases f has a global extremum (maximum or
minimum) at some x P pa, bq. By Theorem 29.8, we then have f 1

pxq “ 0 as desired.
Moving to the proof of (2), let h : ra, bs Ñ R be defined by

hpxq :“ f pxq ´
f pbq ´ f paq

b ´ a
px ´ aq (30.6)

Then, as is readily checked, h is continuous on ra, bs and differentiable on pa, bq (being
the difference of two functions with these properties). Moreover, hpaq “ f paq “ hpbq and
so, by (1), there exists x P pa, bq with

0 “ h1
pxq “ f 1

pxq ´
f pbq ´ f paq

b ´ a
. (30.7)

This is the statement in (30.2).
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Part (3), which subsumes part (2), is proved using a similar trick. First note that (30.2)
and (30.3) imply gpaq ‰ gpbq for otherwise there would a point x P pa, bq where g1

pxq

vanishes. This proves the first half of (30.4) and allows us to define h : ra, bs Ñ R by

hpxq :“ f pxq ´
f pbq ´ f paq

gpbq ´ gpaq

`
gpxq ´ gpxq

˘
(30.8)

which is then again continuous on ra, bs and differentiable on pa, bq. By (1) we thus get
the existence of x P pa, bq such that

0 “ h1
pxq “ f pxq ´

f pbq ´ f paq

gpbq ´ gpaq
g1

pxq (30.9)

Dividing by g1
pxq, which is non-zero by (30.3), we get the second half of (30.4). ⇤

Lagrange’s Mean-Value Theorem can be interpreted by saying that, for each continu-
ous differentiable function on interval ra, bs there is a point where the tangent line has
the same slope as the secant line between the endpoints of the interval. Another “prac-
tical” consequence of the theorem is that, for a body that moves distance L in time T,
there must be a time t P p0, Tq where the instantaneous speed of motion equals L{T.

30.2 Applications.

Moving back to mathematics, we will now go over a couple of standard applications of
Mean-Value Theorems. The first one concerns a well-known characterization of mono-
tone differentiable functions:

Lemma 30.2 Let a † b be reals and f : ra, bs Ñ R a function (with Domp f q “ ra, bs) that is
continuous on ra, bs and differentiable on pa, bq. Then

f non-decreasing on ra, bs ô @x P pa, bq : f 1
pxq • 0 (30.10)

Proof. We start with the easy direction ñ. Indeed, assume that f is as above and non-
decreasing. Let x, y P pa, bq be such that y ‰ x. Then

f pyq ´ f pxq

y ´ x
• 0 (30.11)

and so f 1
pxq • 0 by the definition of the derivative (29.1).

The proof of ô is done by contrapositive. Indeed, assume that x, y P ra, bs are such
that x † y and f pyq † f pxq. Then (30.3) implies existence of z P px, yq Ñ pa, bq such that

f 1
pzq “

f pyq ´ f pxq

y ´ x
† 0. (30.12)

Hence, non-negativity of f 1 on pa, bq forces upward monotonicity of f on ra, bs. ⇤
The use of non-strict monotonicity and non-negativity of the derivative is necessary.

This is because a strictly increasing differentiable functions may not always have a
strictly positive derivative. (The function f pxq “ x3 is an example.) The above theo-
rem has a version that is useful in applications:
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Corollary 30.3 Let f , g : ra, bs Ñ R be continuous on ra, bs and differentiable on pa, bq and
such that

f paq § gpaq ^ @x P pa, bq : f 1
pxq § g1

pxq (30.13)
Then

@x P ra, bs : f pxq § gpxq (30.14)

Proof. Let hpxq :“ gpxq ´ f pxq. By Lemma 30.2, h is non-decreasing. Since hpaq • 0 we
have hpxq • 0 for all x P ra, bs. ⇤

One application arises when we need to prove a bound on a function. An example of
this is f pxq :“ sinpxq (which we can think of as the unique solution to the second-order
ODE f 2

“ ´ f with f p0q “ 0 and f 1
p0q “ 1). Then f 1

pxq “ cospxq and so one we know
that cospxq § 1, the above gives f pxq § x for all x • 0.

Another application is to the solutions of ordinary differential equations. Here is a
statement in this vain:

Lemma 30.4 (Comparison of ODEs) Let F, G : R Ñ R (with domain all of the reals) be
continuous functions with

@u, v P R : u § v ñ Fpuq § Gpvq. (30.15)

Let y, z : ra, bs Ñ R be continuous on ra, bs and differentiable on pa, bq functions that solve the
ordinary differential equations

@x P pa, bq : y1
pxq “ F

`
ypxq

˘
^ z1

pxq “ G
`
zpxq

˘
(30.16)

with the “initial” values such that ypaq † zpaq. Then

@x P ra, bs : ypxq § zpxq (30.17)

We leave the easy proof of this lemma to the reader. To demonstrate this on an exam-
ple, consider the ODE

y1
“ y `

?
y (30.18)

with initial value yp0q “ 1. Then y1
• y and so the above shows that y is bounded from

below by the solution to the ODE
z1

“ z (30.19)
with initial value zp0q “ a for any a † 1. (This ODE happens to be solved by zpxq “ aex

so, taking a Ñ 1 from below we get ypxq • ex for all x • 0.) These ideas drive the
technique for solving differential inequalities which sometimes arise in applications.

