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28. DISCONTINUITIES AND FUNCTIONS OF BOUNDED VARIATION

We will now take a closer look at functions at their points of discontinuity. Attention will
particularly be paid to monotone functions and then to functions of bounded variation.

28.1 Discontinuities of first and second kind.

We start by a concept that exist in full generality of functions on metric spaces:

Definition 28.1 Let f : X Ñ Y be a function between metric spaces X and Y and x P X
a limit point of Domp f q. We say that f has a removable singularity at x if

lim
zÑx

f pzq exists ^

´
x P Domp f q ñ lim

zÑx
f pzq ‰ f pxq

¯
(28.1)

The motivation for the name comes from Lemma 27.4 which shows that if f has a
removable singularity at x then a simple re-definition of f (if f pxq is already defined;
otherwise this is just an extension of f ) leads to a continuous function.

The remaining discussion will be restricted to functions f : R Ñ R. As should be clear
from above, having the one sided limits at x is the next best thing one can hope to have
if the full limit does not exist and/or the function is not continuous. This motivates:

Definition 28.2 (Discontinuities of 1st and 2nd kind) Let f : R Ñ R and x P intpDomp f qq.
We say that f has a discontinuity of the first kind at x if

f px`
q, f px´

q exist ^

ˇ̌
t f px´

q, f px`
q, f pxqu

ˇ̌
° 1 (28.2)

We say that f has discontinuity of the second kind at x if at least one of the limits f px`
q

and f px´
q does NOT exist.

To demonstrate these, we note:

Lemma 28.3 Let f : R Ñ R (with Domp f q “ R) be monotone. Then f px`
q and f px´

q exist
at all x P R. In particular, f has no discontinuities of the second kind.

Proof. Suppose that f is non-decreasing (otherwise take ´ f instead of f ) and let x P R.
We claim that f px`

q exists and, in fact,

f px`
q “ inf

 
f pzq : z ° x

(
(28.3)

Indeed, since f is non-decrasing, f pxq is a lower bound on every value in the set and so
the infimum exists proper in R. Writing c for the infimum, it follows that, for each e ° 0
there is z0 such that

c § f pz0q † c ` e (28.4)

Denoting d :“ z0 ´ x, the monotonicity of f then ensures that c § f pzq † c ` e holds for
all z P px, x ` dq, i.e.,

f
`
px, x ` dq

˘
Ñ pc ´ e, c ` eq (28.5)

As this applies for all e ° 0, the definition (27.26) gives f px`
q “ c as desired. The left

limit is treated analogously (or turned into the above by considering x fiÑ f p´xq). ⇤
We note that the above arguments can be bolstered to give us even the following:

Preliminary version (subject to change anytime!) Typeset: April 17, 2023



155 MATH 131BH notes

Lemma 28.4 Let f : R Ñ R be non-decreasing with Domp f q “ R. Then x fiÑ f px`
q is right

continuous while x fiÑ f px´
q is left continuous with both non-decreasing. Moreover,

@x P R : f px´
q § f pxq § f px`

q (28.6)

while
@x, y P R : x † y ñ f px`

q § f py´
q (28.7)

We leave a proof of this lemma to a homework exercise. In order to give an example
of a function with discontinuities of the second kind, consider the Dirichlet function 1Q

defined in (27.11) that fails to have one-sided limits at every point of R. A slightly
more subtle example is the function h from (26.14) extended by zero to p´8, 0s that has
discontinuity of the second kind at 0.

