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38. LEBESGUE AND HENSTOCK-KURZWEIL INTEGRALS

Here we wrap up the discussion of Riemann’s approach to integration. We first go over
some shortcomings of Riemann integration theory and then offer glimpse into more
advanced integration theories that address these better.

38.1 Shortcomings of the Riemann integral.

Let us return to the Riemann integral and review some of the advanced aspects, and
shortcomings, of the theory. One unpleasant limitation of the Riemann integral is the
requirement of boundedness, both for the integrated function and the underlying do-
main. This prevents us from integrating functions with divergences at the endpoints of
integration domain directly, or to integrate over unbounded domains. This is usually
fixed by taking more limits:

Definition 38.1 (Improper integral) Let f : pa, bs Ñ R be Riemann integrable on ra1, bs

for any a1
P pa, bq. The improper Riemann integral on ra, bs is then defined by

lim
a1Ña`

ª b

a1
f pxqdx (38.1)

whenever the limit exists. A similar definition applies to the upper limit of integration
and the limits a Ñ ´8 and b Ñ `8.

Using this concept we can evaluate integrals
ª 1

0

1
?

x
dx :“ lim

aÑ0`

ª 1

a

1
?

x
dx “ lim

aÑ0`
2
?

x
ˇ̌
ˇ
1

a
“ lim

aÑ0`
2r1 ´ as “ 2 (38.2)

where we use the FTCII along with the fact that x fiÑ 2
?

x is an antiderivative of x fiÑ
1?
x ,

as well as integrals such as
ª 1

0

sinp1{xq

x
dx :“ lim

aÑ0`

ª 1

a
x

d
dx

cosp1{xqdx

“ lim
aÑ0`

x cosp1{xq

ˇ̌1
a´ lim

aÑ0`

ª 1

a
cosp1{xqdx

“ cosp1q ´

ª 1

0
cosp1{xqdx

(38.3)

where we used integration by parts and then the fact that x fiÑ cosp1{xq is Riemann
integrable on r0, 1s. Similarly, for the so called Fresnel integral we get

ª 8

0
sinpx2

qdx :“ lim
bÑ8

ª b

0
sinpx2

qdx “ lim
bÑ8

ª b

0

sinptq
2
?

t
dt

“ lim
NÑ8

Nÿ

n“0

ª 2ppn`1q

2pn

sinptq
2

?
t

dt,
(38.4)

where use use the Substitution rule and then rewrote the general limit b Ñ 8 as the
limit along the naturals (this uses that the function decays to zero). Using the the fact
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that sinpt ` pq “ ´ sinptq we get
ª 2ppn`1q

2pn

sinptq
?

t
dt “

ª p

0
sinptq

” 1
?

2pn ` t
´

1
?

2pn ` p ` t

ı
dt. (38.5)

Elementary manipulations now show
ˇ̌
ˇ

1
?

2pn ` t
´

1
?

2pn ` p ` t

ˇ̌
ˇ §

2p

2p2pnq3{2 “
1

?

8p

1
n3{2 , (38.6)

thus bounding the integral in (38.5) by 1?
8p

n´3{2. It follows that the limit on the right of
(38.4) exists. (The limit value of the integral is actually known to be

a
p{8.)

There is also a suitable limit procedure to address functions that have singularities
inside the integration domain. Still, the need to take a limit (and exchange it with other
limits if that is desired) means that improper integrals are sensitive to further manipula-
tions and working with them is not always easy.

Another deficiency of the Riemann integral is the behavior of the integral when inte-
grands converge to a function. As we noted after (37.25) and will expand on later, the
Riemann integral is well adapted to uniform convergence, but not so much when the
convergence is just pointwise. Indeed, as the example of the Dirichlet function shows, a
pointwise limit of Riemann integrable functions need not be Riemann integrable. As it
turns out, lack of integrability of the limit function is pretty much the only obstacle:

Theorem 38.2 (Osgood’s Bounded Convergence Theorem) Let t fnunPN be Riemann inte-
grable functions on ra, bs satisfying

Dc P p0, 8q @n P N @x P ra, bs :
ˇ̌
fnpxq

ˇ̌
§ c (38.7)

and
@x P ra, bs : f pxq :“ lim

nÑ8 fnpxq exists (38.8)

Then

f Riemann integrable ñ lim
nÑ8

ª b

a
fnpxqdx “

ª b

a
f pxqdx. (38.9)

Proof. Assume that f is Riemann integrable and, for each n P N, define hn : ra, bs Ñ R by
hnpxq :“ fnpxq ´ f pxq. Then thnpxqunPN are Riemann integrable with limnÑ8 hnpxq “ 0.
Our aim is to show that

lim
nÑ8

ª b

a
hnpxqdx “ 0 (38.10)

