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27. LIMIT OF FUNCTIONS

Having discussed continuous functions at length, we now want to move to analysis of
functions that are NOT continuous. As before, we start with functions between general
metric spaces and then specialize to real-valued functions.

27.1 Limit and relation to continuity.

We start with a concept that should be familiar from Calculus. (Some textbooks even
treat it before continuity.)

Definition 27.1 (Limit of functions) Let f : X Ñ Y be a function between metric spaces
pX, rXq and pY, rYq. Let x P Domp f q be non-isolated (in Domp f q) and let y P Y. We say
that f has limit y at x if

@e ° 0 Dd ° 0 @z P Domp f q : 0 † rXpx, zq † d ñ rY
`

f pzq, y
˘

† e (27.1)

We say that limit of f at x exists if the above holds for some y P Y.

Note that (27.1) is very similar to (24.1) in the metric-space based definition of con-
tinuity. The only (but very important!) difference is that here we require “0 †” in the
premise 0 † rXpx, zq † d of the implication in (27.1) and so the actual value of f at x
(if x P Domp f q) is never considered in (27.1). We will see that the concept of a limit
remains quite close to that of continuity, but before we get to that, we first note:

Lemma 27.2 If y, ỹ P Y are such that (27.1) holds for both y and ỹ, then y “ ỹ.

Proof. Given the setting of Definition 27.1, fix e :“ 1
2 rpy, ỹq. If e ° 0, then (27.1) ensures

existence of d ° 0 be such that 0 † rXpx, zq † d implies rYp f pzq, yq † e and d1
° 0 such

that 0 † rXpx, zq † d1 implies rYp f pzq, ỹq † e. But then the fact that x P Domp f q gives at
least one z P Domp f q with these properties and so

rYpy, ỹq § rY
`

f pzq, y
˘

` rY
`

f pzq, ỹ
˘

† e ` e “ 2e “ rYpy, ỹq (27.2)

This is absurd and so we must have rYpy, ỹq “ 0, i.e., y “ ỹ. ⇤
Note that, without the requirement that x be a limit point of Domp f q, any y would

be a limit of f at x, which is something we want to avoid. With the limit unique, we
introduce the notation

lim
zÑx

f pzq “ y :“ f has limit y at x (27.3)

The promised connection with continuity now comes in:

Lemma 27.3 Let f : X Ñ Y be a function between metric spaces X and Y. Then

@x P Domp f q : f continuous at x ô lim
zÑx

f pzq “ f pxq (27.4)

Proof. Since rYp f pzq, f pxqq “ 0 † e for z “ x, the point z “ x may be added to (27.1)
when y “ f pxq. This shows equivalence (24.1) with (27.1) for this case. ⇤

There is even a formulation that does not require f to be defined at x:
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Lemma 27.4 Let f : X Ñ Y be a function between metric spaces X and Y. Let x P Domp f q be
non-isolated and let y P Y. Define g : X Ñ Y with Dompgq :“ Domp f q Y txu by

gpzq :“

#
f pzq, if z P Domp f q r txu,
y, if z “ x.

(27.5)

Then
lim
zÑx

f pzq “ y ô g is continuous at x. (27.6)

Proof. Again, this is a direct consequence of the definitions (24.1) and (27.1). ⇤
We will also have a characterization of a limit using convergence of sequences:

Lemma 27.5 (AC)(Sequential characterization) Let f : X Ñ Y be a function between metric
spaces X and Y. Let x P Domp f q be non-isolated and let y P Y. Then

lim
zÑx

f pzq “ y ô @tznunPN P pDomp f q r txuq
N : zn Ñ x ñ f pznq Ñ y (27.7)

Proof. Abbreviate B1
Xpx, dq :“ BXpx, dq X Domp f q. We start with the proof of ñ in (27.7).

Assume limzÑx f pzq “ y and let e ° 0. Then there is d ° 0 such that

f
`
B1

Xpx, dq r txu
˘

Ñ BYpy, eq (27.8)

Given any tznunPN P pDomp f q r txuq
N, the convergence zn Ñ x implies the existence

of n0 • 0 such that n • n0 implies zn P BXpx, dq r txu. But then f pznq P BYpy, eq for
all n • n0 and, since this holds for all e, we have f pznq Ñ y.