Proceeding in the discussion of monotone functions, we now observe:

Lemma 28.5 Let f : R Ñ R be monotone with Domp f q “ R. Then
 

x P R : f px`
q ‰ f px´

q
(

is finite or countable (28.8)

Proof. Assume without loss of generality that f is non-decreasing (otherwise, replace f
by ´ f ). Given a natural m ° 0 and real e ° 0, let

A1
m,e :“

 
x P p´m, mq : f px`

q ° f pxq ` e
(

(28.9)

We claim that A1
m,e is finite which we will show by proving a quantitative upper bound

on its cardinality. Let n • 1 be a natural such that

ne ° f pm`
q ´ f p´m`

q (28.10)

Define y0 :“ f p´m`
q and, for k “ 1, . . . , n, let

zk :“ z0 ` ke´1 (28.11)

Then
“

f p´m`
q, f pm`

q
‰

“

n§

k“1

rzk´1, zks (28.12)

Using that fact that x P p´m, mq implies f p´m`
q § f px´

q § f pxq § f px`
q § f pm`

q

thanks to the inequalities from Lemma 28.4, we also have

f pA1
m,eq Ñ

“
f p´m`

q, f pm`
q
‰

(28.13)

and so each z P f pAm,eq lies in one of the intervals trzk´1, zks : i “ 1, . . . , nu. This allows
us to define h : Am,e Ñ t1, . . . , nu by

hpxq :“ inf
 

k “ 1, . . . , n : f pxq P rzk´1, zks
(

(28.14)

Now consider x, y P A1
m,e with x † y. Then the inequalities from Lemma 28.4 give

e † f px`
q ´ f pxq § f pyq ´ f pxq (28.15)

which means that x and y cannot belong to the same interval rzk´1, zks. The map h is
thus an injection and so |Am,e| § n by Lemma 11.2 from 131AH notes.

A completely analogous argument (or consideration of x fiÑ f p´xq instead of x fiÑ

f pxq) proves that also the set

A2
m,e :“

 
x P p´m, mq : f pxq ° f px´

q ` e
(

(28.16)
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is finite. It now suffices to observe that
 

x P R : f px`
q ‰ f px´

q
(

“

§

m•1

§

n•1

`
A1

m,1{n Y A2
m,1{n

˘
(28.17)

because f px`
q ‰ f px´

q implies (in light of f being non-decreasing) f px`
q ° f px´

q which
in turn implies f px`

q ° f pxq _ f pxq ° f px´
q. The claim follows from the fact that a

countable union of finite sets is countable. ⇤

Remark 28.6 We note that a rather different-looking proof of Lemma 28.5 was presented
in the lecture. Indeed, we dealt directly with the set

Am,e :“
 

x P p´m, mq : f px`
q ‰ f px´q

(
(28.18)

by way of the following argument: Assume that Am,e contains distinct points x1, . . . , xn
which we label these in an increasing fashion as

x0 :“ ´m † x1 † ¨ ¨ ¨ † xn † m (28.19)

we then note the computation

ne §

nÿ

i“1

“
f px`

i q ´ f px´
i q

‰

§

nÿ

i“1

“
f px`

i q ´ f px`
i´1q

‰
“ f px`

n q ´ f p´m`
q § f pm`

q ´ f p´m`
q

(28.20)

This rules out that n ° r f pm`
q ´ f p´m`

qs{e. Unfortunately, to convert this to a proof
of cardinality, we need a mechanism to “pick” such n-tuples of points, which requires a
version of Axiom of Choice. The argument we presented in the above proof avoids that.

28.2 Functions of bounded variation.

A natural question that springs to mind is whether the above generalizes beyond mono-
tone functions. This requires introduction of a concept that will be useful in several parts
of the course later.

Definition 28.7 (Total variation) Let a † b be reals. A partition P of interval ra, bs is a
finite sequence ttiu

n
i“0 (for some n P N) such that

a “ t0 † t1 † ¨ ¨ ¨ † tn “ b. (28.21)

Given a function f : ra, bs Ñ R, for each partition P “ ttiu
n
i“0 set

VP
`

f , ra, bs
˘

:“
nÿ

i“1

ˇ̌
f ptiq ´ f pti´1q

ˇ̌
(28.22)

The total variation of f on ra, bs is then the quantity

V
`

f , ra, bs
˘

:“ sup
P

VP
`

f , ra, bs
˘
, (28.23)

where the supremum is over all partitions of ra, bs. The supremum takes values in r0, `8s.

