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41. EQUICONTINUITY

The purpose of this section is to explore further the relation between uniform conver-
gence and continuity. In particular, we will prove a number of results developed inde-
pendently by C. Arzelà and G. Ascoli in the late 19th century. This theory culminates
in a well-known theorem that now bears Arzelà and Ascoli’s names which we will state
and prove in the next section.

41.1 Necessary conditions for uniform convergence.

A goal of Arzelà and Ascoli’s theory is to identify necessary and sufficient conditions for
uniform convergence. Such an endeavor usually begins with finding a good number of
necessary conditions and then noting that a suitable subset of these can be shown to be
also sufficient. We start with a definition:

Definition 41.1 A function f : A Ñ Y from a set A to a metric space pY, rYq is said to be
bounded if there exists y P Y and r ° 0 such that

Dy P Y Dr ° 0 : Ranp f q Ñ BYpy, rq “
 

y1
P X : rXpy, y1

q † r
(

(41.1)

A family t fa : a P Iu of functions is said to be uniformly bounded if

Dy P Y Dr ° 0 @a P I : Ranp faq Ñ BYpy, rq. (41.2)

We then have:

Lemma 41.2 Let t fnunPN and f be functions X Ñ Y for metric spaces X and Y. Then
fn Ñ f uniformly ^ f bounded

ñ Dn0 P N : t fn : n • n0u uniformly bounded
(41.3)

Proof. Let rY be the metric of Y and let y P Y. Then

sup
xPX

rY
`
y, fnpxq

˘
§ sup

xPX
rY

`
y, f pxq

˘
` sup

xPX
rY

`
fnpxq, f pxq

˘
(41.4)

If f is bounded, then the first supremum on the right is finite. The uniform convergence
fn Ñ f in turn implies that the second suprmum is eventually less than, say, one. ⇤

Note, however, that uniform conditions can take place without the functions being
bounded. Indeed, fnpxq :“ x ` 1{n converges uniformly to f pxq :“ x yet none of these
functions (as functions on R) are bounded.

A more interesting necessary conditions arises when we assume the limit function to
be continuous:

Lemma 41.3 Let X and Y be metric spaces and t fnunPN and f functions X Ñ Y. Sup-
pose fn Ñ f uniformly and assume x0 P X is such that f is continuous at x0. Then

@e ° 0 Dd ° 0 Dn0 P N @n • n0 : sup
xPBXpx,dq

rY
`

fnpxq, fnpx0q
˘

† e (41.5)

If, in addition, fn is continuous for each n P N, then the above holds with n0 :“ 0.

Proof. Suppose f is continuous at x0. Then, given e ° 0, there exists d ° 0 such that
rXpx, x0q † d implies rYp f pxq, f px0qq † e. The uniform convergence in turn gives n0 P N
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such that rYp fnpxq, f pxqq † e for all n • n0 and all x P X. Putting this together, for x P X
with rXpx, x0q † d and n • n0 we thus get

rY
`

fnpxq, fnpx0q
˘

§ rY
`

fnpxq, f pxq
˘

` rY
`

f pxq, f px0q
˘

` rY
`

f px0q, fnpx0q
˘

† 3e
(41.6)

Relabeling e this gives (41.5). For the second part of the claim, the continuity of fn allow
us to choose dn ° 0 such that rXpx, x0q † d implies rYp fnpxq, fnpx0qq † e. With n0
as above, we then take d :“ min0§k§n0 dn and check that the inequality (41.5) is valied
(with 3e instead of e) for all n P N. ⇤

The property (41.5) states that, except for a finite number of n’s, all fn vary very little
on a small neighborhood of x0. We will give this property a name:

Definition 41.4 (Equicontinuity) Given metric spaces pX, rXq and pY, rYq and x0 P X,
we say that a family t fa : a P Iu of functions X Ñ Y is equicontinuous at x0 if

@e ° 0 Dd ° 0 @x P X : rXpx, x0q † d ñ sup
aPI

rY
`

fapxq, fapx0q
˘

† e. (41.7)

We say that t fa : a P Iu is equicontinuous if it is equicontinuous at all x0 P X.

