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31. RIEMANN INTEGRAL

An important early achievement of the rigorous approach to mathematics in mid 19th
century was the definition of (what we now call) the Riemann integral. We will follow
the original ideas of Riemann while the textbook focuses on the approach due to Dar-
boux which, as we will also show, is equivalent to Riemann’s. Both approaches have
their own merit on their own as well as in various extensions.

31.1 Area under a curve.

The concept of an integral was first introduced by Newton and Leibnitz in their treat-
ments of differential and integral calculus. The idea was to express the area under the
graph of a function by adding areas of infinitesimal rectangles. Riemann formalized this
precisely using the following concepts:

Definition 31.1 (Marked partition and Riemann sum) Let a † b be reals. A marked
partition P of interval ra, bs is a pair of sequences ttiu

n
i“0 and tt‹

i u
n
i“1 such that

a “ t0 † t1 † ¨ ¨ ¨ † tn´1 † tn “ b (31.1)

and
@i “ 1, . . . , n : t‹

i P rti´1, tis (31.2)
The mesh of P is then defined as

}P} :“ max
i“1,...,n

|ti ´ ti´1| (31.3)

Given a function f : ra, bs Ñ R,

Rp f , Pq :“
nÿ

i“1

f pt‹
i qpti ´ ti´1q (31.4)

is the Riemann sum associated with marked partition P of interval ra, bs.

The quantity f pt‹
i qpti ´ ti´1q represents the area of a rectangle with base rti´1, tis and

height f pt‹
i q. (This really applies only if f pt‹

i q ° 0; if this value is negative, we get the
negative area.) The Riemann sum Rp f , Pq is then the aggregate area of these rectangles
which we can then also think of as the area under the piece-wise constant curve that has
height f pt‹

i q above pti´1, tis. We then put forward:

Definition 31.2 (Riemann integrability) We say that f : ra, bs Ñ R is Riemann inte-
grable if there exists L P R such that for each e ° 0 there is d ° 0 such that for all marked
partitions P of ra, bs,

}P} † d ñ

ˇ̌
Rp f , Pq ´ L

ˇ̌
† e (31.5)

The logical proposition “@e ° 0 Dd ° 0 @P “ marked partition : (31.5) holds” will at
times be abbreviated as

lim
}P}Ñ0

Rp f , Pq “ L (31.6)

while noting that this is not a limit in the sense used earlier (although it can be phrased
as convergence of nets). Notwithstanding, exactly the same argument as for limits can
be used to show that L above is unique, if it exists:
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Lemma 31.3 If the property in Definition 31.2 holds for L and L1, then L “ L1.

Proof. Fix e ° 0 and let d ° 0 be such that }P} † d implies |Rp f , Pq ´ L| † e. Similarly,
let d1

° 0 be such that }P} † d1 implies |Rp f , Pq ´ L| † e. Since a marked partition P
exists such that both }P} † d and }P} † d1, we thus have

|L ´ L1
| §

ˇ̌
Rp f , Pq ´ L

ˇ̌
`

ˇ̌
Rp f , Pq ´ L1 ˇ̌

† 2e. (31.7)

As this holds for all e ° 0, we have L “ L1. ⇤
The uniqueness justifies introduction of a special symbol:

Definition 31.4 (Riemann integral) Given reals a † b and a function f : ra, bs Ñ R, the
Riemann integral of f on interval ra, bs is defined as

ª b

a
f pxqdx :“ lim

}P}Ñ0
Rp f , Pq (31.8)

whenever f is Riemann integrable on ra, bs.

We will write “ f RI” to denote the phrase “ f is Riemann integrable” whenever con-
densed notation is desired. The convention

b † a ñ

ª a

b
f ptqdt :“ ´

ª b

a
f ptqdt (31.9)

is used for convenience (and because it works nicely in manipulations that we will con-
sider later and fits a corresponding property of the Stieltjes integral).