We note that taking the supremum is natural for the following reason:
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Lemma 28.8 If P, P1 are partitions of ra, bs such that every point of (the sequence defining) P
is contained in (the sequence defining) P1, then VPp f , ra, bsq § VP1p f , ra, bsq.

We leave the proof of this fact to the reader. We now put forward:

Definition 28.9 (Functions of bounded variation) A function f : ra, bs Ñ R is of bounded
variation on ra, bs if Vp f , ra, bsq † 8.

It turns out that we have:

Lemma 28.10 Let f : R Ñ R be such that @m P N : Vp f , r´m, msq † 8. Then f has only
discontinuities of first kind and tx P R : f px`

q ‰ f px´
qu is finite or countable.

However, stating the lemma this way is a bit of a cheat. Indeed, the conclusion follows
immediately from the corresponding lemma for monotone functions and the following
result dating back to C. Jordan in 1882:

Theorem 28.11 (Jordan decomposition) Let f : ra, bs Ñ R be such that Vp f , ra, bsq † 8.
Then there exist h, g : ra, bs Ñ R such that

h,g are non-decreasing ^ @t P ra, bs : f ptq “ hptq ´ gptq (28.24)

Proof. Define h, g : ra, bs Ñ R by

hptq :“ V
`

f , ra, ts
˘

(28.25)

and
gptq :“ V

`
f , ra, ts

˘
´ f ptq (28.26)

(Proving that these take finite values requires showing that Vp f , ra, tsq † 8 which we
will do momentarily.) Then f “ h ´ g and so it suffices to show that both h and g are
non-decreasing.

Let t, t1
P ra, bs be such that t † t1. Given a partition P “ ttiu

n
i“0 of ra, ts, which

entails tn “ t, let P1 be the partition tt1
iu

n`1
i“1 such that

tn`1 :“ t1
^ @i “ 0, . . . , n : t1

i :“ ti. (28.27)

Then
V

`
f , ra, t1

s
˘

• VP1
`

f , ra, t1
s
˘

“ VP
`

f , ra, ts
˘

`

ˇ̌
f pt1

q ´ f ptq
ˇ̌

(28.28)
This means that Vp f , ra, t1

sq ´ | f pt1
q ´ f ptq| is an upper bound on VPp f , ra, tsq for every

partition P of ra, ts and so, by the definition of supremum,

V
`

f , ra, t1
s
˘

•

ˇ̌
f pt1

q ´ f ptq
ˇ̌
` V

`
f , ra, ts

˘
(28.29)

(Setting t1 :“ b shows that, indeed, Vp f , ra, tsq † 8.) Invoking | f pt1
q ´ f ptq| • 0 gives

hpt1
q “ V

`
f , ra, t1

s
˘

• V
`

f , ra, ts
˘

“ hptq (28.30)

proving that h is non-decreasing. Similarly we get

gpt1
q ´ gptq “ V

`
f , ra, t1

s
˘

´ V
`

f , ra, ts
˘

´
“

f pt1
q ´ f ptq

‰

•

ˇ̌
f pt1

q ´ f ptq
ˇ̌
´

“
f pt1

q ´ f ptq
‰

• 0
(28.31)

proving that also g is non-decreasing. ⇤
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We call any pair pg, hq of non-decreasing functions such that f “ h ´ g a Jordan de-
composition of f . As it turns out, being of bounded variation is not only sufficient for
existence of a Jordan decomposition but also necessary. Indeed, we have:

Lemma 28.12 Let g, h : ra, bs Ñ R. Then

V
`
g ` h, ra, bs

˘
§ V

`
g, ra, bs

˘
` V

`
h, ra, bs

˘
(28.32)

Moreover,
h monotone ñ V

`
h, ra, bs

˘
“

ˇ̌
hpbq ´ hpaq

ˇ̌
. (28.33)

Hence, if g and h are non-decreasing, then V
`
g ´ h, ra, bsq † 8.