We can even strengthen the observation in Lemma 41.3 to the form that does not refer
to the limit function:

Lemma 41.5 Let X and Y be metric spaces and t fnunPN a sequence of functions X Ñ Y.
Let x0 P X. Then

t fnunPN uniformly Cauchy ^
`
@n P N : fn continuous at x0

˘

ñ t fnunPN equicontinuous at x0
(41.8)

Proof. Given e ° 0, the uniform Cauchy property shows the existence of n0 P N such
that n • n0 implies rXp fnpxq, fn0pxqq † e. Since fn0 is continuous, we can now run the
argument in the proof of Lemma 41.3 with f replaced by fn0 . ⇤

A key reason for introducing equicontinuity is that it suffices to ensure that pointwise
convergent sequence of functions has a continuous limit:

Lemma 41.6 Let X and Y be metric spaces and t fnunPN a sequence of functions X Ñ Y.
Suppose that

@x P X : f pxq :“ lim
nÑ8 fnpxq exists (41.9)

Then
t fnunPN equicontinuous ñ f continuous (41.10)

Proof. Let x0 P X and, given e ° 0, let d ° 0 be such that rXpx, x0q † d implies that
@n P N : rYp fnpxq, fnpx0qq † e. Passing to n Ñ 8, we then get that rXpx, x0q † d then
implies rYp f pxq, f px0qq § e † 2e. Hence f is continuous at x0. ⇤

An interesting twist to the previous lemma is that, under equicontinuity, we do not
even need that the pointwise convergence takes place everywhere:

Lemma 41.7 Let X and Y be metric spaces and t fnunPN a sequence of functions X Ñ Y
with @n P N : Domp fnq “ X. Suppose that
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(1) t fnunPN is equicontinuous,
(2) there exists A Ñ X such that

A dense in X ^ @x P A : lim
nÑ8 fnpxq exists (41.11)

(3) Y is complete.
Then there exists a continuous f : X Ñ Y with Domp f q “ X such that fn Ñ f pointwise.

Proof. Let A be as in the statement and let x0 P X. Pick e ° 0. The equicontinuity
then gives us d ° 0 such that rXpx, x0q † d implies @n P N : rYp fnpxq, fnpx0qq † e. The
density of A in turn gives an x P A with rXpx, x0q † d and the convergence (41.11) gives
us n1 P N such that m, n • n1 implies rYp fnpxq, fmpxqq † e. The 3e-argument now shows
that, for all m, n • maxtn0, n1u

rY
`

fmpx0q, fnpx0q
˘

§ rY
`

fmpxq, fmpx0q
˘

` rY
`

fmpxq, fnpxq
˘

` rY
`

fnpxq, fnpx0q
˘

† 3e
(41.12)

We have thus shown that t fnpx0qunPN is Cauchy in pY, rYq. Since Y is assumed to be
complete, f px0q :“ limnÑ8 fnpx0q exists for all x0 P X. The limit function is continuous
by Lemma 41.6. ⇤

41.2 Theorems of Arzelà and Ascoli.

Having demonstrated usefulness of equicontinuity, let us give some examples of equicon-
tinuous families of functions. A typical example are k-th order polynomials

 
x fiÑ

kÿ

i“0

akxk : a0 P R ^ a1, . . . , ak P r´1, 1s
(

(41.13)

Note that, while the value of a0 need not be constrained because it does not enter dif-
ferences of function, the other coefficients must be constrained for otherwise we cannot
find one d to fit the same e. Moving back to the general setting, the family of Lipschitz
continuous functions

!
f P YX :

`
@x, x̃ P X : rYp f pxq, f px̃qq § lrXpx, x̃q

˘)
(41.14)

with the Lipschitz constant bounded by l ° 0 is equicontinuous. (Indeed, here d is
chosen from e by d :“ e{l.) The same argument works if we replace Lipschitz conti-
nuity by Hölder continuity or, even more generally, by forcing a particular modulus of
continuity as in

!
f P YX :

