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44. STONE-WEIERSTRASS THEOREM

Here we address an important approximation theorem in the space of continuous func-
tions. An early version of this result is due to K. Weierstrass. M.H. Stone extended and
significantly generalized this result to what now bears both of their names.

44.1 Weierstrass approximation theorem.

Many practical tasks and, particularly, calculations on a computer, lead to the following
problem: Given a continuous function f : ra, bs Ñ R, is there a way to encode it (say, up
to a prescribed error bar e) using a finite collection of numbers. There are many answers
to this problem one of which is an approximation by polynomials. An early result on
this was proved by K. Weirstrass in 1885:

Theorem 44.1 (Weierstrass approximation theorem) Let a † b be reals. Then for each
f P Cpra, bs, Rq and each e ° 0 there is a polynomial P such that

sup
xPra,bs

ˇ̌
f pxq ´ Ppxq

ˇ̌
† e. (44.1)

Equivalently, for each f P Cpra, bs, Rq there is a sequence tPnunPN of polynomials such that
Pn Ñ f uniformly on ra, bs.

Proof. A number of proofs of this result exist some of which require detours to concepts
that are quite interesting in their own right but may be found difficult at first (see the
textbook). We will give a proof discovered by S. Bernstein in 1912 that is based on prob-
abilistic ideas. This concerns mainly the understanding of why certain choices are made;
no particular knowledge of probability is required to follow the steps formally.

First we note that it suffices to prove the claim for continuous functions on r0, 1s.
Indeed, if f P Cpra, bs, Rq then gpxq :“ f pa ` pb ´ aqxq defines g P Cpr0, 1s, Rq. If Q is a
polynomial such that supxPr0,1s |gpxq ´ Qpxq| † e, then Ppxq :“ Qp

x´a
b´a q is a polynomial

such that (44.1) holds.
Let thus f P Cpr0, 1s, Rq and define

Pnpxq :“
nÿ

k“0

ˆ
n
k

˙
xk

p1 ´ xq
n´k f pk{nq. (44.2)

This is a polynomial of degree n which has a probabilistic interpretation: Indeed, the
expression

`n
k
˘
xk

p1 ´ xq
n´k is known to be the probability that n independent coin tosses

by a coin with probability of getting heads equal to x result in k heads. Regardless of
this interpretation, thanks to the Binomial theorem

@n P N @a, b P R : pa ` bq
n

“

nÿ

k“0

ˆ
n
k

˙
akbn´k, (44.3)

the following identities are true (and will be useful): First,
nÿ

k“0

ˆ
n
k

˙
xk

p1 ´ xq
n´k

“ 1, (44.4)
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which means that t
`n

k
˘
xk

p1 ´ xq
n´k

u
n
k“0 is indeed a probability mass function. This is

obtained by plugging a :“ x and b :“ 1 ´ x into (44.2). Taking a derivative of (44.4) with
respect to a, multiplying the expression by a then setting a :“ x and b :“ 1 ´ x then gives

nÿ

k“0

ˆ
n
k

˙
xk

p1 ´ xq
n´kk “ nx, (44.5)

which quantifies the expected number of heads in n coin tosses. Finally, taking two
derivatives with respect to a also gives

nÿ

k“0

ˆ
n
k

˙
xk

p1 ´ xq
n´kk2

“ pnxq
2

` nxp1 ´ xq, (44.6)

which says that the variance of the number of heads in n coin tosses is nxp1 ´ xq. The
polynomial Pn then has the meaning of the expected value of f of the average number
of heads in n coin tosses by a coin with success probability x.