We proceed by contradiction. If (38.10) fails, then
≥b

a hnpxqdx and thus also
≥b

a |hnpxq|dx
stay outside an open interval containing the origin for infinitely many n P N. Assuming,
without loss of generality, that this happens for all n P N, we need to show that

h :“ inf
nPN

ª b

a

ˇ̌
hnpxq

ˇ̌
dx ° 0 (38.11)

is incompatible with hnpxq Ñ 0 for all x P ra, bs.
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Assume (38.11) is TRUE. The definition of the integral implies that, for each n P N

there is dn ° 0 such that for each marked partition P of ra, bs with }P} † dn we have

R
`
|hn|, P

˘
•

1
2

h. (38.12)

Replacing dn by min0§k§n dk we may assume that tdnunPN is non-increasing. Setting
mn :“ inftk P N : 2kdn ° b ´ au, denoting tn

i :“ a ` 2´mn ipb ´ aq which we note obeys
tn
i ´ tn

i´1 † dn for all i “ 1, . . . , mn, and optimizing over the marked point in rti´1, tis

turns (38.12) into

@n P N :
mnÿ

i“1

´
inf

xPrtn
i´1,tn

i s

ˇ̌
hnpxq

ˇ̌¯
ptn

i ´ tn
i´1q •

h

2
(38.13)

Denote

In :“
"

i “ 1, . . . , mn : inf
xPrtn

i´1,tn
i s

ˇ̌
hnpxq

ˇ̌
°

h

4pb ´ aq

*
(38.14)

Then
mnÿ

i“1

´
inf

xPrtn
i´1,tn

i s

ˇ̌
hnpxq

ˇ̌¯
ptn

i ´ tn
i´1q

§

´
sup

xPra,bs

ˇ̌
hnpxq

ˇ̌¯ ÿ

iPIn

ptn
i ´ tn

i´1q `
h

4pb ´ aq

ÿ

iRIn

ptn
i ´ tn

i´1q

(38.15)

along with (38.13) and the fact that the last sum is at most b ´ a show

@n P N :
ÿ

iPIn

ptn
i ´ tn

i´1q •
h

4 ` 8c
, (38.16)

where we used that |hnpxq| § 2c thanks to (38.7–38.8). We now need:

Lemma 38.3 (Arzelà) Let a † b be reals and, for each n P N, let tJn,ku
rn
k“0 be a finite collection

of disjoint open intervals in pa, bq such that

Dh1
° 0 @n P N :

rnÿ

k“0

lengthpJn,kq • h1 (38.17)

Then
£

nPN

§

m•n

rn§

k“0

Jn,k ‰ H (38.18)

Deferring the proof of this lemma until after this proof is finished, we apply it for the
choices rn :“ |In| and tJn,ku

rn
k“0 being the intervals tptn

i´1, tn
i q : i P Inu. The definition of In

implies, for each x P ra, bs,

x P

£

nPN

§

m•n

§

iPIn

ptn
i´1, tn

i q ñ lim sup
nÑ8

ˇ̌
hnpxq| •

h

4pb ´ aq
(38.19)

and so, with the help of Lemma 38.3, (38.16) contradicts the assumption that hnpxq Ñ 0
as n Ñ 8 for all x P ra, bs. It follows that (38.10) holds after all. ⇤

It remains to give:
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Proof of Lemma 38.3 (modulo facts from measure theory). We will give only the main steps
of the proof assuming the following fact: If tJiuiPN are (possibly empty) open intervals
in pa, bq and tInunPN are (possibly empty) disjoint open intervals in pa, bq, then

§

nPN

In Ñ

§

iPN

Ji ñ

ÿ

nPN

lengthpInq §

ÿ

iPN

lengthpJiq (38.20)

A proof of this uses arguments from measure theory (see Subsection 38.2 below) which
we do not want to go into here.

Moving to the actual proof, for each n P N, let tJn,ku
rn
k“0 be open intervals such that

(38.17) hold. Denote

On :“
§

m•n

rn§

k“0

Jn,k (38.21)

Then On is an open subset of pa, bq and so there exists a family tIn,iuiPN of disjoint open
(or empty) subintervals of pa, bq such that On “

î
iPN In,i. Using (38.20) we then get

b ´ a •

ÿ

iPN

lengthpIn,iq •

rnÿ

k“0

lengthpJn,kq • h1. (38.22)

The fact that the first sum is finite implies the existence of in P N such that
ÿ

i°in

lengthpIn,iq § 2´n´3h1 (38.23)

Now let I1
n,i Ñ In,i be a closed interval centered at the same point as In,k and length

lengthpI1
n,iq “ lengthpIn,iq ´ 2´n´i´4h1 (38.24)

whenever the right-hand side is positive and In,i1 “ H otherwise. Define

Cn :“
n£

m“0

im§

i“0

I1
m,i (38.25)

Being the intersection of finite unions of closed intervals, Cn is closed and Cn`1 Ñ Cn
holds for each n P N.