We note that the above concepts were known already to Newton and Leibnitz who
also understood that one has to take the mesh of P to zero in order to approximate
the area under the graph of f better and better. When the notion of a limit became
understood precisely, attempts were even made (for instance, by Cauchy who worked
with continuous functions) to come up with conditions on f that would guarantee that
such approximations converged. Riemann’s approach is qualitatively different in that,
instead of trying to establish the convergence under increasingly relaxed conditions on
the regularity of f , he made integrability a regularity property in its own right.

31.2 Linearity and additivity.

It is easy to check that constant functions are Riemann integrable so the above theory is
not vacuous. In order to demonstrate the use of Riemann integrability properly, let us
prove some basic properties of the Riemann integral. We start with:

Lemma 31.5 (Linearity) Let a † b be reals and assume that f , g : ra, bs Ñ R are Riemann
integrable on ra, bs. Then for all a, b P R, also a f ` bg is Riemann integrable on ra, bs and

ª b

a

`
a f pxq ` bgpxq

˘
dx “ a

ª b

a
f pxqdx ` b

ª b

a
gpxqdx (31.10)

Proof. Let a, b P R be fixed and f , g be RI on ra, bs. Fix e ° 0. Then the RI of f ensures
existence of d ° 0 be such that for all marked partitions P of ra, bs,

}P} † d ñ

ˇ̌
ˇRp f , Pq ´

ª b

a
f pxqdx

ˇ̌
ˇ †

e

1 ` |a| ` |b|
(31.11)
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and let d1
° 0 be such that for all marked partitions P of ra, bs,

}P} † d1
ñ

ˇ̌
ˇRpg, Pq ´

ª b

a
gpxqdx

ˇ̌
ˇ †

e

1 ` |a| ` |b|
(31.12)

Since the definition (31.4) implies

R
`
a f ` bg, Pq “ aRp f , Pq ` bRpg, Pq (31.13)

whenever P is such that }P} † mintd, d1
u, the triangle inequality shows

ˇ̌
ˇ̌R

`
a f ` bg,Pq ´ a

ª b

a
f pxqdx ´ b

ª b

a
gpxqdx

ˇ̌
ˇ̌

“

ˇ̌
ˇ̌a

”
Rp f , Pq ´

ª b

a
f pxqdx

ı
` b

”
Rpg, Pq ´

ª b

a
gpxqdx

ıˇ̌
ˇ̌

§ |a|

ˇ̌
ˇ̌Rp f , Pq ´

ª b

a
f pxqdx

ˇ̌
ˇ̌ ` |b|

ˇ̌
ˇ̌Rpg, Pq ´

ª b

a
gpxqdx

ˇ̌
ˇ̌

†
`
|a| ` |b|

˘ e

1 ` |a| ` |b|
† e

(31.14)

As this holds for all e ° 0, we have proved that a f ` bg is RI and

lim
}P}Ñ0

R
`
a f ` bg, Pq “ a

ª b

a
f pxqdx ` b

ª b

a
gpxqdx (31.15)

This is the desired claim. ⇤
Another well-known property of the integral concerns the its additivity under subdi-

vision of ra, bs. This is the content of:

Lemma 31.6 (Additivity) Let a † c † b be reals and let f : ra, bs Ñ R. Then

f RI on ra, bs ô f RI on ra, cs ^ f RI on rc, bs (31.16)

and when both (equivalent) statements are TRUE, then
ª b

a
f pxqdx “

ª c

a
f pxqdx `

ª b

c
f pxqdx (31.17)

Our strategy of the proof is to first show ñ in (31.16) and then prove  along with
the formula (31.17). The former requires:

Lemma 31.7 (Cauchy criterion for RI) Let f : ra, bs Ñ R. Then

f RI ô inf
d°0

sup
}P},}P1}†d

ˇ̌
Rp f , Pq ´ Rp f , P1

q

ˇ̌
“ 0 (31.18)

where P and P1 on the right denote marked partitions of ra, bs.

