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35. FUNDAMENTAL THEOREM OF CALCULUS

Having developed the theory of Riemann integral, we move to the connection between
differentiation and integration known under the banner Fundamental Theorem of Cal-
culus. In Newton/Leibnitz’ theory, this connection relies on the following concept:

Definition 35.1 Let f : ra, bs Ñ R. A function F : ra, bs Ñ R is is said to be an antideriv-
ative of f , if F is continuous on ra, bs, differentiable on pa, bq and

@x P pa, bq : F1
pxq “ f pxq (35.1)

(Another name used for antiderivative is primitive function.)

We then say that, whenever a function f : ra, bs Ñ R admits an antiderivative F
on ra, bs, the Newton integral is defined by

ª b

a
f pxqdx :“ Fpxq

ˇ̌
ˇ
b

a
:“ Fpbq ´ Fpaq (35.2)

and, in particular, f is Newton-integrable if it admits an antiderivative. (Note that if
F, G : ra, bs Ñ R are antiderivatives of f on ra, bs then pF ´ Gq

1
pxq “ f pxq ´ f pxq “ 0 for

all x P pa, bq and Rolle’s Mean-Value Theorem implies that F ´ G is constant and so the
right-hand side of (35.2) is independent of the choice of the antiderivative.)

With this definition of the integral, both statements of the Fundamental Theorem of
Calculus follow readily:

d
dx

Fpxq “ f pxq ^

ª b

a
F1

pxqdx “ Fpbq ´ Fpaq (35.3)

In Newton’s integration theory, these are mathematically correct albeit not really deep
statements. Indeed, the Newton integral is basically defined to have these properties
TRUE automatically.

35.1 Differentiating the integral.

In Riemann’s integration theory, the integral is defined with no a priori connection to
the derivative and so the above become theorems that need suitable qualifiers. We start
with a question: Suppose f is Riemann integrable on ra, bs. Then Fpxq :“

≥x
a f ptqdt is

well defined for all x P ra, bs. What kind of regularity can we expect from F? We already
know that F is continuous but we can say a bit more:

Lemma 35.2 Let f : ra, bs Ñ R be Riemann integrable on ra, bs. Then F defined for all x P

pa, bs by Fpxq :“
≥x

a f ptqdt and by Fpaq :“ 0 is Lipschitz continuous on ra, bs.

Proof. Let x, y P ra, bs obey x † y. The additivity of the Riemann integral proved in
Lemma 31.6 then shows

Fpyq ´ Fpxq “

ª y

a
f ptqdt ´

ª x

a
f ptqdt “

ª y

x
f ptqdt (35.4)

By Lemma 31.8, f Riemann integrable implies that f is bounded and so
ˇ̌
Fpyq ´ Fpxq

ˇ̌
§

ˇ̌
ˇ̌
ª y

x
f ptqdt

ˇ̌
ˇ̌ §

´
sup

tPra,bs

ˇ̌
f ptq

ˇ̌¯
|y ´ x| (35.5)
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Hence F is Lipschitz continuous as claimed. ⇤
Lipschitz continuous functions are not necessarily differentiable (although they do

turn out to be differentiable at “most” points). An example of such a Lipschitz continu-
ous function is Fpxq :“ |x| for which we have

|x| “

ª x

0

´
1r0,8qptq ´ 1p´8,0qptq

¯
dt (35.6)

The only point of non-differentiability thus coincides with a discontinuity point of the
integrand. This is no coincidence in light of:

Lemma 35.3 Let f be Riemann integrable on ra, bs and set Fpxq :“
≥x

a f ptqdt. Then

@x P pa, bq : f continuous at x ñ F1
pxq exists ^ F1

pxq “ f pxq (35.7)

At x “ a the same holds if continuity is replaced by right continuity and derivative by the right
derivative, and similarly for left continuity/derivative at x “ b.

