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36. STIELTJES INTEGRAL

The Riemann integral admits a natural generalization that was invented by T.J. Stieltjes
1890s in his work on continued fractions. This generalization is useful in applications
and also served as a foundation for the corresponding extension of the Lebesgue inte-
gration theory. (Stieljes had an interesting career path to mathematics. He died in 1894
at the age of 38, too early to see his work published and his integral gain prominence.)

36.1 Stieltjes integral: definition and motivation.

The main distinction of the Stietjes integral
≥b

a f dg from the Riemann integral is that it
depends on two functions: First, the integrand f and then a function g that replaces
the identity map (i.e., gpxq “ x) in the increment of the underlying variable. Precise
definitions are as follows:

Definition 36.1 (Stieltjes integral) Let a † b be reals and f , g : ra, bs Ñ R functions.
Given a marked partition P “ pttiu

n
i“0, tt‹

i u
n
i“1q — i.e., two sequences of reals subject to

the requirements (31.1–31.2) — we define the Riemann-Stieltjes sum by

Sp f , dg, Pq :“
nÿ

i“1

f pt‹
i q

`
gptiq ´ gpti´1q

˘
(36.1)

The function f is then said to be Stieltjes integrable with respect to g on ra, bs in Riemann
sense (or sometimes called Riemann-Stieltjes integrable) if

ª b

a
f dg :“ lim

}P}Ñ0
Sp f , dg, Pq exists (36.2)

where the “limit” abbreviates the same concept as for the Riemann integral (see Defini-
tion 31.2). We call the object on the left the Stieltjes integral of f with respect to g.

Some remarks are in order. The above is often referred to as the Riemann-Stieltjes
integral. This is not because Riemann had anything to do with it but rather that the
integral uses the framework of the Riemann integral. (A version called Lebesgue-Stieltjes
integral exists in Lebesgue theory of integration.) The Riemann integral is thus a special
case of the (Riemann-)Stieltjes integral; indeed,

`
@x P ra, bs : gpxq “ x

˘
ñ

ª b

a
f dg “

ª b

a
f pxqdx (36.3)

Turning this around, the Stieltjes integral allows us to generalize the notion of area to the
situation when the “length” of interval rs, ts is given gptq ´ gpsq and area of the rectangle
rs, ts ˆ r0, hs is thus hrgptq ´ gpsqs. Notably, this includes negative “lengths” but this is no
problem because the Riemann integral anyway computes the signed area.

The Stieltjes integral is quite useful in probability. There g is usually the cumulative
distribution function of a random variable X; meaning that

gpxq :“ PpX § xq (36.4)

The integral
≥b

a f dg then corresponds to the expectation of f pXq; i.e., the statistical “mean
value” of the random variable obtained by plugging X into f . The use of the Stieltjes
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integral permits treating all the various kinds of distributions of X — namely, discrete,
continuous and mixtures thereof — under the same umbrella.

The fact that g need not be monotone, and the increments gptq ´ gpsq over interval rs, ts
thus need not be positive, is quite advantageous in applications. For instance, consider
a position in stock portfolio whose volume at time t is described by gptq. The quantity

f pt‹
i q

“
gptiq ´ gpti´1q

‰
(36.5)

is then the price paid for (if positive) or earned from (if negative) the change in portfolio
over time interval rti´1, tis assuming all trade was executed at the instanteous price at
time t‹

i P rti´1, tis. The Stietljes sum thus approximates the total cash value traded over
the time interval ra, bs which, in the limit as the as mesh of the partition tends to zero, is
thus given by the integral

≥b
a f dg.

We note that Rudin’s book presents a different definition of the Stieltjes integral which
is based on Darboux’s approach to Riemann integration. This streamlines the analysis
somewhat but forces us to work with g monotone or, at best, of bounded variation. The
applications mentioned earlier are not always of this kind and so we prefer to work with
the Stieltjes integral in the Riemann sense.

36.2 Properties of Stieltjes integral.

We now move to discuss the basic properties of Stieltjes integral. Let us henceforth use

RS
`
h, ra, bs

˘
:“

!
f : ra, bs Ñ R :

ª b

a
f dh exists

)
(36.6)

to denote the set of functions that are Stieltjes-integrable with respect to g on ra, bs in Rie-
mann sense. We start with some “good news;” namely, facts where the Stieltjes integral
behaves very much as Riemann’s:

Lemma 36.2 (Linearity) Let a † b be reals and let h : ra, bs Ñ R be given. Then for all
f , g P RSph, ra, bsq and all a, b P R,

a f ` bg P RS
`
h, ra, bs

˘
(36.7)

and ª b

a

`
a f ` bg

˘
dh “ a

ª b

a
f dh ` b

ª b

a
gdh (36.8)

Proof. The proof is the exactly the same as for the Riemann integral (see Lemma 31.5)
and so we leave it to the reader. ⇤

A similar type of linearity holds also for the integrator:

Lemma 36.3 For all a, b P R, all g1, g2 : ra, bs Ñ R and all f P RSpg1, ra, bsq X RSpg2, ra, bsq,

f P RS
`
ag1 ` bg2, ra, bs

˘
^

ª b

a
f dpag1 ` bg2q “ a

ª b

a
f dg1 ` b

ª b

a
f dg2 (36.9)

Proof. Left to the reader. ⇤
Moving to properties where the Stietljes integral behaves somewhat differently than

(its special case of) the Riemann integral we note that the boundedness that came with

Preliminary version (subject to change anytime!) Typeset: May 10, 2023



MATH 131BH notes 202

Riemann integrability is no longer applicable. Indeed, on intervals rs, ts Ñ ra, bs where g
is constant and the values of t f pxq : x P ps, tqu do not contribute to Sp f , dg, Pq for any
partition P and are thus completely unconstrained by the assumption that f is integrable
with respect to g. Turning to the positive side of the story, we get:

Lemma 36.4 Let f , g : ra, bs Ñ R be such that f P RSpg, ra, bsq. Then there exists a partition
P “ ttiu

n
i“0 of ra, bs such that

@i “ 1, . . . , n : sup
xPrti´1,tis

ˇ̌
f pxq

ˇ̌
† 8 _

`
@x, y P rti´1, tis : gpxq “ gpyq

˘
(36.10)

In particular, if g is NOT constant on any non-degenerate closed subinterval of ra, bs, then
f P RSpg, ra, bsq implies that f is bounded.