Leaving the easy proof to homework, we now show:
Proof of ñ in (31.16). Assume f is RI on ra, bs. Pick e ° 0 and let d ° 0 be such that
the supremum in (31.18) is less than e. Now pick any marked two partitions P1 and P1

1
of ra, cs and any marked partitions P2 and P1

2 of rc, bs, all with mesh less than d. Rela-
beling if necessary we may assume that

Rp f , P1q § Rp f , P1
1q ^ Rp f , P2q § Rp f , P1

2q (31.19)
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Now let P be the marked partition of ra, bs obtained by concatenating P1 and P2 and
let P1 be the marked partition of ra, bs obtained by concatenating P1 and P1

2. (Tech-
nically, if P1 “ ptuiu

n
i“0, tu‹

i u
n
i“1q and P1 “ ptviu

m
i“0, tv‹

i u
m
i“0q then P is the partition

P “ pttiu
n`m
i“0 , tt‹

i u
n`m
i“0 q where ti :“ ui and t‹

i :“ u‹
i for i § n and tn`j :“ vj and t‹

n`j :“ v‹
j

for j § m.) Then

Rp f , Pq “ Rp f , P1q ` Rp f , P2q ^ Rp f , P1
q “ Rp f , P1

1q ` Rp f , P1
2q (31.20)

and so

0 § Rp f , P1
1q ´ Rp f , P1q ` Rp f , P1

2q ´ Rp f , P2q “ Rp f , P1
q ´ Rp f , Pq † e (31.21)

where the last bound follow from the fact that }P} “ maxt}P1}, }P2}u † d and similarly
}P1

} “ maxt}P1
1}, }P1

2}u † d.
In light of (31.20), hereby we concluded that, once the marked partitions P1 and P1

1
of ra, cs and marked partitions P2 and P1

2 of rc, bs have mesh less than d, then
ˇ̌
Rp f , P1

1q ´ Rp f , P1q

ˇ̌
ˇ † e ^ Rp f , P1

2q ´ Rp f , P2q † e (31.22)

Thanks to (31.18), this proves that f is RI on both ra, cs and rc, bs as claimed. ⇤
In order to address the reverse implication in (31.16), we need:

Lemma 31.8 Let f : ra, bs Ñ R. Then

f RI on ra, bs ñ f bounded on ra, bs (31.23)

In particular, if f isRiemann integrable on ra, bs, then
ˇ̌
ˇ̌
ª b

a
f ptqdt

ˇ̌
ˇ̌ §

´
sup

xPra,bs

ˇ̌
f pxq

ˇ̌¯
|b ´ a| (31.24)

Proof. Suppose f is Riemann integrable. Then there is d ° 0 such that for any marked
partition P with }P} † d, the triangle inequality shows

ˇ̌
Rp f , Pq

ˇ̌
§

ˇ̌
ˇ
ª b

a
f pxqdx

ˇ̌
ˇ ` 1 (31.25)

Writing ttiu
n
i“0 for the points of the partition and tt‹

i u
n
i“1 for the marked points, another

use of the triangle inequality gives for any i “ 1, . . . , n,

ˇ̌
f pt‹

i q

ˇ̌
|ti ´ ti´1|

ˇ̌
§

ÿ

j‰i

ˇ̌
f pt‹

j q

ˇ̌
|tj ´ tj´1| `

ˇ̌
ˇ
ª b

a
f pxqdx

ˇ̌
ˇ ` 1. (31.26)

Optimizing over t‹
i , we thus get

sup
tPrti´1,tis

ˇ̌
f ptq

ˇ̌
§

1
|ti ´ ti´1|

RHS of (31.26) (31.27)

As this holds for all i “ 1, . . . , n, the function f is bounded as claimed.
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As to (31.24), observe that