We leave the proof of this lemma to the reader. Our next question is whether a Jordan
decomposition is unique. A simple answer is that it is not. Indeed, adding a constant or
even a non-decreasing function to both g and h does not change the difference of the two
while keeping the upward monotonicity of both functions. The right way to ask about
the uniqueness is thus whether there is a Jordan decomposition that cannot be further
reduced by subtracting a non-decreasing function that vanishes at a from both functions.
This is indeed possible but not without additional work. We start with:

Definition 28.13 (Positive and negative variation) Recall that, for each z P R we denote
z` :“ maxtz, 0u and z´ :“ maxt´z, 0u. Let f : ra, bs Ñ R. The positive variation of f
on ra, bs is defined by

P
`

f , ra, bs
˘

:“ sup
P

nÿ

i“1

`
f ptiq ´ f pti´1q

˘
` (28.34)

while the negative variation of f on ra, bs is defined by

N
`

f , ra, bs
˘

:“ sup
P

nÿ

i“1

`
f ptiq ´ f pti´1q

˘
´ (28.35)

Here, in both formulas, ttiu
n
i“1 is the sequence corresponding to the partition P that we

take supremum over.

We then have:

Lemma 28.14 Suppose f : ra, bs Ñ R be such that Vp f , ra, bsq † 8. Then also

P
`

f , ra, bs
˘

† 8 ^ N
`

f , ra, bs
˘

† 8 (28.36)

Moreover, we in fact have

P
`

f , ra, bs
˘

` N
`

f , ra, bs
˘

“ V
`

f , ra, bs
˘

(28.37)

and
P

`
f , ra, bs

˘
´ N

`
f , ra, bs

˘
“ f pbq ´ f paq (28.38)

Moreover, t fiÑ Pp f , ra, tsq and t fiÑ Np f , ra, tsq are non-decreasing on ra, bs.

We leave this to the homework exercise. Using this we now get:
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Theorem 28.15 (Minimal Jordan decomposition) Let f : ra, bs Ñ R be a function such that
Vp f , ra, bsq † 8. Define h0, g0 : ra, bs Ñ R by

h0ptq :“ f paq ` P
`

f , ra, bs
˘

^ g0ptq :“ N
`

f , ra, bs
˘

(28.39)

Then ph0, g0q is a Jordan decomposition of f . Moreover, if ph, gq is another Jordan decomposition
of f , then h ´ h0 and g ´ g0 are both non-decreasing.

Also the proof of this result (which uses similar manipulations as in the proof of The-
orem 28.11) is left to a homework exercise.

We close this section with a concept of arc-length, or simply length, of a curve. The
reason for bringing this up is that this concept is very similar and, in fact, superior to
that of total variation.

Definition 28.16 (Curve and length thereof, rectifiability) Let pX, rq be a metric space.
A (parametric) curve C is Ranp f q for f : I Ñ X continuous with I Ñ R being an bounded
interval. The (arc-)length of C is then defined by

`pCq :“ sup
P

nÿ

i“1

r
`

f ptiq, f pti´1
˘
, (28.40)

where the supremum is over all increasing sequences P :“ ttiu
n
i“1 from I. The (paramet-

ric) curve C is said to be rectifiable if `pCq † 8.

Since the arclength is defined using f that parametrizes C, the length of C depends
generally on the parametrization. However, this is not the case if we restrict ourselves to
injective f . Unfortunately, this also rules out that C intersects itself for which a somewhat
relaxed notion instead of injectivity is required.

We will return to the arc-lenth after we have discussed differential and integral calcu-
lus, which offers a more analytic representation of `pCq that one typically encounters in
the texts on differential geometry.
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