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42. ARZELÀ-ASCOLI THEOREM

We will now move to the most well-known conclusion of the topic of equicontinuity
known as the Arzelà-Ascoli Theorem.

42.1 Selection of a pointwise-convergent subsequence.

Notice that all of our previous conclusions assumed a sequence of functions that con-
verges in a pointwise sense; the work focused on upgrading the mode of convergence
to uniform. However, what if we do not know that the sequence converges pointwise to
begin with? Is there a way to resort to a convergent subsequence? As it turns out, the
answer is positive under relatively mild assumptions. We start with:

Lemma 42.1 (A selection principle) Let A be a (non-empty) finite or countable set and let
t fnunPN be a sequence of functions A Ñ X (with domain equal to A) where X is a metric space
with metric denoted by r. Then

pX, rq compact ñ DtnkukPN P NN :
´

nk Ñ 8 ^ @x P A : lim
kÑ8

fnk pxq exists
¯

(42.1)

Proof. This is proved by a repeated use of Cantor’s diagonal argument. Indeed, re-
peating points if necessary, let txjujPN P AN contains all points of A. The compactness
of X ensures the existence of a subsequence tnp0q

k ukPN such that t fnp0q
k

px0qukPN converges,

which then contains another subsequence tnp1q
k ukPN such that also t fnp1q

k
px1qukPN con-

verges. Taking the diagonal sequence tn̂kukPN defined by n̂k :“ npkq
k which, except for

a finite number of terms, is a subsequence of all of the above subsequences we get that
t fn̂k pxjqukPN converges for all j P N. Since n̂k • k, we get the claim.

In order to write this formally and at the same time efficiently, we will use the follow-
ing observation: For f , g : A Ñ X let

dp f , gq :“
8ÿ

j“0

2´jrX
`

f pxjq, gpxjq
˘

(42.2)

where the sum converges because X, being compact, has finite diameter — in fact,
dp f , gq P r0, Ms where M :“ 2 diampXq. The idea behind this definition is that, for
any sequence of functions thnunPN P pXA

q
N and any function h P XA,

hn Ñ h pointwise on A ô dphn, hq Ñ 0 (42.3)

whose checking we will leave to the reader. As d satisfies the properties of the metric, it
metrizes pointwise convergence — i.e., casts it in the form of metric space convergence
— on the space of functions A Ñ X.

We now claim

pX, rXq totally bounded ñ pXA, dq totally bounded (42.4)

Indeed, our goal is to find, for each r ° 0, a finite collection of open balls of d-radius r
in XA that cover the whole space. Let k P N be such that 2´k M † r{2. We start by
noting that, since tBpy, rq : y P Xu cover X, there exists n P N and y0, . . . , yn P X such
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that X “
în

i“0 Bpyi, r{4q. Now consider the following set of functions

F :“
!

f P XA :
`
@j § k : f pxjq P ty0, . . . , ynu

˘
^

`
@j ° k : f pxjq “ y0

˘)
(42.5)

Given a function g P XA and j P t0, . . . , ku, set ij :“ minti § n : gpxjq P Bpyi, r{2q and
then take f P F such that @j “ 0, . . . , k : f pxjq “ yij . This f then obeys

@j “ 0, . . . , k : rX
`
gpxjq, f pxjq

˘
† r{4 (42.6)

and so we have

dp f , gq §

kÿ

j“0

2´jr{4 `

8ÿ

j“k`1

2´j M §
1
2

r ` 2´k M † r (42.7)

It follows that XA
“
î

f PFtg P XA : dpg, f q † ru proving that XA is totally bounded.
Since pX, $q is also closed, we readily check that also pXA, dq is closed. The claim now

follows from the sequential characterization of compactness. ⇤
We remark that the previous proof touches on a deep result in topology, called the

Tychonoff Theorem, which states the an arbitrary product of compact topological spaces is
compact in the product topology. For countable products of metric spaces, the product
topology is metrized by a metric of the kind (42.2) and so our conclusion can indeed be
regarded as a corollary to the Tychonoff Theorem.