Proof. Let x P ra, bq. Then for all y P px, bq,

Fpyq ´ Fpxq ´ f pxqpy ´ xq “

ª y

x

“
f ptq ´ f pxq

‰
dt (35.8)

which implies
ˇ̌
ˇ
Fpyq ´ Fpxq

y ´ x
´ f pxq

ˇ̌
ˇ §

1
|y ´ x|

ˇ̌
ˇ̌
ª y

x

“
f ptq ´ f pxq

‰
dt

ˇ̌
ˇ̌ § sup

tPrx,ys

ˇ̌
f ptq ´ f pxq

ˇ̌
(35.9)

Assuming that f is right-continuous at x, the right-hand side tends to zero as y Ñ x`

thus proving that the right-derivative of F at x equals f pxq. The left-derivative at x P

pa, bs is handled similarly. ⇤
This now shows:

Theorem 35.4 (FTC I) Let f : ra, bs Ñ R be continuous on ra, bs. Then x fiÑ
≥x

a f ptqdt is
differentiable on pa, bq — including one-sided derivatives at a and b — and

@x P pa, bq :
d

dx

ª x

a
f ptqdt “ f pxq (35.10)

Proof. This follows by applying Lemma 35.3 at all x P pa, bq. ⇤
The restriction to continuous integrand is done merely for convenience of expression.

In particular, the integrand need not be continuous at the point where the integral to be
differentiable. Indeed, if f only admits a limit at x then the argument (35.8–35.9) still
works albeit with f pxq replaced by the limit. But even the existence of the limit is not
required. For instance, the function

f pxq :“

#
1, if Dn P N : x “

1
n`1 ,

0, else,
(35.11)

has Fpxq :“
≥x

0 f ptqdt “ 0 and so F1
pxq exists at all x P R including x “ 0 where the

right limit of f does not exist. Another example uses the (so far undefined but standard)
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functions sinpxq and cospxq, the function f , defined by

f pxq :“
d

dx
x2 sinp1{xq “ cosp1{xq ´ 2x sinp1{xq (35.12)

for x ‰ 0 and f p0q “ 0, is Riemann integrable on r0, bs for any b ° 0 and thus Fpxq :“≥x
0 f ptqdt is well defined for all x P R. Since f is continuous away from zero, we

have F1
pxq “ f pxq for all x ‰ 0. The same applies to Gpxq :“ x2 sinp1{xq (with Gp0q :“ 0)

and, by the Mean-Value Theorem and the fact that Fp0q “ Gp0q “ 0, we have Fpxq “

Gpxq “ x2 sinp1{xq for all x ‰ 0. But |Fpxq ´ Fp0q| § x2 implies F1
p0q “ 0 and so F is

differentiable even at zero where F1
p0q “ 0 “ f p0q. Yet f does not have even one-sided

limits there, due to x fiÑ cosp1{xq oscillating rapidly as x Ñ 0˘.
It is worth noting that our previous characterizations of Riemann integrability tell us

that integrals of Riemann integrable functions are differentiable at most points:

Corollary 35.5 Let f : ra, bs Ñ R be Riemann integrable and let F : ra, bs Ñ R be defined by
Fptq :“

≥t
a f pxqdx. Then

 
x P pa, bq : F1

pxq exists ^ F1
pxq “ f pxq

(
(35.13)

is dense in ra, bs and, in fact, the complement of a set of zero length.

Proof. That the set is the complement of a zero length set follows from Theorem 34.3 and
Lemma 35.3. Such a set is automatically dense. A direct argument for density can be
based on Lemma 34.1 whose proof is annotated in homework. ⇤

Theorem 35.4 applies also to the lower limits. Indeed, we have:

Lemma 35.6 Let f : ra, bs Ñ R be continuous. Then

@x P pa, bq :
d

dx

ª b

x
f ptqdt “ ´ f pxq (35.14)

Moreover, for all g, h : R Ñ ra, bs that are differentiable at x P R,

d
dx

ª hpxq

gpxq
f ptqdt “ f

`
hpxq

˘
h1

pxq ´ f
`
gpxq

˘
g1

pxq (35.15)

We leave the proof of this lemma to a homework exercise.