Next observe that

On r Cn “

n§

m“0

˜´ §

i°im

Im,i

¯
Y

´ im§

i“0

pIm,i r I1
m,iq

¯¸
(38.26)

The total length of the intervals on the right is bounded by
nÿ

m“0

ÿ

i°im

lengthpIm,iq `

nÿ

m“0

imÿ

i“0

“
lengthpIm,iq ´ lengthpI1

m,iq
‰

§

nÿ

m“0
2´m´3h1

`

nÿ

m“0
2´m´4

inÿ

i“0

h12´i
§

1
2

h1
(38.27)

Since both On and On rCn are countable unions of open intervals, Cn “ H with the help
of (38.20) and (38.21–38.22) would force the total length of the intervals constituting
On r Cn to be at least h1. From (38.27) we thus conclude Cn ‰ H for all n P N.
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Since tCnunPN are non-empty, closed and nested subsets of ra, bs, the Cantor inter-
section property implies

ì
nPN Cn ‰ H. But Cn Ñ On for each n P N and so we also

have
ì

nPN On ‰ H, which is the desired claim. ⇤
One of the basic applications of Osgood’s theorem is the continuity of integrals with

respect to an underlying parameter:

Corollary 38.4 Let I Ñ R be an open interval and f : ra, bs ˆ I Ñ R such that
(1) for all x P ra, bs, the function a fiÑ f px, aq is continuous, and
(2) for all a P I, the function x fiÑ f px, aq is Riemann integrable.

Assume in addition that
sup
aPI

sup
xPra,bs

ˇ̌
f px, aq

ˇ̌
† 8 (38.28)

Then h : I Ñ R defined by hpaq :“
≥b

a f px, aqdx is continuous on I.

Proof. Let a P I and tanunPN P IN be such that an Ñ a. Set gn :“ f p¨, anq and g :“ f p¨, aq.
Then hn Ñ h pointwise by (1) with gn and h Riemann integrable by (2). As the functions
are also bounded, Theorem 38.2 implies hpanq Ñ hpaq. By sequential characterization of
continuity, this implies that h is continuous at a. ⇤

A similar theorem can then be derived for differentiation of the integral with respect
to this parameter. However, as this involves functions of more than one variable, this
will be treated only if and when we get to multivariate calculus.

38.2 Lebesgue integral.

These aforementioned shortcomings of Riemann’s theory provided the important moti-
vation for the creation of more advanced theory of Lebesgue integral. The main novelty,
going perhaps back to the Cavalieri principle, is that instead of partitioning the domain
of f , we partition the range of f — say, into intervals of the form tr

k
n , k`1

n q : k P Zu —
and use the preimage map to approximate the “area under the graph of f ” by

ÿ

kPZ

k
n

length
´

f ´1`
r

k
n , k`1

n q
˘¯

(38.29)

instead of the Riemann sums. (Note that the sum is effectively finite as soon as f is
bounded.) However, this “minor” change requires us to first develop a robust theory of
“length” for sets that are more complicated than just intervals or finite unions thereof.
The resulting measure theory is the subject of early graduate Analysis courses.

We have already encountered some aspects of measure theory above and also in the
discussion of sets of zero length. Indeed, a natural way to extend the notion of the length
to all subsets of R via

l‹
pAq :“ inf

# 8ÿ

i“0

lengthpInq : tInunPN open intervals ^ A Ñ

§

nPN

In

+
(38.30)

(Calling A zero length just meant l‹
pAq “ 0.) Unfortunately, the map l‹ : PpAq Ñ r0, 8s

lacks a very reasonable property which is factorization under complements. Namely, for
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A Ñ B bounded, we would like to have

l‹
pAq ` l‹

pB r Aq “ l‹
pBq (38.31)

but this fails in general because, roughly speaking, the boundary of A may be counted
twice on the left-hand side. A solution is to identify a suitable subset of PpRq for which
this factorization holds. The resulting “special” sets are then called measurable.