The converse will be proved via contrapositive. Assume that limzÑx f pzq “ y is
FALSE. Then there is e • 0 such that

@d ° 0 : BYpy, eq r f
`
B1

Xpx, dq r txu
˘

‰ H (27.9)

Applying this for d P t2´n : n P Nu, the Axiom of Choice implies existence of tznunPN

such that
@n P N : zn P B1

Xpx, 2´n
q r txu ^ f pznq R BYpy, eq (27.10)

But then zn Ñ x ^ f pznq Û y which is the logical opposite of zn Ñ x ñ f pznq Ñ y. This
proves ô and thus the whole claim. ⇤

We remark that the previous lemma is mainly used to disprove existence of the limit.
Indeed, for that it suffices to come up with two sequences tznunPN and tz1

nunPN such
that zn Ñ x and z1

n Ñ x and such that f pznq Ñ y and f pznq Ñ y1 with y ‰ y1. (Alterna-
tively, it suffices to show that rYp f pznq, f pz1

nqq stays uniformly positive.)
As an example, consider the Dirichlet function 1Q : R Ñ R defined by

1Qpxq :“

#
1, if x P Q,
0, if x R Q,

(27.11)

If tznunPN is a sequence of rationals converging to x, then 1Qpznq Ñ 1, while if tz1
nunPN

is a sequence of irrationals converging to x, then 1Qpz1
nq Ñ 0. As both rationals and

irrationals are dense, we conclude that 1Q fails to have a limit, and (by Lemma 27.3) is
thus NOT continuous, at every x P R.
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The connection with continuity (and/or sequential characterization) allows us to prove
the various “rules” for limits. We give these all in one in:

Lemma 27.6 (Sum, Product and Quotient Rule for limits) Let f , g : X Ñ R be functions
such that x is isolated neither in Domp f q nor in Dompgq and such that both f and g have limits
at x. Then so do the functions f ` g and f ¨ g and we have

lim
zÑx

p f ` gqpzq “ lim
zÑx

f pzq ` lim
zÑx

gpzq (27.12)

and
lim
zÑx

p f ¨ gqpzq “ lim
zÑx

f pzq ¨ lim
zÑx

gpzq (27.13)

Moreover, if limzÑx gpzq ‰ 0 then also f {g has a limit at x and

lim
zÑx

p f {gqpzq “
limzÑx f pzq

limzÑx gpzq
(27.14)

where the limit on the left is by definition from Domp f {gq :“ tz P Dompgq : gpzq ‰ 0u.

Proof. By Lemma 27.4 and the fact that the value of a function at x is immaterial for
the limit at x, we may assume that both f and g are continuous at x. The claims then
follow from Lemmas 24.2–24.4 (with limits replaced by the value of the functions at x).
If a reliance on the Axiom of Choice is not of concern, one can alternatively proceed via
Lemma 27.5 and the corresponding “rules” for limits of sequences. ⇤

27.2 Limsup/liminf and limit from a set.

As for the numerical sequences, once we treat functions taking values in the reals, there
is an alternative description of convergence using the ordering of R by §. The starting
concepts in this are:

Definition 27.7 (Limes superior and inferior) Given f : X Ñ R on a metric space
pX, rXq and a non-isolated point x P Domp f q, let

lim sup
zÑx

f pzq :“ inf
d°0

sup
zPDomp f q

0†rXpx,zq†d

f pzq (27.15)

and
lim inf

zÑx
f pzq :“ sup

d°0
inf

zPDomp f q
0†rXpx,zq†d

f pzq (27.16)

where the infima/suprema are taken in the extended reals R :“ R Y t`8, ´8u.

