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29. THE DERIVATIVE

One reason for treating limits is the definition of a concept of the derivative that is foun-
dational for Calculus and many aspects of Analysis.

29.1 Definition.

In Calculus, the definition of the derivative is motivated by studying the “slope” of
secant lines to the graph of a function f at x and using these to determine the asymptotic
“slope” of the tangent line to the graph at x. We will not go into these ramifications here;
instead we simply put forward:

Definition 29.1 (Derivative) Let f: R — R and x € int(Dom(f)). We say that f has
derivative at x or is differentiable at x if the limit

f'(z) := lim f&) ~ /() (29.1)

X Z—X
exists. We then call f'(x) the derivative of f at x.

The notation f’(x), which suggest that we can treat the derivative of f as a function, is

referred to as the Lagrange notation. The alternative (and widely used) Leibnitz notation %
does not have that feature but it captures better the definition of the object as the ration
of increment of f and the increment of x. Another way to write the limit in (29.1) is

lim {1~ f(x) (29.2)

h—0 h

Note that in both cases the function on the right is not defined when z = x in (29.1)
or i = 0in (29.2). This is no loss as the value at x is irrelevant for the limit at x.

For a number of elementary functions the computation of the derivative is rather
straightforward. For instance, if f is constant then f(z) — f(x) = 0 for all z and so
f'(x) = 0. Orif f is linear, i.e., f(z) := az+ b, then f(z) — f(x) = a(z — x) and f'(x) = a.
Only slightly more difficult is the case of f(z) := z> where we use that

flz)— flx) _ 2

zZ—X zZ—X

=z+4+Xx (29.3)

and so f’(x) = 2x, or even the case of f(z) := z" with n > 1 natural, where

z—X zZ—X

n n n—-1
fle) = fx) 2" —x" 7 gk (29.4)
k=0

gives f'(x) = nx".
Being differentiable should be understood as a statement of regularity of the underly-
ing function. This regularity is stronger than continuity:

Lemma29.2 Let f: R — Rand x € int(Dom(f)). Then

f'(x) exists = f is continuous at x (29.5)
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Proof. The proof will use an idea that we will recycle a few times over later. Assume f’(x)
exists and define u,: R — R (with Dom(u,) := Dom(f)) by

f@)—fx) 4 ,
1e(2) = { xS ifz#x, (29.6)
0, ifz = x.
Then
f@2) = f(x) = [f'(20) + ux(2)] (z — %) (29.7)
The existence of f’(x) translates into
;1_%1( ux(z) =0 (29.8)

and so there exists ) > 0 such that |z — x| < dp implies |uy(z)| < 1. But then

z—xl<do = [f(2) = ()] < (1+1f())]x—2] (29.9)

and so, given € > 0, setting J := min{dy, €/(1 + | f'(x)])} we get
z—x| <6 = |f(z) - f(x)| <e (29.10)
proving continuity of f at x. U

Note that the bound (29.9) is actually a statement of Lipschitz continuity of f at x. As
discussed at length in Calculus, the existence of a derivative at x is actually equivalent
to f admitting a linear approximation near x. This is summarized in:

Lemma 29.3 (Linear approximation) Let f: R — R and x € int(Dom(f)). Then
f/(x)exists = JaeR: lim sup 1]f(z) —f(x)—a(z—x)| =0 (29.11)
60 zeDom(f) 0
|z—x|<é

We leave the proof of this lemma to homework while noting that the representation
using (29.6) is likely to be useful.

29.2 Rules for derivatives.

While the derivative can be computed for a number of elementary functions, general
manipulations with the derivative are made considerably easier thanks to the various
“Rules” being available. These are generally inherited from the corresponding “Rules”
for limits. We start with:

Lemma 29.4 (Sum and Product Rule) Let f,g: R — R and x € int(Dom(f)). If f and g
are both differentiable at x then so are f + g and f - g and

(f +8)(x) = f'(x) + &'(x) (29.12)
and
(f-8)(x) = f'(x)g(x) + f(x)g'(x) (29.13)
hold.
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Proof. As to the sum, here we note that, for each z # x,

f+8)@) —(f+8)x) _ flz) —f(x)  8(z) —8(x) (29.14)

zZ—x T z—x z—x
Hereby we get (29.12) using the Sum Rule for limits; cf Lemma 27.6.
Concerning the product, here we need the rewrite

(F-8)E) - (f-8E®) _ fQ =), f)8E) 8@ (29.15)

zZ—X zZ—X zZ—X

By Lemma 29.2, the existence of ¢’(x) implies continuity and thus g(z) — g(x) as z — x.
Hereby (29.13) follows using the Sum and Product Rules for limits. U