The intuition why Pn is a good approximation of f for large n comes from the fact that,
by the Weak Law of Large Numbers, this average number tends to x as n Ñ 8 which
means that most of the weight in the sum in (44.7) is on k with k{n ´ x small. To use this
intuition through analytic reasoning, we first note that, by (44.4),

f pxq ´ Pnpxq “

nÿ

k“0

ˆ
n
k

˙
xk

p1 ´ xq
n´k “

f pxq ´ f pk{nq
‰
. (44.7)

Next we note that f is uniformly continuous, which means

@e ° 0 Dd ° 0 @x, y P r0, 1s : |x ´ y| † d ñ

ˇ̌
f pyq ´ f pxq

ˇ̌
† e. (44.8)

For d ° 0 related to an e ° 0 as in (44.8) we now observe

ˇ̌
f pxq ´ Pnpxq

ˇ̌
§

nÿ

k“0

ˆ
n
k

˙
xk

p1 ´ xq
n´k ˇ̌

f pxq ´ f pk{nq

ˇ̌

“

ÿ

k“0,...,n
|k{n´x|†d

ˆ
n
k

˙
xk

p1 ´ xq
n´k ˇ̌

f pxq ´ f pk{nq

ˇ̌

`

ÿ

k“0,...,n
|k{n´x|•d

ˆ
n
k

˙
xk

p1 ´ xq
n´k ˇ̌

f pxq ´ f pk{nq

ˇ̌
. (44.9)

In the first sum we use (44.8) to bound | f pxq ´ f pk{nq| † e, while in the second sum
we simply bound | f pxq ´ f pk{nq| § 2} f }, where } f } :“ supxPr0,1s | f pxq| is the supremum
norm of f . In light of (44.4), this gives

ˇ̌
f pxq ´ Pnpxq

ˇ̌
§ e ` 2} f }

ÿ

k“0,...,n
|k{n´x|•d

ˆ
n
k

˙
xk

p1 ´ xq
n´k. (44.10)
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It remains to bound the sum on the right. Here we note that, for all k that contribute to
the sum we have 1 § p

k´nx
nd q

2 and so

ÿ

k“0,...,n
|k{n´x|•d

ˆ
n
k

˙
xk

p1 ´ xq
n´k

§

nÿ

k“0

ˆ
n
k

˙
xk

p1 ´ xq
n´k

´k ´ nx
nd

¯2
(44.11)

The right-hand side is now worked out using the identities (44.4–44.6) to equal

1
n2d2

´
pnxq

2
` nxp1 ´ xq ´ 2pnxq

2
` pnxq

2
¯

“
1

nd2 xp1 ´ xq §
1

4nd2 . (44.12)

Hence we get
ˇ̌
f pxq ´ Pnpxq

ˇ̌
§ e `

} f }

2nd2 . (44.13)

This bound does not depend on x and so it holds for all x P r0, 1s. We thus get

@n P N : n •
} f }

2ed2 ñ sup
xPr0,1s

ˇ̌
f pxq ´ Pnpxq

ˇ̌
§ 2e. (44.14)

Since e ° 0 is arbitrary, this is the desired claim. ⇤
One important consequence of the Weierstrass theorem is:

Lemma 44.2 Let f P Cpra, bs, Rq be such that

@n P N :
ª b

a
f pxqxndx “ 0. (44.15)

Then f “ 0.

Proof. By additivity of the Riemann integral we get

@P polynomial :
ª b

a
f pxqPpxqdx “ 0 (44.16)

Let tPnunPN be a sequence of polynomials such that Pn Ñ f uniformly on ra, bs. Since f
is bounded, we also have the uniform convergence of f Pn Ñ f 2 and, by Theorem 40.1,

0 “

ª b

a
f pxqPnpxqdx ›Ñ

nÑ8

ª b

a
f pxq

2dx. (44.17)

The claim now follows from the fact that, for continuous f , vanishing of the integral
of f 2 implies f “ 0. ⇤

Here is a consequence of this result for the metric structure of Cpra, bs, Rq:

Corollary 44.3 For each a † b, the class of polynomials with rational coefficients is dense
in Cpra, bs, Rq. In particular, Cpra, bs, Rq is separable.

Proof. We have already shown that the polynomials are dense in Cpra, bs, Rq. To get
the claim notice that, by density of Q in R, every polynomial can be approximated,
uniformly on ra, bs, by a polynomial with rational coefficients. ⇤
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44.2 Stone-Weierstrass theorem.