We then have:

Lemma 27.8 Let f : X Ñ R and let x P Domp f q be non-isolated. Then

lim inf
zÑx

f pzq § lim sup
zÑx

f pzq (27.17)

Moreover, for any y P Y,

lim
zÑx

f pzq “ y ô lim inf
zÑx

f pzq “ lim sup
zÑx

f pzq “ y (27.18)
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Proof. Let d, d1
° 0 and let d2 :“ mintd, d1

u. Then

inf
zPDomp f q

0†rXpx,zq†d

f pzq § inf
zPDomp f q

0†rXpx,zq†d2

f pzq § sup
zPDomp f q

0†rXpx,zq†d2

f pzq § sup
zPDomp f q

0†rXpx,zq†d1

f pzq (27.19)

where the middle inequality uses tz P Domp f q : 0 † rXpz, xq † d2
u ‰ H implied by

the fact that x is non-isolated. It follows that the supremum on the right is an upper
bound on lim infzÑx f pzq which is then a lower bound on all of the suprema, and thus
also on lim supzÑx f pzq, proving (27.17).

In order to prove (27.18) it suffices to observe that both sides of the equivalence are
equivalent to

@e ° 0 Dd ° 0 @z P BXpz, dq r txu : y ´ e † f pzq † y ` e (27.20)

We leave checking that fact to the reader. ⇤
Returning to our example from (27.11), we now readily check that, for each x P R,

lim inf
zÑx

1Qpzq “ 0 ^ lim sup
zÑx

1Qpzq “ 1 (27.21)

which again shows that the limit of 1Q does not exist at any point. Another example is
the function

f pxq :“

#
1

n`1 , if x “ qn for some n P N,
0, if x R Q,

(27.22)

where tqnunPN is a sequence enumerating Q. Here

lim inf
zÑx

1Qpzq “ 0 ^ lim sup
zÑx

1Qpzq “ 0. (27.23)

Here the second part is that which is non-trivial. Details of this are left to a homework
assignment.

Another variation of the concept of the limit comes from further restriction of the
values that can be considered under the limit sign. This comes in:

Definition 27.9 (Limit from a set) Let f : X Ñ Y and let A Ñ X. Assume that x P

A X Domp f q is non-isolated. We then set

lim
zÑx
zPA

f pzq :“ lim
zÑx

fApzq (27.24)

where fA is the restriction of f to Domp fAq :“ A X Domp f q.

Applications of this concept typically concern a limits of a function at points on the
boundary of that set. Another example comes in:

Definition 27.10 (Left and right limits) Let f : R Ñ Y and let x P Domp f q. If x is not
isolated in Domp f q X px, 8q, then we define the right-limit of f at x by

lim
zÑx`

f pzq :“ lim
zÑx

zPpx,8q
f pzq (27.25)

If in turn x is not isolated in Domp f q X p´8, xq, then we define the left-limit of f at x by

lim
zÑx´

f pzq :“ lim
zÑx

zPp´8,zq
f pzq (27.26)
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Alternative notations f px`
q, resp., f px´

q are used for the objects in (27.25), resp., (27.26).

We then have:

Lemma 27.11 Let f : R Ñ Y and let x P intpDomp f qq. Then for any y P Y,

lim
zÑx

f pzq “ y ô f px`
q, f px´

q exist ^ f px`
q “ f px´

q “ y (27.27)

We leave the simple proof of this lemma to homework. As an example, consider the
function sgn : R Ñ R defined by

sgnpxq :“

$
’&

’%

1, if x ° 0,
0, if x “ 0,
´1, if x † 0.

(27.28)

Then the right-limit of sgn at zero equals 1, the left-limit equals ´1 and, since these are
not equal, the limit at zero does not exist.

The one-sided limits defined in (27.25–27.26) can be linked to corresponding concepts
of continuity from right and left, respectively. Also can be defined by introducing a
concept of “continuity from a set;” however, for simplicity we define these directly using
these limits:

Definition 27.12 (Left and right continuity) Let f : R Ñ R be a function and x P

Domp f q. Then f said to be:
(1) left continuous at x if x is not isolated in Domp f q X p´8, xs and f px´

q “ f pxq

(2) right-continuous at x if x is not isolated in Domp f q X rx, 8q and f px`
q “ f pxq.

Clearly, these definitions ensure:

Lemma 27.13 A function f : R Ñ R is continuous at x P intpDomp f qq if and only if the one-
sided limits f px`

q and f px´
q exist and f px`

q “ f px´
q “ f pxq. In particular, f is continuous

at such an x if and only if it is both left and right continuous at x.

We leave the elementary proof of this lemma to the reader.
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