35.2 Integrating the derivative.

We now move to the second part of the Fundamental Theorem of Calculus, which con-
cerns integrals of derivatives. The precise statement is as follows:

Theorem 35.7 (FTC II) Let a † b be reals and let F : ra, bs Ñ R be continuous on ra, bs and
differentiable on pa, bq. Then

F1 Riemann integrable on ra, bs ñ

ª b

a
F1

pxqdx “ Fpbq ´ Fpaq (35.16)
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Proof. Pick e ° 0. Assuming F1 to be Riemann integrable, there is d ° 0 such that for all
partitions P of ra, bs with }P} † d we have

ˇ̌
ˇRpF1, Pq ´

ª b

a
F1

pxqdx
ˇ̌
ˇ † e (35.17)

Fixing this d ° 0, let n P N be such that nd ° b ´ a and define ti :“ a `
i
n pb ´ aq for

all i “ 0, . . . , n. By Lagrange’s Mean-Value Theorem, for each i “ 1, . . . , n,

Dt‹
i P rti´1, tis : Fptiq ´ Fpti´1q “ F1

pt‹
i qpti ´ ti´1q (35.18)

Picking one such t‹
i in each rti´1, tis, the marked partition P “ pttiu

n
i“0, tt‹

i u
n
i“1q then has

mesh less than d and obeys

Fpbq ´ Fpaq “

nÿ

i“1

`
Fptiq ´ Fpti´1q

˘
“

nÿ

i“1

F1
pt‹

i qpti ´ ti´1q “ RpF1, Pq (35.19)

Using (35.17) it follows that
ˇ̌
ˇFpbq ´ Fpaq ´

ª b

a
F1

pxqdx
ˇ̌
ˇ † e (35.20)

As this holds for all e ° 0, we have the conclusion of (35.16). ⇤
The assumption that F1 is Riemann integrable is not vacuous and is, in fact, a short-

coming of Riemann’s theory. Indeed, we have:

Lemma 35.8 (Volterra’s example) There exists a function f : R Ñ R such that F is differen-
tiable with f 1 bounded yet not Riemann integrable on r0, 1s.

Proof. The proof is based on the notion of a “fat Cantor set.” (The adjective “fat” refers
to the set and not Cantor himself, of course. Per a wiki page, Volterra seems to have
introduced such sets a few years before Cantor, but its first mention is due to Smith who
did it even before Volterra.). This is generally defined by taking a sequence tanunPN P

p0, 1q
N and setting C0 :“ r0, 1s, C1 :“ r0, 1s r p

1
2 p1 ´ anq, 1

2 p1 ` anqq and, recursively,
noting that Cn is the union of 2n disjoint closed intervals of length `n, constructing Cn`1
by taking a centered interval of length an`1`n out of each of these intervals. The total
length of these sets (defined by lengthpCnq :“ 2n`n) then obeys

@n P N r t0u : lengthpCnq “

n´1π

i“0

p1 ´ anq (35.21)

The right-hand side remains uniformly positive when
∞8

n“0 an † 8. In this case the
set C :“

ì
nPN Cn is NOT zero length. Let us write In for the set of 2n open intervals

removed from Cn to define Cn`1 and denote I :“
î

nPN In.
Next let h : R Ñ R be a continuously differentiable function that vanishes outside

p´1{2, 1{2q and obeys hp0q ‰ 0. (E.g., take hpxq :“ p1 ´ 4x2
q

2 for |x| § 1{3 and hpxq :“ 0
otherwise.) Next let tgnunPN P p0, 1q

N and, for each n P N and each pa, bq P In, we
define f at x P pa, bq by

f pxq :“ gnpb ´ aq h
´ 1

gn

x ´
a`b

2
b ´ a

¯
(35.22)
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This defines f on r0, 1srC; we then set f pxq :“ 0 at x P C Y pR r r0, 1sq. It is now readily
checked that, for all n P N and all pa, bq P In, the function f is differentiable on pa, bq with