The metric formulation of the Weierstrass approximation theorem underlies its consider-
able generalization proved by M.H. Stone in 1937 that deals with continuous real-valued
functions on compact (and even locally compact) spaces. The simplest version of this re-
sult is as follows:

Theorem 44.4 (Stone-Weierstrass theorem) For X a compact metric space, let A Ñ CpX, Rq

be a class of functions such that:
(1) (A is an algebra)

@ f , g P A @l P R : f ` g P A ^ l f P A ^ f ¨ g P A (44.18)

(2) (A does not vanish at a point)

@x P X D f P A : f pxq ‰ 0 (44.19)

(3) (A separates points)

@x, y P A : x ‰ y ñ D f P A : f pxq ‰ f pyq. (44.20)

Then A is dense in CpX, Rq.

As the statement perhaps suggest, the proof is largely algebraic. (Indeed, the title of
Stone’s paper is “Applications of the Theory of Boolean Rings to General Topology.”)
The motivation for conditions (1-3) is that these are satisfied by CpX, Rq itself:

Lemma 44.5 For any metric space X, the set CpX, Rq (or even CpX, Cq) satisfies (1-3) above.

Proof. That CpX, Rq follows from that fact that R is an algebra and the operations in
(44.18) are taken pointwise. Writing r for the metric in X, the function f pzq :“ 1 ´ rpx, zq

is continuous, does not vanish at x and takes different values at x and y. ⇤
Next we observe:

Lemma 44.6 Let X be a compact metric space. If A Ñ CpX, Rq obey (1-3) in Theorem 44.4.
Then so does its closure A of A in CpX, Rq.

Proof. Let f , g P A and l P R. For each e ° 0 there exists fe, ge P A such that } f ´ fe} † e
and }g ´ ge} † e. But then the triangle inequality shows }p f ` gq ´ p fe ` geq} † 2e
and, since this holds for all e ° 0, we get f ` g P A as desired. For the remaining
operations we note }l f ´ l fe} † |l|e and } f ¨ g ´ fe ¨ ge} † ep} f } ` }ge}q and observe
that }ge} § e ` }g}. This shows that A obeys (1). Since (2-3) hold for A and A Ñ A, they
hold for A as well. ⇤

The algebraic content of the assumption becomes apparent from:

Lemma 44.7 Suppose A is a collection of real-valued functions on a set X such that (1-3) in
Theorem 44.4 hold. Then

@x, y P X @ f P RX
Dh P A : hpxq “ f pxq ^ hpyq “ f pyq (44.21)

In short, at any two given points, every function f : X Ñ R coincides with some h P A.
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Proof. Fix f P RX. Supposing first x “ y, here we use (2) to find g P A such that gpxq ‰ 0
and, using (1), set hpzq :“ f pxq

gpxq gpzq to get h P A with hpxq “ f pxq. If in turn x ‰ y we use
(2-3) to find a, b, g P A such

apxq ‰ apyq ^ bpxq ‰ 0 ^ gpyq ‰ 0. (44.22)

Note that then z fiÑ bpzqrapzq ´ apxqs and z fiÑ gpzqrapzq ´ apyqs belong to A. (Since we do
not know that constants belong to A, this requires writing each of these as a difference
of two functions that are demonstrably in A.) Now use (1) to check that

hpzq :“
bpzq

bpxq

apzq ´ apyq

apxq ´ apyq
f pxq `

gpzq

gpyq

apzq ´ apxq

apyq ´ apxq
f pyq (44.23)

also lies in A and coincides with f at x and y. ⇤
The proof of course has an analytic part that lies at the heart of:

Lemma 44.8 Assuming X to be a compact metric space, suppose A Ñ CpX, Rq obeys (1-3) in
Theorem 44.4. Then

@ f , g P A : maxt f , gu P A ^ mint f , gu P A (44.24)

where maxt f , gupxq :“ maxt f pxq, gpxqu and mint f , gupxq “ mint f pxq, gpxqu.