`
@x, x̃ P X : rYp f pxq, f px̃qq § h

`
rXpx, x̃q

˘˘)
(41.15)

where h : r0, 8q Ñ r0, 8q is a non-decreasing function such that limtÑ0` hptq “ 0.
These examples may seem special, but imposing a particular modulus of continuity is

actually a typical way equicontinuity is verified in practice. As applications of the above
observations, from the Mean-Value Theorem we get that

!
f P Rra,bs : continuous on ra, bs ^ differentiable on pa, bq ^ | f 1

| § M
)

(41.16)
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and, by (31.27), also
"

x fiÑ

ª x

a
f ptqdt : f P Rra,bs

^ RI ^ sup
tPra,bs

ˇ̌
f ptq

ˇ̌
† M

*
(41.17)

are equicontinuous families of functions ra, bs Ñ R for each M ° 0. (We leave easy
proofs of these facts to the reader.)

These above were all positive examples that reflect on various “typical” situations
in which equicontinuity is used and is useful. However, once we enter the setting of
general metric spaces, more singular examples of equal interest can be produced. For
instance, endowing the rationals with the Euclidean metric, consider functions fn : Q X

p0, 8q Ñ R defined by

fnpxq :“

#
0, if nx †

?

2,
1, otherwise.

(41.18)

Then fn is continuous for each n P N and, in fact, the family t fnunPN is equicontinuous
with fn Ñ 1 (on Q X p0, 1q) as n Ñ 8. Yet, importantly, the convergence is not uniform
because Ranp fnq “ t0, 1u for all n P N.

The previous example demonstrates the need for an additional assumption in order
to “upgrade” a pointwise-convergent equicontinuous sequence to one that converges
uniformly. This assumption, which constitutes perhaps the most important observation
of the work of Arzelà and Ascoli, turns out to be that of compactness. Here is a first
result in this vain:

Theorem 41.8 Let X and Y be metric spaces and t fnunPN and f functions X Ñ Y. Assume

t fnunPN equicontinuous ^ fn Ñ f pointwise ^ X compact (41.19)

Then fn Ñ f uniformly.

Proof. The idea of the proof is simple: We use equicontinuity and compactness to effec-
tively represent the sequence t fnunPN by its values at a finite set of points. Then we note
that, for functions on a finite set, pointwise and uniform convergence are equivalent.

Let e ° 0 and, for each x P X, let

dpxq :“
1
2

sup
!

d P p0, 1q :
´

@n P N : fn
`
BXpx, dq

˘
Ñ BY

`
f pxq, e

˘¯*
. (41.20)

The assumed equicontinuity ensures that the set on the right is non-empty; the extra
factor of 1{2 in the front in turn guarantees that

@x P X @n P N : dpxq ° 0 ^ fn
`
BXpx, dpxqq

˘
Ñ BY

`
fnpxq, e

˘
(41.21)

(Many texts will simply “choose” dpxq this way, but this requires Axiom of Choice that
our definition avoids.) Since the sets tBXpx, dpxqq : x P Xu form an open cover of X, the
compactness ensures the existence of K P N and x0, . . . , xk P X such that

X “

K§

i“0

BX
`
xi, dpxiq

˘
(41.22)

The fact that fnpxiq Ñ f pxiq in turn implies that t fnpxiqunPN is Cauchy meaning that

@i “ 0, . . . , K DNi P N @m, n • Ni : rY
`

fnpxiq, fmpxiq
˘

† e (41.23)
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Let N :“ maxi“0,...,K Ni. Then for all z P X and i such that z P BXpxi, dpxiqq, (41.21) implies

@n P N : rY
`

fnpzq, fnpxiq
˘

† e (41.24)

and so, for all n, m • N, we thus get

rY
`

fnpzq, fmpzq
˘

§ rY
`

fnpzq, fnpxiq
˘

` rY
`

fnpxiq, fmpxiq
˘

` rY
`

fmpxiq, fmpzq
˘

† 3e.
(41.25)