As it turns out, also the additivity property with respect to the underlying domain
holds only in a restricted sense. Namely, we have:

Lemma 36.5 For all reals a † c † b and all f , g : ra, bs Ñ R,

f P RSpg, ra, bsq ñ f P RSpg, ra, csq ^ f P RSpg, rc, bsq (36.11)

and, in particular,

@ f P RSpg, ra, bsq :
ª b

a
f dg “

ª c

a
f dg `

ª b

c
f dg (36.12)

Proof. Left to the reader. ⇤
The previous lemma worked because it assumed integrability on the larger domain.

Unlike the Riemann integral, for which (36.11) is an equivalence, for the Stieltjes integral
one can have integrability on ra, cs and on rc, bs without having integrability on ra, bs.
This is because of the following necessary condition for integrability:

Lemma 36.6 Let f , g : ra, bs Ñ R. If f P RSpg, ra, bsq then for each e ° 0 there is d ° 0 such
that for any unmarked partition P “ pttiu

n
i“0q of ra, bs,

}P} † d ñ

nÿ

i“1

osc
`

f , rti´1, tis
˘ˇ̌

gptiq ´ gpti´1q

ˇ̌
† e (36.13)

In particular, if f P RSpg, ra, bsq, then f and g have no common discontinuity points.

Proof. To get (36.13), consider two Stieltjes sums for partitions P‹ and P‹‹ with the same
partition points ttiu

n
i“0 but the marked points t‹

i , t‹‹
i P rti´1, tis chosen such that, for each

i “ 1, . . . , n, the difference f pt‹
i q ´ f pt‹‹

i q has the same sign as gptiq ´ gpti´1q and has
absolute value at least 1

2 oscp f , rti´1, tisq. Then

1
2

nÿ

i“1

osc
`

f , rti´1, tis
˘ˇ̌

gptiq ´ gpti´1q

ˇ̌
§ Sp f , dg, P‹

q ´ Sp f , dg, P‹‹
q (36.14)

Assuming Stieltjes integrability f P RSpg, ra, bsq and d related to d as in Definition 31.2,
the right-hand side is smaller than 2e once }P‹

} “ }P‹‹
} † d.
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For the second part note that suppose first that f fails to be right-continuous at some
x P ra, bq. Using the same ideas as in Lemma 34.5(2), this implies

c :“ inf
dPp0,b´xq

oscp f , rx, x ` dsq ° 0 (36.15)

Letting d ° 0 be related to e ° 0 as in (36.13), for partitions where x is among the
partition points we then get

@t P px, x ` dq X ra, bs :
ˇ̌
gptq ´ gpxq

ˇ̌
†

1
c

e (36.16)

As this holds for all e ° 0, we conclude that g is right-continuous at x. A similar proof
gives left-continuity of g at all points x P pa, bs where f is NOT left continuous.

It remains to rule out the possibility that f is NOT right-continuous and g is NOT
left-continuous but is right continuous at some x P pa, bq. Here we take a partition that
does NOT contain x among its partition points. Then we still have

c̃ :“ inf
a§s†x†t§b

osc
`

f , rs, ts
˘

° 0 (36.17)

and so (36.13) gives (for d related to e as above),

@s, t P ra, bs : s † x † t ^ t ´ s † d ñ

ˇ̌
gptq ´ gpsq

ˇ̌
†

1
c̃

e (36.18)

If g is assumed right continuous, then taking t Ñ x` shows that |gpxq ´ gpsq| § c̃´1e
whenever 0 † x ´ s † d. But then g is left-continuous as well. (The complementary set
of type of dicontinuities is handled similarly.) ⇤

The previous proof now explains why  generally fails in (36.11): If f : ra, bs Ñ R is
continuous on ra, cs and pc, bs but NOT continuous at c while g : ra, bs Ñ R is continuous
on rc, bs and ra, cq but NOT continuous at c, then

f R RSpg, ra, bsq ^ f P RSpg, ra, csq X RSpg, rc, bsq (36.19)

This is actually a somewhat annoying feature of the Stieltjes integral which stems from
the fact that, for g with jumps, we may not be able to refine partition intervals so that the
increment over each of them is small. This is partially fixed in:

Definition 36.7 (Generalized Stieltjes integrability) We say that f : ra, bs Ñ R is gener-
alized Stieltjes integrable with respect to g : ra, bs Ñ R if there is L P R for each e ° 0
there is d ° 0 and an (unmarked) partition Pe such that for all partitions P

Pe Ñ P ^ }P} † d ñ

ˇ̌
Sp f , dg, Pq ´ L

ˇ̌
† e (36.20)

Here Pe Ñ P means that the partition points of P include all the partition points of Pe.

Note that we can restrict Pe and d to }Pe} † d, which then forces }P} † d as soon as
Pe Ñ P. The reference to d is thus redundant and we can leave it out altogether. The re-
sulting integral is called the Moore-Pollard-Stieltjes integral by some authors. While, with
these generalizations, the integral becomes additive in the underlying domain, this is not
such an important improvement and so we will stick to the definition used previously
because it makes the proofs somewhat easier.
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