Lemma 29.5 (Chain Rule) Let f,g: R — R be functions and let x € int(Dom(f)) be such
that f is differentiable at x and such that f(x) € int(Dom(f)) and g is differentiable at f(x).
Then g o f is differentiable at x and

(g0 f)(x) =& (f@)f'(x) (29.16)
Proof. One way to prove this is to write
(80f)(z) — (g0 f)(x) _ 8(f(2)) —8(f(x)) f(z) — f(x)
z—x  f(2) - f(x) z—x (29.17)

and then use the fact that f(z) — f(x) to take the limit using the Product Rule for limits.
However, the problem with this argument occurs when f(z) = f(x) for z arbitrarily close
to x (and in particular, for all z when f is constant) which makes the right-hand side of
(29.17) undefined. We will thus proceed using a different argument that by-passes this
issue altogether.

Using the argument from the proof of Lemma 29.2, for z € Dom(f) we have

f@) = f(x) = [f (%) +ux(2)](z = x) (29.18)
and, for y € Dom(g) we have
8(y) —g(f(x) = [§'(f(x)) + o5y )] (v — f(x)) (29.19)
where
%1_1)1}16 ux(z) =0 A yg}rgx) Vf)(y) =0 (29.20)

For all z € Dom(g o f) we then get

§(f(2) —g(f(x)) = [¢'(f(x) + vy W] (f(2) = f(x))
= [8'(f(x) + vy W] f' (%) + 1x(2) | (z = x)

Using (29.20) along with the fact that, by Lemma 29.2, f(z) — f(x) as z — x, the product
of the two brackets on the right tends to g'(f(x)) f'(x) as z — x. Dividing the expression
by z — x, the claim follows by taking z — x. O

(29.21)

Another useful “Rule” is:
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Lemma 29.6 (Inverse function rule) Let f: R — R be injective and x € int(Dom(f)
such that f(x) € int(Ran(f)). Assume that the inverse function f~! of f (with Dom(f~1) :=
Ran(f)) is continuous at f(x). If f'(x) # 0, then f~1 is also differentiable at f(x) and

e 1
) (f(x) = ) (29.22)

We leave the proof of this lemma to homework. Note that no assumptions about reg-
ularity of f are made outside x. In particular, f can be discontinuous and non-monotone
in (x — ,x + 0) for any § > 0. The requirement that f~! is continuous at f(x) can be
replaced by other conditions; e.g., continuous differentiability of f.

29.3 Relation to local extrema.

One aspect that is discussed at length in Calculus is the relation of the derivative to the
local minima/maxima of a function. We start with a formal definition of these concepts:

Definition 29.7 (Local minimum/maximum) Let f: X — R be a function on a metric
space (X, p). Let x € Dom(f). We say that f has local minimum at x if

30 > 0Vze Dom(f): p(x,z) <6 = f(x) < f(2) (29.23)
and a local maximum at x if

30 > 0Vze Dom(f): p(x,z) <6 = f(z) < f(x) (29.24)
These are strict local minima/maxima if the inequalities on the right are strict for z # x.

We note that a point that is either a local minimum or a local maximum is generally
refered to as a local extremum. We now have:

Theorem 29.8 (First derivative test) Let f: R — R and x € int(Dom(f)) be such that f is
differentiable at x. If f has a local maximum or a local minimum at x, then f'(x) = 0.

Proof. We can assume that f has a local maximum (for otherwise we can work with —f
instead). Let § > 0 be such that for all z € (x —,x + ) we have z € Dom(f) and
f(z) < f(x). Then for such z,

z>x = Mso (29.25)
zZ—X
and so we get
lim f& =) <0. (29.26)
z—xt z—X
On the other hand,
z<x = M;o (29.27)
zZ—X
yields
lim &)=/ >0 (29.28)
Z—X" z—X
Since f’(x) is assumed to exist, the one-sided limits in (29.26) and (29.28) are both equal
f'(x) and so we have f'(x) = 0. O
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Note that if Dom(f) is an interval (or a union of intervals with disjoint closures) and x
is an endpoint of the intervals, only one of (29.26-29.28) applies. This is the reason why
we have to include these endpoints (and, generally, the boundary of the domain) when
trying to find all local extrema of the function at hand.

Another remark to make is that a function may have a local extremum at a point
where the derivative does not exist. An example of this is the function f(x) := |x| which
has a local (and in fact global) minimum at x = 0 yet f is not differentiable there. (The
one-sided derivatives do exist, though, and obey the corresponding inequalities.)

As a final note we recall that further information about the behavior of the function
at a local extremum can be obtained by studying higher-order derivatives (typically, the
second derivative). We will leave these until these have been properly introduced.
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