@x P pa, bq : f 1
pxq “ h1

´ 1
gn

x ´
a`b

2
b ´ a

¯
(35.23)

On the other hand, if x P C and z P pa, bq for some pa, bq P In, then f pzq ‰ 0 implies
|z ´

a`b
2 | §

1
2 gnpb ´ aq while x R pa, bq gives |x ´

a`b
2 | •

1
2 pb ´ aq. The triangle inequality

turns this into |x ´ z| •
1
2 pb ´ aqp1 ´ gnq and (since f pxq “ 0)

@z P pa, bq :
ˇ̌
ˇ

f pzq ´ f pxq

z ´ x

ˇ̌
ˇ § 2

gn

1 ´ gn
. (35.24)

Moreover, assuming g :“ supmPN gm † 1, the inequalities |x ´ z| •
1
2 pb ´ aqp1 ´ gq and

|x ´ z| † d imply pb ´ aq § 2p1 ´ gq
´1d. If z P pa, bq for some pa, bq P In and |x ´ z| † d for

some x P C, then f pzq ‰ 0 forces n to be so large that 2´nlengthpCq † 4d. Putting these
observations together we conclude

lim
nÑ8 gn “ 0 ñ @x P C : f 1

pxq exists ^ f 1
p0q “ 0. (35.25)

In particular, once gn Ñ 0 the function f is everywhere differentiable with f 1 bounded.
By the way C is constructed, for each x P C and each d ° 0, there exists an interval

pa, bq P I such that pa, bq Ñ px ´ d, x ` dq. From (35.23) we thus get

@x P C : lim sup
zÑx

f 1
pzq • sup

zPR

h1
pzq ° 0 (35.26)

where the positivity comes from the fact that h is non-constant. Combined with (35.25)
this implies

C Ñ
 

x P R : f 1 NOT continuous at x
(

(35.27)

As C fails to be of zero length, so does the set on the right. By Theorem 34.3, f 1 is NOT
Riemann integrable on r0, 1s ⇤

We remark that Volterra’s example has been a source of motivation for the creation
of Lebesgue’s theory of integration; indeed, in this theory an everywhere differentiable
function with a bounded derivative does satisfy the conclusion of (35.16). (This is be-
cause the derivative of an everywhere differentiable function is necessarily measurable,
which is the type of regularity required by the Lebesgue integral.) Voltera’s function
is Lipschitz continuous and so we have shown that there are differentiable Lipschitz
functions that do NOT arise as Riemann integrals. (As an aside we note that all such
functions do arise as Lebesgue integrals.)

Theorem 35.4 and 35.7 give us the precise versions of (35.3) in Riemann’s theory. In
summary, they say that

‚ derivative inverts Riemann integrals of all continuous functions, and
‚ Riemann integral inverts all Riemann integrable derivatives.

Neither inversion is thus perfect, unlike for the Newton integral. Also Lebesgue’s inte-
gral requires continuity of integrand in order for the integral to be inverted by differenti-
ation. For integrals of derivatives the Lebesgue integral does fare slightly better as it in-
verts all bounded derivatives. Unfortunately, there exists an everywhere-differentiable
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function whose (unbounded) derivative is not Lebesgue integrable and so even there
the connection requires additional qualifiers. We will return to this briefly in Section 37.

35.3 Applications.

The Fundamental Theorem of Calculus, albeit somewhat restricted in Riemann’s theory,
serves as a basic tool for computing integrals. However, it underlies also other tools that
are generally used to convert one integral to another. Here is one frequently used:

Corollary 35.9 (Integration by parts) Suppose f , g : ra, bs Ñ R are continuous on ra, bs and
differentiable on pa, bq such that f 1 and g1 — with values at a and b chosen arbitrarily — are
Riemann integrable on ra, bs. Then

ª b

a
f 1

pxqgpxqdx “ f pbqgpbq ´ f paqgpaq ´

ª b

a
g1

pxq f pxqdx (35.28)

Proof. The Product Rule for derivative shows that f ¨ g is differentiable and, under our
condition, p f ¨ gq