ˇ̌
Rp f , Pq

ˇ̌
§

nÿ

i“1

ˇ̌
f pt‹

i q

ˇ̌
pti ´ ti´1q

§

´
sup

xPra,bs

ˇ̌
f pxq

ˇ̌¯ nÿ

i“1

pti ´ ti´1q “

´
sup

xPra,bs

ˇ̌
f pxq

ˇ̌¯
pb ´ aq

(31.28)

Using (31.8), this now extends to the Riemann integral. ⇤
We are now ready to give:

Proof of Lemma 31.6. The direction ñ in (31.16) has been proved above, so we only need
to show ñ and prove the formula (31.17). Assume f to be RI on ra, cs and rc, bs and
fix e ° 0. Then there exist d1, d2

° 0 such that if P1 is a partition of ra, cs with }P1
} † d1

and P2 is a partition of rc, bs with }P2
} † d2 then

ˇ̌
ˇRp f , P1

q ´

ª c

a
f pxqdx

ˇ̌
ˇ † e ^

ˇ̌
ˇRp f , P2

q ´

ª b

c
f pxqdx

ˇ̌
ˇ † e (31.29)

(The intervals the Riemann sums are over are clear from the partition.)
Let now P be a marked partition of ra, bs with }P} † mintd1, d2

u. If P contains c
(in the sequence defining partition points), then P splits into two marked partitions, P1

and P2 of ra, cs and rc, bs, respectively, and we have

Rp f , Pq “ Rp f , P1
q ` Rp f , P2

q. (31.30)

It follows that
ˇ̌
ˇ̌Rp f , Pq ´

ª c

a
f pxqdx ´

ª b

c
f pxqdx

ˇ̌
ˇ̌

§

ˇ̌
ˇ̌Rp f , P1

q ´

ª c

a
f pxqdx

ˇ̌
ˇ̌ `

ˇ̌
ˇ̌Rp f , P2

q ´

ª b

c
f pxqdx

ˇ̌
ˇ̌ † 2e (31.31)

The problem is that this bound is restricted to partitions containing c.
Consider now a marked partition rP of ra, bs that does NOT contain c and let rti´1, tis

be the unique interval in this partition such that c P pti´1, tiq. Let P be the partition
obtained by adding c to rP and the marked points u‹

P rti´1, cs and v‹
P rc, tis. Then

Rp f , Pq ´ Rp f , rPq “ f pt‹
i qpti ´ ti´1q ´ f pu‹

qpc ´ ti´1q ´ f pv‹
qpti ´ cq (31.32)

and, since by Lemma 31.8 f is bounded on ra, cs and rc, bs and thus on ra, bs,
ˇ̌
Rp f , Pq ´ Rp f , rPq

ˇ̌
§ 3

´
sup

xPra,bs

ˇ̌
f pxq

ˇ̌¯
}P}. (31.33)

Let d be such that

0 † d † mintd1, d2
u ^ 3d

´
sup

xPra,bs

ˇ̌
f pxq

ˇ̌¯
† e (31.34)
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If } rP} † d, then (31.31) and (31.33) (along with the fact that }P} § } rP}) show
ˇ̌
ˇ̌Rp f , rPq ´

ª c

a
f pxqdx ´

ª b

c
f pxqdx

ˇ̌
ˇ̌

§

ˇ̌
Rp f , Pq ´ Rp f , rPq

ˇ̌
`

ˇ̌
ˇ̌Rp f , Pq ´

ª c

a
f pxqdx ´

ª b

c
f pxqdx

ˇ̌
ˇ̌ § 3e (31.35)

This proves the implication ñ in (31.16) and shows (31.17) as well. ⇤
We note that the fact that Riemann integrability requires boundedness is actually the

first sign of problems with the whole concept. Indeed, the function f pxq :“ 1?
x is not

Riemann integrable on r0, 1s while (as we will show later) it is Riemann integrable on
ra, 1s for any a P p0, 1q with a well defined limit as a Ñ 0`. This function can still
be included into the theory by using the notion of an improper integral but that then
unfortunately fails other important properties that the “proper” Riemann integral has.
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