It is also worth noting that the assumption that A is at most countable is essential for
the “selection” of the subsequence in Lemma 42.1 to be possible. Indeed, consider the
following example. Let fn : t0, 1u

N
Ñ t0, 1u be defined by

fn
`
tsiu

8
i“0q :“ sn. (42.8)

Endow t0, 1u with discrete metric. Given a strictly increasing sequence tnkukPN P N,
let s̃ P t0, 1u

N defined by

s̃n :“

#
1, if n P tn2k : k P Nu,
0, else.

(42.9)

Then t fnk ps̃qukPN oscillates between zero and one and hence does NOT converge. As
such a s̃ exists for every subsequence, it follows that the sequence t fnunPN does NOT
admit any pointwise-convergent subsequence whatsoever.

Clearly, the same example works even if A just contains a copy of t0, 1u
N, which is true

whenever A is of the cardinality of the continuum or larger, and X contains at least two
points. (Indeed, extend fn by the “zero” value outside the copy of t0, 1u

N while noting
that the restriction of any metric on X to t0, 1u is equivalent to the discrete metric.) This is
related to the fact that on uncountable spaces, pointwise convergence cannot be phrased
via a metric. We state and prove this in:

Lemma 42.2 Let A be an uncountable set and X a metric space with at least two points. Then
the pointwise convergence on the space of functions A Ñ X is not metrizable. More precisely,
there exists no metric d on XA such that dp fn, f q Ñ 0 is equivalent to fn Ñ f pointwise.
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Proof. Let A be an uncountable set. Since X is contains at least two points, it suffices to
treat the case that X “ t0, 1u endowed with the discrete metric. The proof relies on the
Axiom of Choice that can be avoided if A and t0, 1u

A can be totally ordered.
Writing 0 for the function equal to zero everywhere, suppose, for the sake of contra-

diction, that there does exist a metric d on t0, 1u
A such that dp fn, 0q Ñ 0 is equivalent

to fn Ñ 0 pointwise. Let Bk :“ t f P t0, 1u
A : dp f , 0q † 1{ku be the open ball of radius 1{k

centered at 0. Then also

fn Ñ 0 pointwise ô @k P N : tn P N : fn R Bku is finite (42.10)

Next we claim that

@x P A :
!

n P N : Bn Ñ
 

h P t0, 1u
A : hpxq “ 0

()
‰ H (42.11)

Indeed, if this failed for some x, then (using the Axiom of Choice) we could pick t fnunPN

such that @n P N : fn P Bn ^ fnpxq “ 1. But that would contradict (42.10) because, by
the fact that the Bi’s are nested,  there would force fn Ñ 0 pointwise which cannot
hold simultaneously with fnpxq “ 1 for all n P N.

For each x P A, the above shows that

n0pxq :“ inf
!

n P N : Bn Ñ
 

h P t0, 1u
A : hpxq “ 0

()
(42.12)

obeys n0pxq P N. Since A is uncountable and n0 takes values in N which is countable,
there must exist k P N such that

 
x P A : n0pxq “ k

(
is infinite (42.13)

Taking the smallest k with this property, we can then find (again, using the Axiom of
Choice) a sequence txiuiPN such that @i P N : n0pxiq “ k which means

@i P N : Bk Ñ
 

h P t0, 1u
A : hpxiq “ 0

(
(42.14)

and such that the xi’s are distinct, meaning @i, j P N : i ‰ j ñ xi ‰ xj. Now define
functions t fnunPN by

fnpxq :“

#
1, if x P txi : i • nu,
0, else.

(42.15)

Then (by the fact that all the xi’s are distinct) fn Ñ 0 pointwise and so, by (42.10) and the
fact that the Bj’s are nested, there is i0 P N such that @i • i0 : fi P Bk. But (42.14) then
forces fipxiq “ 0 for all i • i0, in contradiction with (42.15). No such metric d may thus
exist after all. ⇤

In a homework assignment, I claimed that the above can be proved from the fact
that, in metric spaces, a sequence txnunPN converges if and only if, for some x, every
subsequence of txnunPN contains a subsubsequence converging to x. Unfortunately, this
equivalence does hold for pointwise convergence of sequences of functions and so, to get
the desired conclusion, one has to use a different argument. (The stated characterization
does rule out pointwise convergence of functions R Ñ R almost everywhere — which
means: except on a set of zero length.)
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42.2 Arzelà-Ascoli Theorem.