1
“ f 1g ` g1 f is Riemann integrable. Theorem 35.7 shows

ª b

a

“
f 1

pxqgpxq ` g1
pxq f pxq

‰
dx “

ª b

a
p f ¨ gq

1
pxqdx “ f pbqgpbq ´ f paqgpaq (35.29)

Since f 1g and g1 f are individually Riemann integrable, the integral on the left-hand side
can be written as the sum of two Riemann integrals. ⇤

Another standard method for converting one integral to another is:

Corollary 35.10 (Substitution Rule) Let c † d and a † b be reals and assume f : rc, ds Ñ R

and j : ra, bs Ñ rc, ds are functions such that:
(1) j is continuous on ra, bs and differentiable on pa, bq,
(2) f is continuous on rc, ds,
(3) p f ˝ jq ¨ j1 is Riemann integrable on ra, bs.

Then ª jpbq

jpaq
f ptqdt “

ª b

a
f
`

jpxq
˘

j1
pxqdx (35.30)

Proof. Since f is continuous, Fpxq :“
≥x

c f ptqdt is well defined and, by Theorem 35.4,
obeys F1

ptq “ f ptq for all t P pc, dq. Hence also the derivative of F ˝ j equals the product
p f ˝ jq ¨ j1. Theorem 35.7 then equates both sides of (35.30) with Fpjpbqq ´ Fpjpaqq. ⇤

A more substantive application of FTC is the content of:

Theorem 35.11 (Taylor theorem with remainder) Let a † b be reals and f : pa, bq Ñ R an
pn ` 1q-times differentiable function, for some n P N. Assume f pn`1q is Riemann integrable on
any closed subinterval of pa, bq. Then

@x, x0 P pa, bq : f pxq “

nÿ

k“0

f pkq
px0q

k!
px ´ x0q

k
`

1
n!

ª x

x0

f pn`1q
pzqpx ´ zq

ndz (35.31)

Proof. We will prove this by induction on n. For n “ 0 the statement (35.31) is just
Theorem 35.7 (which requires only that f 1 is Riemann integrable). Assume therefore that

Preliminary version (subject to change anytime!) Typeset: May 3, 2023



199 MATH 131BH notes

the statement holds for some n and let f : pa, bq Ñ R be now pn ` 2q-times differentiable
with f pn`2q Riemann integrable. Abbreviating the polynomial on the right of (35.31)
as Pnpxq, from the statement for n we then have

f pxq “ Pnpxq `
1
n!

ª x

x0

f pn`1q
pzqpx ´ zq

ndz (35.32)

Integration by parts; namely, Corollary 35.9 with gpzq :“ 1
n`1 px ´ zq

n`1 then shows

1
n!

ª x

x0

f pn`1q
pzqpx ´ zq

ndz

“
1
n!

ª x

x0

f pn`1q
pzqg1

pzqdz

“
1
n!

f pn`1q
pzqgpzq

ˇ̌
ˇ
x

x0
´

1
n!

ª x

x0

f pn`2q
pzqgpzqdz

“
1

pn ` 1q!
f pn`1q

px0qpx ´ x0q
n`1

`
1

pn ` 1q!

ª x

x0

f pn`2q
pzqpx ´ zq

n`1dz

(35.33)

Noting that the first term on the right equals Pn`1pxq ´ Pnpxq, we have proved (35.31)
for n replaced by n ` 1. By induction, the claim holds for all n P N. ⇤

The statement (35.31) should be compared with the pointwise version of Taylor’s the-
orem in which the error f pxq ´ Pnpxq takes the form 1

pn`1q! f pn`1q
pxqpx ´ x0q

n`1 for some x

between x0 and x. This term usually fares similarly when uniform estimates on the error
are required but has the disadvantage of being dependent on an unknown intermediate
point x. The error in (35.31) is expressed as an explicit integral and is thus better suited
when further manipulations with the error term are required.

Preliminary version (subject to change anytime!) Typeset: May 3, 2023