Our next application of the Mean-Value Theorems is of more abstract nature. We start
with a definition:

Definition 30.5 Let I Ñ R be a non-degenerate interval. A function f : R Ñ R with
I Ñ Domp f q is said to have the intermediate value property (IVP) on I if

@x, y P I : f pxq § f pyq ñ
“

f pxq, f pyq
‰

Ñ f
`
rmintx, yu, maxtx, yus

˘
(30.20)

We remark that, at some point in early 19th century, the IVP was considered for a
definition of continuity. As it turns out, the IVP is actually weaker than continuity as we
defined it above. Indeed, the Intermediate Value Theorem shows that any continuous
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function on pa, bq will have an IVP. However, there are functions that have an IVP yet are
not continuous. (Examples will be given after the next lemma.)

Lemma 30.6 Let f : ra, bs Ñ R be continuous on ra, bs and differentiable on pa, bq. Then f 1

has the intermediate value property on pa, bq.

Proof. Let x, y P pa, bq be such that x † y and, without loss of generality, f 1
pxq †

f 1
pyq (otherwise, swap ´ f for f ). Pick t P p f 1

pxq, f 1
pyqq and define hpuq :“ f puq ´ tu.

Then h1
pxq “ f 1

pxq ´ t † 0 and so hpxq is not a local minimum of h on rx, ys. Similarly,
h1

pyq “ f 1
pyq ´ t ° 0 and so hpyq is not a local minimum of h on rx, ys either. As h

is continuous, Corollary 24.17 implies that it achieves its minimum in px, yq and so, by
Theorem 29.8, there exists u P px, yq such that h1

puq “ 0. This translates into f 1
puq “ t.

As t was arbitrary in p f 1
pxq, f 1

pyqq, the function f 1 has the IVP on pa, bq. ⇤
Hereby we get:

Corollary 30.7 Let f : ra, bs Ñ R be continuous on ra, bs and differentiable on pa, bq. Then f 1

has no discontinuities of the first kind on pa, bq.

Proof. As is readily checked, if a function h has a discontinuity of the first kind at x P

intpDomphqq, then h fails to have IVP in any open interval containing x. ⇤
To give some examples, note that the function in (33.10) cannot be a derivative because

it has a discontinuity of the first kind at every rational (and already suffices). For a
positive example, consider the function f : R Ñ R defined by

f pxq :“

#
x2 sinp1{xq, if x ‰ 0,
0, if x “ 0.

(30.21)

Then f is continuous and differentiable at each x ‰ 0 with

f 1
pxq “ 2x sinp1{xq ´ cosp1{xq (30.22)

Note that limxÑ0 f 1
pxq does NOT exist yet

f pxq ´ f p0q

x ´ 0
“ x sinp1{xq (30.23)

shows that f 1
p0q “ 0. So f 1 exists on all of R, has the IVP but is NOT continuous at 0. We

will see that this example can be boosted to have a function which is differentiable on R

but whose derivative is not continuous at any rational.
As our last application of the Mean-Value Theorem, we recall the well-known (and

terribly overrated) result from Calculus:

Theorem 30.8 (l’Hospital’s Rule, proved by J. Bernoulli in 1694) Let f : R Ñ R be de-
fined, continuous and differentiable on pa ´ d, a ` dq for some a P R and d ° 0. Assume

f paq “ 0 “ f pbq ^ @x P pa ´ d, aq Y pa, a ` dq : gpxq ‰ 0 ^ g1
pxq ‰ 0. (30.24)

Then

lim
xÑa

f 1
pxq

g1pxq
exists ñ lim

xÑa

f pxq

gpxq
exists ^ lim

xÑa

f pxq

gpxq
“ lim

xÑa

f 1
pxq

g1pxq
(30.25)
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Proof. The claim actually holds even for one-sided limits. Indeed, using that f paq “

gpaq “ 0, for x P pa ´ d, a ` dq with x ° a, Cauchy’s Mean-Value Theorem implies the
existence of a zx P pa, xq such that

f pxq

gpxq
“

f pxq ´ f p0q

gpxq ´ gp0q
“

f 1
pzxq

g1pzxq
(30.26)

As x Ñ a`, we have zx Ñ a` and, assuming the existence of the right limit of ratio of
derivatives, we get

lim
xÑa`

f pxq

gpxq
“ lim

xÑa

f 1
pxq

g1pxq
(30.27)

A similar statement holds for the limit from the left thus proving (30.25). ⇤
As is well known from Calculus, l’Hospital’s Rule is a tool to compute limit values of

expressions of the indeterminate form 0
0 . Similar statements exist for other indetermi-

nate expressions such as 8
8 or limits of such ratios as x Ñ ˘8. That being said, there are

examples where l’Hospital’s Rule does not yield any conclusion; e.g., for limxÑ0
1
x e´1{x2

where a formal application of l’Hospital’s Rule asks us to compute limxÑ0
2
x3 e´1{x2 in-

stead. The fact is that, for this and other reasons, most working mathematicians pretty
much never use l’Hospital’s Rule as it stands but rather proceed more sophisticated
methods such as the theorem that we will treat next.