As it turns out, the collection of measurable sets is closed under countable unions
and complements. Moreover, the function l‹ acts additively on countable unions of dis-
joint measurable sets which makes the restriction of l‹ to the measurable sets a measure.
Functions that preimage intervals into measurable sets are called measurable functions; as
it turns out, if a measurable function is also bounded then the sums in (38.29) converge
as n Ñ 8 and define the Lebesgue integral. However, boundedness is not required:
measurable functions for which the limit exists are called Lebesgue integrable.

The measure theoretic approach to integration turns out to be extremely versatile al-
lowing us to integrate real-valued functions over far more complicated sets than just
the reals; e.g., over subsets of Rd, spaces of functions, linear operators, graphs, met-
ric spaces, etc. In spite of this generality, even that theory is not void of shortcomings
that we saw for the Riemann integral. Indeed, while handling quite properly pointwise
convergence, the Fundamental Theorem of Calculus, part II, still fails to hold without
additional provisos — namely, the derivative has to be absolutely integrable. (This inte-
grals in (38.3) and (38.4) thus do not exist in Lebesgue theory either.)

Other approaches to integration have therefore been considered, e.g., by Saks, Perron,
Ward, and Lusin culminating in the work of J. Kurzweil and, independently, R. Henstock
that we will discuss next.

38.3 Henstock-Kurzweil integral.

Suppose we put ourselves to the task of extending the Riemann integral to a larger class
of functions while preserving the framework that extracts the integral as a limit of sorts
of Riemann sums over marked partitions. In order to allow for unbounded functions,
we clearly cannot work with arbitrary marked points but have to allow only those that
lie in partition intervals of small-enough size. This leads to the following concept:

Definition 38.5 (Gauge function and associated partitions) Let a † b be reals. Given
function g : ra, bs Ñ p0, 8q, referred to as gauge function in this context, a marked parti-
tion P “ pttiu

n
i“0, tt‹

i u
n
i“1q of ra, bs is said to be g-fine if

@i “ 1, . . . , n : rti´1, tis Ñ
“
t‹
i ´ gpt‹

i q, t‹
i ` gpt‹

i q
‰
. (38.32)

We will now examine the Riemann sums over partitions that are g-fine for a given
gauge function g. However, for this we need to know that each gauge function admits
at least one marked partition of this kind. This will follow from:

Theorem 38.6 (P. Cousin, 1895) Let a † b be reals and let that I be a collection of non-
degenerate closed subintervals of ra, bs with the following property: For each x P ra, bs there
is d ° 0 such that all non-degenerate closed intervals rc, ds satisfying

rc, ds Ñ ra, bs ^ x P rc, ds ^ d ´ c † d (38.33)
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belong to I . Then there is a partition of ra, bs consisting only of intervals in I , i.e., that there are
a “ t0 † t1 † ¨ ¨ ¨ † tn “ b satisfying

@i “ 1, . . . , n : rti´1, tis P I (38.34)

The proof of Cousin’s theorem is left to a homework exercise. Given a gauge func-
tion g : ra, bs Ñ p0, 8q, the set

I :“
§

tPra,bs

 
rc, ds X ra, bs : t ´ gptq § c † d § t ` gptq

(
(38.35)

contains all intervals that can possibly appear in g-fine partitions of ra, bs. That one such
partition actually exists is a restatement of (38.34).

We remark that Cousin’s motivation for this result was to extend the Heine-Borel
theorem from countable covers to arbitrary covers. However, as the wiki page on this
result points out: “. . . Pierre Cousin did not receive any credit. Cousin’s theorem was
generally attributed to H. Lebesgue as the Borel-Lebesgue theorem. Lebesgue was aware
of this result in 1898, and proved it in his 1903 dissertation.”

Returning to our main line of thought, we now put forward:

Definition 38.7 (Henstock-Kurzweil integral) A function f : ra, bs Ñ R is said to be
Henstock-Kurzweil integrable if

DL P R @e ° 0 Dg P p0, 8q
ra,bs

@P “ g-fine partition :
ˇ̌
Rp f , Pq ´ L

ˇ̌
† e. (38.36)

The quantity L, which is unique if exists at all, is the Henstock-Kurzweil integral.

Note that for a constant gauge function, the Henstock-Kurzweil integral degenerates
to the Riemann integral and so

f Riemann integrable on ra, bs ñ f Henstock-Kurzweil integrable on ra, bs (38.37)

But there are many functions for which the reverse implication fails. The most elemen-
tary example is that of the Dirichlet function 1Q which we have shown is not Riemann
integrable. Yet we have:

Lemma 38.8 For all a † b real, the Dirichlet function 1Q is Henstock-Kurzweil interable
on ra, bs and

≥b
a 1Qpxqdx “ 0.