Having discussed the pointwise convergence at length, we now return to the main line
of presentation and state and prove:

Theorem 42.3 (Arzelà-Ascoli Theorem) Let X and Y be metric spaces and t fnunPN func-
tions X Ñ Y. Assume

X compact ^ Y compact ^ t fnunPN equicontinuous (42.16)

Then
DtnkukPN P NN

D f P YX : nk Ñ 8 ^ fnk Ñ f uniformly (42.17)

Proof. The proof is short as it builds on the various facts proved earlier. First, X being
compact implies that X is separable, which means that there exists A Ñ X countable and
dense. Thanks to the compactness of Y, Lemma 42.1 shows that there is tnkukPN P NN

with nk Ñ 8 such that t fnk pxqukPN converges for all x P A. But t fnunPN being equicon-
tinuous along with X being compact show that t fnunPN is uniformly equicontinuous
(see Lemma 41.10) and Lemma 41.7 then shows that t fnunPN admits a pointwise limit f
everywhere and fn Ñ f uniformly. ⇤

The Arzelà-Ascoli Theorem is a very useful tool in various applications of analysis.
For instance, it can be used to prove Peano’s Theorem on the existence of solutions to
first-order ordinary differential equations. We will demonstrate its use on the following
problem from variational calculus.

Given a continuous f : ra, bs Ñ R which is differentiable on pa, bq, set

Fp f q :“
ª b

a

“
f 1

pxq
2

` Vp f pxqq
‰
dx (42.18)

where V : R Ñ R is a continuous function. The map f fiÑ Fp f q assigns a real number to
a function and is often referred to as a functional. (One interpretation of the above F is
the energy of a vibrating string or a power-line suspended between two poles.)

Denoting

F :“
!

f P Rra,bs : continuous on ra, bs ^ differentiable on pa, bq

)
(42.19)

under the assumption that V is bounded from below,

inf
 

Fp f q : f P F
(

(42.20)

exists in R. The question that one often needs to resolve is: Does there exist a minimiz-
ing f P F? A natural first attempt in this vain is to consider a “minimizing sequence”
— i.e., a sequence t fnunPN P FN such that Fp fnq tends to the infimum — and extract, by
whatever means, a limit thereof. The following lemma is then useful:

Lemma 42.4 Assume V : R Ñ R continuous and bounded from below and let t fnunPN P FN

be such that supnPN | fnpaq| † 8 and supnPN Fp fnq † 8. Then t fnunPN is equicontinuous
and so there exists tnkukPN P NN and f : ra, bs Ñ R such that

nk Ñ 8 ^ fnk Ñ f uniformly (42.21)
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Proof. Note that

@n P N :
ª b

a
f 1
npxq

2dx “ Fp fnq ´

ª b

a
V

`
f pxq

˘
dx § Fp fnq ´ inf

zPR
Vpzq (42.22)

From the assumption that supnPN Fp fnq † 8 we thus get

C :“ sup
nPN

ª b

a
f 1
npxq

2dx † 8 (42.23)

But then the Fundamental Theorem of Calculus along with the Cauchy-Schwarz in-
equality show

ˇ̌
fnpxq ´ fnpyq

ˇ̌
“

ˇ̌
ˇ
ª y

x
f 1

ptqdt
ˇ̌
ˇ §

´ª y

x
1dt

¯1{2´ª y

x
f 1

ptq2dt
¯1{2

§

?

C|x ´ y|
1{2 (42.24)

thus proving that t fnunPN is (uniformly) equicontinuous. In light of the assumption
supnPN | fnpaq| † 8 we we also get

M :“ sup
nPN

sup
xPra,bs

| fnpxq| § sup
nPN

ˇ̌
fnpaq

ˇ̌
`

?