Proof. For the proof it actually suffices to show that

@ f P A : | f | P A (44.25)

Indeed, we then get (44.24) by noting that

maxt f , gu “
1
2

`
f ` g ` | f ´ g|

˘
^ maxt f , gu “

1
2

`
f ` g ´ | f ´ g|

˘
(44.26)

along with the fact that A obeys (1). (We are using Lemma 44.6 throughout.)
As to (44.25), let f P A and note that f is, being a continuous function on a compact

space, bounded. This means Da ° 0 : Ranp f q Ñ ra, as. By the Weierstrass approximation
theorem, there exists a sequence tPnunPN of polynomials in z such that

sup
zPr´a,as

ˇ̌
|z| ´ Pnpzq

ˇ̌
›Ñ
nÑ8 0 (44.27)

Using } ¨ } for the supremum norm, it then follows that also }| f | ´ Pn ˝ f } Ñ 0 as n Ñ 8.
But Pn “ Pnp0q ` Qn where Qn is a polynomial without a constant term and Pnp0q Ñ 0
by z “ 0 case in (44.27). Hence }| f | ´ Qn ˝ f } Ñ 0 as well. Since Qn ˝ f P A by (1) and A
is closed in CpX, Rq, we conclude that | f | P A. (The reason why we had to remover Pnp0q

from Pn is that we do not know whether A contains constants.) ⇤

Remark 44.9 The reference to the Weierstrass approximation theorem may be considered
distracting and perhaps even conceptually wrong as Theorem 44.4 is often used to infer
Theorem 44.1 as a corollary. And, indeed, this reference can be avoided by proving
(44.27) directly. One way is to define tPnunPN recursively by

P0pxq :“ 0 ^ @n P N : Pn`1pxq :“ Pnpxq `
x2

´ Pnpxq
2

2
(44.28)
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and noting that Pn Ñ | ¨ | uniformly on r´1, 1s. (One then needs to scale the argument
by a to get (44.27).) Another is to observe that, for all |x| † 1 and a P R,

p1 ` xq
a

“

8ÿ

k“0

ˆ
a

k

˙
xk where

ˆ
a

k

˙
:“

1
k!

k´1π

i“0

pa ´ iq. (44.29)

(This is so called Newton’s binomial series although it is nothing more than the Taylor
series of x fiÑ p1 ` xq

a at x “ 0.) For a :“ 1{2 and x :“ z2
´ 1, the left-hand side

becomes |z| while, as xk
“ p´1q

k
|1 ´ z2

|, the right-hand side is an alternating series that,
as it turns out, converges uniformly in z P r´1, 1s. The partial sums then give the desired
polynomials approximating z fiÑ |z| uniformly.

We are finally ready to give:
Proof of Theorem 44.4. Let A be as in the statement and let A be its closure in CpX, Rq.
Let f P CpX, Rq. By Lemma 44.6, A obeys conditions (1-3) and so for each x, y P X there
exists a function hx,y P A such that hxypxq “ f pxq and hxypyq “ f pyq. (This requires
a choice although that seems avoidable thanks to the compactness of X.) Fix e ° 0
and x P X. The continuity of f and hxy at y and the fact that f pyq ´ hxypyq “ 0 ensure

@y P X Dd ° 0 @z P BXpy, dq : f pzq ´ hxypzq ° ´e (44.30)

and so we may define

dpyq :“
1
2

sup
 

d P p0, 1q : @z P BXpy, dq : f pzq ´ hxypzq ° ´e
)

(44.31)

and observe that f pzq ´ hxypzq ° ´e for z P BXpy, dpyqq. The balls tBXpy, dpyqq : y P Xu

form an open cover of X and so there exists n P N and y0, . . . , yn P X such that X “în
i“0 BXpyi, dpyiqq. Thanks to Lemmas 44.8, the function gx : X Ñ R defined by

gxpzq :“ maxthxy0 , . . . , hxyn u (44.32)

then obeys
@x P X : gx P A ^ gxpxq “ x ^ @z P X : gxpzq ° f pzq ´ e (44.33)

where the last part follows from gxpzq • hxyi pzq whenever z P BXpyi, dpyiqq.
We now repeat the same argument with the functions tgx : x P Xu. Indeed, for all x P