It follows that
@n, m • N : sup

zPX
rY

`
fnpzq, fmpzq

˘
§ 3e (41.26)

which, in light of our arbitrary choice of e means that t fnunPN is uniformly Cauchy.
Since fn Ñ f pointwise, Lemma 39.7 shows that fn Ñ f uniformly. ⇤

A natural question to ask is what can we say if the domain of the functions is not
compact. The short answer is that, not much, as seen in the following examples: Given
any metric space X, the sequence 1BXpx0,nq converges to 1 pointwise but that convergence
is uniformly only if X is bounded. We thus need to assume that X is bounded. But even
that is not enough. Indeed, if for some r ° 0, a metric space X is not covered by a finite
number of balls of radius r, then we can pick a sequence txnunPN such that xn`1 R An :“în

i“0 BXpxi, rq for each n P N. The sequence 1An then obeys 1An Ñ 1 pointwise but,
since 1An is always one somewhere, not uniformly.

It thus appears that the minimal assumption we have to make is that of total bound-
edness. However, as the example (41.18) shows, even that does not quite work unless
we assume more than just plain equicontinuity. This is the content of:

Definition 41.9 (Uniform equicontinuity) Given metric spaces pX, rXq and pY, rYq, we
say that a family t fa : a P Iu of functions X Ñ Y is uniformly equicontinuous if

@e ° 0 Dd ° 0 @x, y P X : rXpx, yq † d ñ sup
aPI

rY
`

fapxq, fapyq
˘

† e. (41.27)

Comparing this with Definition 41.1, the key difference is that, given e ° 0, the
same d ° 0 is now supposed to work for all points of x. Therefore, the same way that

t fa : a P Iu equicontinuous ñ @a P I : fa continuous (41.28)

we get

t fa : a P Iu uniformly equicontinuous ñ @a P I : fa uniformly continuous (41.29)

A corollary of (and, in fact, the original motivation for) the Bolzano-Weierstrass Theorem
is the implication that f continuous on a compact set ñ f uniformly continuous. It
will thus not surprise us that the same applies even when continuity is replaced by
equicontinuity:

Lemma 41.10 Given metric spaces X and Y, let t fa : a P Iu be functions X Ñ Y. Then

t fa : a P Iu equicontinuous ^ X compact
ñ t fa : a P Iu uniformly equicontinuous

(41.30)
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Proof (idea). Repeat the proof of Lemma 25.6 replacing f by fn and noting that all prop-
erties hold uniformly in n. ⇤

With uniform equicontinuity in place of equicontinuity, we can “upgrade” Theo-
rem 41.8 to the following form:

Theorem 41.11 Let X and Y be metric spaces and t fnunPN and f functions X Ñ Y. Assume

t fnunPN uniformly equicontinuous ^ fn Ñ f pointwise ^ X totally bounded (41.31)

Then fn Ñ f uniformly.

Proof. One way to prove this is to invoke the notion of a completion X of X while noting
that uniformly equicontinuous families on X extend uniquely to uniformly equicontin-
uous families on X. Since a completion of a totally bounded space is compact, the state-
ment then follows from Lemma 41.7 and Theorem 41.8. While that perhaps explains
better the choice of the assumptions, it will be easier to proceed by a direct argument.

Fix e ° 0 and let d ° 0 be such that rXpx, x̃q † d implies rYp fnpxq, fnpx̃qq † e. Now
use total boundedness to find K P N and x0, . . . , xK P X such that X “ BXpxi, dq. Finally,
let N P N be such that m, n • N implies rYp fnpxiq, fmpxiqq for all i “ 0, . . . , K. Then
for z P X and i “ 0, . . . , K such that z P BXpxi, dq, the condition m, n • N implies

rY
`

fnpzq, fmpzq
˘

§ rY
`

fnpzq, fnpxiq
˘

` rY
`

fnpxiq, fmpxiq
˘

` rY
`

fmpxiq, fmpzq
˘

† 3e
(41.32)

showing that t fnunPN is uniformly Cauchy. Since fn Ñ f pointwise, Lemma 39.7 gives
that fn Ñ f uniformly. ⇤

We leave it to the reader to check that a uniform limit of uniformly equicontinuous
functions is uniformly continuous.
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