C|b ´ a|
1{2

† 8 (42.25)

The functions thus effectively map the compact set ra, bs into the compact set r´M, Ms.
By the Arzelà-Ascoli Theorem, there exists a uniformly convergent subsequence. ⇤

Finding the uniformly convergent minimizing convergence fnk Ñ f is not the end of
the story; indeed, one then needs to show that, in fact, f P F and that Fp fnk q Ñ Fp f q

which requires more tricks from metric space theory. Indeed, we need the concept of
weak convergence which hinges on the following variant of a selection principle:

Lemma 42.5 Let a † b be reals and thnunPN a uniformly bounded sequence of continuous
functions hn : ra, bs Ñ R. Then there exists a strictly increasing tnkukPN P NN such that

@g P Cpra, bsq : lim
kÑ8

ª b

a
gptqhnk ptqdt exists (42.26)

Proof. For each g P Cpra, bsq define fn : Cpra, bsq Ñ R by

fnpgq :“
ª b

a
gptqhnptqdt (42.27)

The estimates for the integral ensure
ˇ̌
fnpgq

ˇ̌
§

´
sup

xPra,bs

ˇ̌
hnpxq

ˇ̌¯´
sup

xPra,bs

ˇ̌
gpxq

ˇ̌¯
(42.28)

and ˇ̌
fnpgq ´ fnpg̃q

ˇ̌
§

´
sup

xPra,bs

ˇ̌
hnpxq

ˇ̌¯´
sup

xPra,bs

ˇ̌
gpxq ´ g̃pxq

ˇ̌¯
(42.29)

Since thnunPN are uniformly bounded, we conclude that the family of functions tfnunPN

is uniformly bounded and also Liptschitz and thus uniformly equicontinuous (as func-
tions on the metric space Cpr0, 1s, Rq).

The space Cpra, bs, Rq is separable (which can be shown by approximating continuous
functions using piecewise linear functions taking rational values at rationals) and so
Lemma 42.1 gives existence of a sequence nk Ñ 8 such that fnk converges pointwise
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on a dense subset of Cpra, bs, Rq. Lemma 41.7 (along with the fact that R is complete)
extends the pointwise convergence to all of Cpra, bs, Rq. ⇤

We now say:

Definition 42.6 (Weak convergence) Let a † b be reals and let thnunPN be a uniformly
bounded sequence of continuous functions hn : ra, bs Ñ R. Let h : ra, bs Ñ R. We say
that hn Ñ h weakly if h is Riemann integrable and

@g P Cpra, bsq : lim
nÑ8

ª b

a
gptqhnptqdt “

ª b

a
gptqhptqdt (42.30)

Of particular interest is the situation under which such a “weak-limit” function h
exists. This can be guaranteed by varying g to approximate a step function 1ra,xs which
is the key argument underlying another beautiful result from this area of mathematics:
the Riesz representation theorem. We will not have time to discuss this in any level of detail
but let us just say that it is here where the Stieltjes integration becomes extremely useful.

As to the above optimization problem, the concept of weak convergence is actually
applied to the sequence of derivatives t f 1

nunPN of the minimizing sequence t fnunPN. The
point of having the weak limit of the derivatives rests in the observation that, using addi-
tional arguments, one can show that the derivative of the limit function f actually exists
and coincides with the weak limit of t f 1

nunPN. This then produces an actual minimizer
of f fiÑ Fp f q.

42.3 Helly’s selection theorem.

We will continue talking about uniform convergence in the next sections. The take-home
message of the above developments is that, while the Cantor diagonal argument often
permits us to extract a subsequential limit on a countable dense set, further regularity
(such as uniform equicontinuity) is needed to extend the convergence to the whole space
and, under compactness, to uniform convergence.

Alternatives to this do exists which we demonstrate by stating a theorem that does not
conform to this scheme. Indeed, the regularity is not supplied by continuity but rather
by monotonicity:

Theorem 42.7 (Helly’s selection theorem) Let t fnunPN be a sequence of uniformly bounded,
non-decreasing functions R Ñ R. Then

DtnkukPN P NN :
´

nk Ñ 8 ^ @x P R : lim
kÑ8

fnk pxq exists
¯

(42.31)

If, moreover, the limit function f pxq :“ limkÑ8 fkpxq is continuous then the convergence is
uniform on compact subsets of R.

We leave the proof (which is an easy variation on the argument from Lemma 42.1) to
homework. The monotonicity of the functions is of course crucial to get subsequential
convergence everywhere. The above result is extremely useful in probability where it
provides an important tool in the concept of weak convergence of random variables —
which is akin to, but not the same as, that defined in (42.30).
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