X, the function f ´ gx vanishes at x and is continuous there. Hence

d1
pxq :“

1
2

sup
 

d P p0, 1q : @z P BXpx, dq : f pzq ´ gzpzq † e
)

(44.34)

lies in p0, 1q and obeys f pzq ´ gxpzq † e whenever z P BXpx, d1
pxqq. Since the open balls

tBXpx, d1
pxqq : x P Xu cover X which is compact, there exist m P N and x0, . . . , xm P X

such that X “
îm

i“0 BXpxi, d1
pxiqq. Define g : X Ñ R by

gpzq :“ mintgx0 , . . . , gxm u (44.35)

Lemmas 44.8 then shows

g P A ^ @z P X : ´ e † gpzq ´ f pzq † e (44.36)

where the left inequality follows from the inequality in (44.33) while the right inequality
uses that gzpzq † f pzq ´ e whenever z P BXpx, d1

pxqq. We thus have } f ´ g} § e. As this
holds for all e ° 0 and A is closed, we conclude f P A as desired. ⇤
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44.3 Applications and extensions.

The above approximation theorems have some standard applications that we will dis-
cuss next. First, Theorem 44.4 indeed subsumes Theorem 44.1 because the polynomials
on any bounded intereval ra, bs obey condition (1-3) there. A typical situation where
Theorem 44.4 provides a considerable benefit is the subject of:

Lemma 44.10 Let X and Y be compact metric spaces and let X ˆ Y be endowed with a product
metric that makes it compact. Then

" nÿ

i,j“1

fi b gj : f0, . . . , fn P CpX, Rq ^ g0, . . . , gn P CpY, Rq

*
(44.37)

where f b gpx, yq :“ f pxqgpyq, is dense in CpX ˆ Y, Rq.

Proof (idea). With the help of Lemma 44.5, we readily check that the collection (44.37)
satisfies (1-3) of Theorem 44.4. ⇤

Theorem 44.4 also allows us to work with other classes of approximating functions
than polynomials. A standard example is:

Lemma 44.11 The linear vector space
"

x fiÑ

nÿ

k“0

´
ak sinp2pkxq ` bk cosp2pkxq

¯
: n P N ^ a0, . . . , an, b0, . . . , bn P R

*
(44.38)

is dense in "
f P C

`
r0, 1s, R

˘
: f p0q “ f p1q

*
. (44.39)

Proof (idea). We have to show that the set (44.38) satisfies (1-3) of Theorem 44.4. In order
to show that this is an algebra, we have to show that the product of any two sines or
cosines appearing in (44.38) can be written as a single sine or cosine. This is based on
the identities of the form sinpaq cospbq “

1
2 rsinpa ` bq ` sinpa ´ bqs etc.

Since sinpxq
2

` cospxq
2

“ 1, the collection (44.38) does not vanish at a point. A minor
hurdle comes in the verification of (3). It is easy to check that if sinp2pxq “ sinp2pyq

and cosp2pxq “ cosp2pyq, then y ´ x P 2pZ. So the functions separate all pairs of
points except for x “ 0 and y “ 1. And, no surprise, all of the functions in (44.38)
take equal values at the endpoints of r0, 1s. In order to apply Theorem 44.4, we thus
have to take X :“ r0, 1q with rpx, yq :“ mint|x ´ y|, |1 ´ x ` y|u. (This corresponds to
wrapping X into a circle of unit circumference; the r-distance is then the shorter of the
two arcs connecting x and y.) Then pX, rq is compact and (44.38) separates points. ⇤

The trick used in the proof of Lemma 44.11 shows that the separation of points is
not a very serious restriction: If all functions evaluate to the same value at two distinct
points, we can identify these two points into one and still preserve compactness and
get continuous functions with the required attributes satisfies. We can even handle any
finite number of pairs of points this way (an infinite number of pairs might run into
issues with compactness).
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The condition that the functions do not all vanish at a point is harder to overcome and
Theorem 44.4 is sometimes stated without it but with the conclusion modified to “either
A is dense in CpX, Rq or there exists x P X such that @ f P A : f pxq “ 0” which, in the
second alternative, is hardly illuminating. However, an easy modification gives:

Theorem 44.12 Let X be a compact metric space and let x0 P X. Suppose

A Ñ
 

f P CpX, Rq : f px0q “ 0
(

(44.40)

obeys (1) and (3) of Theorem 44.4 as stated and obeys (2) for all x ‰ x0. Then

A is dense in
 

f P CpX, Rq : f px0q “ 0
(

(44.41)

Proof. Let
A1 :“ tc1 ` f : c P R ^ f P Au (44.42)

Since function 1 is a unity under pointwise multiplication, A1 is an algebra; i.e., (1) holds
for A1. As A Ñ A1, so does (3). As to p2q, once c ‰ 0 we have pc1 ` f qpx0q ‰ 0 and so A1

also obeys (2) on all of X. By Theorem 44.4, A1 is dense in CpX, Rq. But this means that
for each f P CpX, Rq with f px0q “ 0 and each e ° 0 there is c P R and h P A such that
} f ´ pc1 ` hq} † e. Invoking this at at x0 where f px0q “ 0 and hpx0q “ 0 shows |c| † e. It
follows that } f ´ h} † 2e, proving the claim. ⇤

Note that if A vanishes at more than one point, it also fails to separate points. So, in
this case we first need to identify all the points where all the functions in A vanishe into
one and then apply the above theorem. Using these ideas we can show:

Lemma 44.13 The linear vector space
"

x fiÑ

nÿ

k“1

ak sinppkxq : n P N r t0u ^ a1, . . . , an P R

*
(44.43)

is dense in "
f P C

`
r0, 1s, R

˘
: f p0q “ 0 “ f p1q

*
. (44.44)

We leave a proof of this lemma to homework. The key idea is to show that, for
all m, n P N such that m ´ n is even there exist tckukPN with

∞8
k“1 |ck| † 8 such that

@x P r0, 1s : cosppnxq ´ cosppmxq “

8ÿ

k“1

ck sinppkxq (44.45)

which is needed to conclude that the closure of (44.43) in (44.44) is an algebra.
Notably, there is even a version of Stone-Weierstrass theorem that does not require X

to be compact but rather only locally compact. One then has to curb the space of con-
tinuous functions to only those that “vanish at infinity.” We refer the reader to standard
analysis textbooks where this is treated in detail.

Another interesting extension is that to the complex valued functions. Unlike many
other theorems in analysis, this extension is not automatic and, in fact, as shown in a
homework exercise, the result is FALSE under the conditions (1-3) alone. This is not
surprising as ordering of the reals has been used heavily in the proof. A version that
works for complex-valued functions is as follows:
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Theorem 44.14 (complex-valued Stone-Weierstrass theorem) For X a compact metric
space, let A Ñ CpX, Cq be a class of functions such that:

(1) (A is an algebra)

@ f , g P A @l P C : f ` g P A ^ l f P A ^ f ¨ g P A (44.46)

(2) (A does not vanish at a point)

@x P X D f P A : f pxq ‰ 0 (44.47)

(3) (A separates points)

@x, y P A : x ‰ y ñ D f P A : f pxq ‰ f pyq. (44.48)

(4) (A is self-adjoint)
@ f P A : f̄ P A (44.49)

where f̄ is the complex conjugate of f .
Then A is dense in CpX, Cq.

Proof. Let A1 :“ A X CpX, Rq be the real valued functions in A. Since f , f̄ P A implies
f ` f̄ , ip f ´ f̄ q P A1, we readily check that A1 satisfies (1-3) of Theorem 44.4. Hence A1

is dense in CpX, Rq. But each f P CpX, Rq admits a representation f “ g ` ih for some
g, h P CpX, Rq and so A “ tg ` ih : g, h P A1

u is thus dense in CpX, Cq. ⇤
Applications of the complex-valued Stone-Weierstrass theorem will be given when

we discuss Fourier series.
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