30.3 Taylor’s Theorem.

As we learned in the proof of Lemma 29.2 (and again in Lemma 29.3), for f having the
derivative at a entails linear approximation near a of the form

f pxq “ f paq ` f 1
paqpx ´ aq ` uapxqpx ´ aq, (30.28)

where the “error term” uapxqpx ´ aq is a quantity of smaller order than the previous
terms. This idea can be iterated provided we introduce:

Definition 30.9 (Derivatives of higher order) Let f : R Ñ R be differentiable (and f 1

thus defined) in an open set containing x. If f 1 is itself differentiable at x, we write
f 2

pxq :“ p f 1
q

1
pxq for the second derivative of f at x. Similarly, we write f 3

pxq :“ p f 2
q

1
pxq

to denote the third derivative of f at x provided f 2 is differentiable at x, etc.
Proceeding recursively, for each n P N we denote the n-th derivative of f at x by f pnq

pxq.
These are defined so that

f p0q
pxq “ f pxq ^ @n P N : f pn`1q

pxq “ p f pnq
q

1
pxq (30.29)

whenever the derivative on the right exists. In the Leibnitz notation, we write f pnq as dn f
dxn .

We now generalize (30.28) as follows:

Theorem 30.10 (Taylor 1715, Gregory 1691) Let I Ñ R be an open interval, n P N and
assume that f : I Ñ R (with Domp f q “ I) is pn ` 1q-times differentiable in I. For each a, x P I
there exists x P pminta, xu, maxta, xuq such that

f pxq “

„ nÿ

k“0

f k
paq

k!
px ´ aq

k
⇢

`
f pn`1q

pxq

pn ` 1q!
px ´ aq

n`1 (30.30)
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Let Pnpxq be the quantity in the square brackets in (30.30); i.e.,

Pnpxq :“
nÿ

k“0

f k
paq

k!
px ´ aq

k. (30.31)

This is a polynomial of degree n in x conveniently written in powers of x ´ a (which is
a “small” quantity near a). We call Pn the n-th order Taylor’s polynomial associated with f
near a. The theorem then gives a quantitative bound on the difference f pxq ´ Pnpxq by
a quantity that is higher order than Pnpxq itself and it leads to a polynomial approximation
of f near a. Note that Pn shares all relevant derivatives of f at a:

@k “ 0, . . . , n : Ppkq
n paq “ f k

paq (30.32)

As we will see, this is key for the proof:
Proof. Fix a, x P I and for simplicity assume a † x. Denote

A :“
f pxq ´ Pnpxq

px ´ aqn`1 (30.33)

and let h : I Ñ R be defined by

hptq :“ f ptq ´ Pnptq ´ Apt ´ aq
n`1 (30.34)

We now claim:
@k “ 0, . . . , n ` 1 Dxk P pa, xs : hpkq

pxkq “ 0 (30.35)
To prove this we proceed by induction. The base case is simple: The definition of A
implies hpxq “ 0 and so we can set x0 :“ x. Assume now that hpkq

pxkq “ 0 for some k P N

with k § n. Note that, since hpkq is at least once differentiable, it is continuous on ra, xks

and differentiable on pa, xkq. Moreover, the observation (30.32) gives hpkq
paq “ 0 and so

hpkq
paq “ hpkq

pxkq. Rolle’s Mean-Value Theorem then gives existence of xk`1 P pa, xkq Ñ

pa, xs such that hpk`1q
pxk`1q “ 0. This proves (30.35) as stated.

With (30.35) established, observe that Ppn`1q
n vanishes. It thus follows that

0 “ hpn`1q
pxn`1q “ f pn`1q

pxn`1q ´ pn ` 1q!A (30.36)

Using the definition of A, this rewrites into (30.30) with x :“ xn`1. ⇤
We will not go into applications of Taylor’s theorem as these have been practiced in

Calculus and also because we will return to this theorem one more time once we have
introduced the Riemann integral (which allows us to write the “error term” in integral
form). We remark that the theorem can be given the following asymptotic form:

Theorem 30.11 (Taylor’s theorem in asymptotic form) Let I Ñ R be an open interval,
n P N obey n • 1 and, given a P I, assume that f : I Ñ R (with Domp f q “ I) is pn ´ 1q-times
differentiable on I and n-times differentiable at a. Then

lim
xÑa

f pxq ´ Pnpxq

px ´ aqn “ 0 (30.37)

We leave the proof of this version to a homework exercise. Note that here we only
assume the existence of derivatives up to n; i.e., those needed to define Pn.
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