Proof. Let a † b. Fix e ° 0 and let tqnunPN enumerate all rationals in ra, bs. Define

gptq :“

#
e2´n, if t “ qn for some n P N,
1, if t P ra, bs r Q.

(38.38)

Then for any g-fine partition P “ pttiu
n
i“0, tt‹

i u
n
i“1q of ra, bs,

ˇ̌
Rp f , Pq

ˇ̌
§

nÿ

i“1

1Qpt‹
i q|ti ´ ti´1| §

nÿ

i“1

1Qpt‹
i q2gpt‹

i q §

8ÿ

n“0
e2´n`1

“ 4e (38.39)

where the first inequality is the triangle inequality for the absolute value, the second
inequality follows from (38.32) and the third inequality from the definition of g. This
proves that (38.36) holds with L :“ 0. ⇤
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In order to demonstrate the strength of the Henstock-Kurzweil integration theory, we
now show that the second Fundamental Theorem of Calculus holds in this theory with
no provisos on the derivative:

Theorem 38.9 (FTCII for Henstock-Kurzweil integral) Let f : ra, bs Ñ R be continuous
on ra, bs and differentiable on pa, bq. Choosing f 1

paq and f 1
pbq arbitrarily, f 1 is then Henstock-

Kurzweil integrable on ra, bs and
ª b

a
f 1

pxqdx “ f pbq ´ f paq (38.40)

Proof. For each t P pa, bq, the existence of f 1
ptq shows that

gptq :“
1
2

sup

#
d P p0, 1q : sup

xPra,bs
0†|x´t|†d

ˇ̌
ˇ̌ f pxq ´ f ptq

x ´ t
´ f 1

ptq
ˇ̌
ˇ̌ †

e

b ´ a

+
(38.41)

is positive and finite. Choosing f 1
paq and f 1

pbq arbitrarily, set also

gpaq :“ min

#
1

b ´ a
e

1 ` | f 1paq|
,

1
2

sup
!

d P pb ´ aq : sup
xPra,a`ds

ˇ̌
f pxq ´ f paq| †

e

b ´ a

)+

(38.42)
and similarly

gpbq :“ min

#
1

b ´ a
e

1 ` | f 1paq|
,

1
2

sup
!

d P pb ´ aq : sup
xPrb´d,bs

ˇ̌
f pxq ´ f paq| †

e

b ´ a

)+

(38.43)
for each t, x P ra, bs we then have

x P
“
t ´ gptq, t ` gptq

‰
ñ

ˇ̌
f pxq ´ f ptq ´ f 1

ptqpt ´ xq

ˇ̌
†

2e

b ´ a
|x ´ t| (38.44)

Let P “ pttiu
n
i“0, tt‹

i u
n
i“1q be a g-fine partition of ra, bs. Then the same calculation as in

the proof of Theorem 35.7 shows

ˇ̌
f pbq ´ f paq ´ Rp f 1, Pq

ˇ̌
§

nÿ

i“1

ˇ̌
f ptiq ´ f pti´1q ´ f 1

pt‹
i qpti ´ ti´1q

ˇ̌

§

nÿ

i“1

ˇ̌
f ptiq ´ f pt‹

i q ´ f 1
pt‹

i qpti ´ t‹
i q

ˇ̌
`

nÿ

i“1

ˇ̌
f pti´1q ´ f pt‹

i q ´ f 1
pt‹

i qpti´1 ´ t‹
i q

ˇ̌

§

nÿ

i“1

2e

b ´ a
pti ´ t‹

i q `

nÿ

i“1

2e

b ´ a
pt‹

i ´ ti´1q “
4e

b ´ a

nÿ

i“1

pti ´ ti´1q “ 4e

(38.45)

It follows that f 1 is Henstock-Kurzweil integrable with
≥b

a f 1
pxqdx “ f pbq ´ f paq. ⇤

Every Henstock-Kurzweil integrable function is measurable, but the Henstock-Kurz-
weil integral is actually slightly more general than the Lebesgue integral. Indeed:

Theorem 38.10 A function f : ra, bs Ñ R is Lebesgue integrable on ra, bs if and only if f
and | f | are Henstock-Kurzweil integrable.
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The function x fiÑ
sinp1{xq

x treated in (38.3) using the improper Riemann integral is
(properly) Henstock-Kurzweil integrable yet (not being absolutely integrable) it is not
Lebesgue integrable. This is because in Lebesgue’s theory of integration, a measurable f
is integrable if and only if | f | is integrable. That being said, the Lebesgue theory is supe-
rior in its generality of the underlying space which is why it is the dominant integration
theory used throughout mathematics.
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