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24. CONTINUITY

Much of attention in analysis is paid to functions that have some level of regularity.
Here we start with the simplest instance of regularity called continuity. Throughout we
assume familiarity with metric spaces, topological spaces and convergence of sequences.

24.1 Continuity in metric spaces.

Continuity of a function is often described informally as the ability to “draw the graph
of a function without lifting the pen from the paper.” A slightly more formal way to put
is that “a small change in the argument results in a small change of the function value.”
Relying on the formalism of metric spaces to quantity the “change,” this leads to:

Definition 24.1 (Continuity in metric spaces) Let pX, rXq and pY, rYq be metric spaces

and f : X Ñ Y a function (with Domp f q not necessarily equal to X). Let x0 P Domp f q.

We say that f is continuous at x0 if

@e ° 0 Dd ° 0 @x P Domp f q : rXpx, x0q † d ñ rY
`

f pxq, f px0q
˘

† e. (24.1)

Moreover, we say that f is continuous if @x P Domp f q : f is continuous at x.

A couple of remarks are in order:
(1) Allowing that Domp f q ‰ X is superfluous because the above definition of conti-

nuity can be directly phrased using the relative metric on Domp f q. We will thus
take Domp f q “ X in the subsequent discussion. However, this is not to say that
domain questions are not of interest; e.g., take f : Q Ñ R defined by

f pxq :“

#
1, if x °

?

2,
0, if x †

?

2,
(24.2)

which is continuous on Q in spite of a “jump” at
?

2.
(2) Denoting the open balls in X and Y by

BXpx0, rq :“ tx P X : rXpx, x0q † ru

BYpy0, rq :“ ty P Y : rXpy, y0q † ru,
(24.3)

respectively, the implication in (24.1) is equivalent to

f
`
BXpx0, dq

˘
Ñ BY

`
f px0q, e

˘
. (24.4)

Continuity of f at x thus means that each open ball centered at f pxq contains the
image of a sufficiently small open ball centered at x.

(3) We cast the definition directly in general metric spaces even though most of our
attention will be devoted to real-valued functions of R or Rd-valued variables. This
is amounts to setting Y :“ R with rY being the Euclidean metric, rYpy, y1

q :“ |y ´ y1
|.

Since all norm-metric in Rd are comparable, a function f : Rd
Ñ R is continuous at x

or NOT regardless of the choice of the norm-metric on Rd.
As it turns out, every metric space pX, rXq is the domain of at least three continuous

maps. First, the constant map f : X Ñ Y given by f pxq “ y0, for any choice of Y and
y0 P Y for which (24.4) holds because f pBXpx0, dqq “ t f px0qu regardless of d ° 0. Second,
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the identity map f : X Ñ X given by f pxq :“ x, for which (24.1) holds with d :“ e. Third,
the distance-to-a-point map f : X Ñ R given for any x1

P X by

f pxq :“ rXpx1, xq, (24.5)

which obeys

rR

`
f pxq, f px0q

˘
:“

ˇ̌
f pxq ´ f px0q

ˇ̌
“

ˇ̌
rXpx1, xq ´ rXpx1, x0q

ˇ̌
§ rXpx, x0q (24.6)

thanks to the triangle inequality for rX, thus showing (24.1) with d :“ e. A variation
on the latter map is distance-to-a-set map f pxq :“ inftrXpx, yq : y P Au for any non-
empty A Ñ X. Such maps naturally arise in various contects.

24.2 “Rules” for continuity.

Once we specialize to real-valued functions, the set of continuous functions becomes
considerably richer due to the fact that continuity is preserved by the basic arithmetic
operations. This leads to various “Rules” for continuity that we discusse next:

Lemma 24.2 (Sum Rule for continuity) Let pX, rXq be a metric space and f , g : X Ñ R be
functions with Domp f q “ Dompgq “ X. Let x0 P X and assume that f and g are continuous
at x0. Then also the their f ` g defined by

p f ` gqpxq :“ f pxq ` gpxq (24.7)

is continuous at x0.

Proof. Pick e ° 0. By continuity of f at x0, there exists d ° 0 be such that

@x P X : rXpx, x0q † d ñ

ˇ̌
f pxq ´ f px0q

ˇ̌
† e{2 (24.8)

The continuity of g at x0 in turn yields a d1
° 0 such that

@x P X : rXpx, x0q † d1
ñ

ˇ̌
gpxq ´ gpx0q

ˇ̌
† e{2 (24.9)

Then for d2 :“ mintd, d1
u and any x1

P X, the assumption rXpx, x0q † d2 implies
ˇ̌
p f ` gqpxq ´ p f ` gqpx0q

ˇ̌
“

ˇ̌
ˇ f pxq ´ f px0q `

`
gpxq ´ gpx0q

˘ˇ̌
ˇ

§

ˇ̌
f pxq ´ f px0q

ˇ̌
`

ˇ̌
gpxq ´ gpx0q

ˇ̌
† e{2 ` e{2 “ e

(24.10)

thus proving continuity of f ` g at x0. ⇤

Lemma 24.3 (Product Rule for continuity) Let pX, rXq be a metric space and f , g : X Ñ R

functions with Domp f q “ Dompgq “ X. Let x0 P X and assume that f and g are continuous
at x0. Then also the product function f ¨ g defined by

p f ¨ gqpxq :“ f pxq ¨ gpxq (24.11)

is continuous at x0.

Proof. The proof is similar to the Sum Rule; we only have to be slightly more clever
about our choice of d. Indeed, assume that e ° 0 is given and use continuity of f at x to
find d ° 0 such that

@x P X : rXpx, x0q † d ñ

ˇ̌
f pxq ´ f px0q

ˇ̌
† min

!
e,

1
2

e

e ` |gpx0q|

)
. (24.12)
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Similarly, use the continuity of g at x0 to find d ° 0 such that

@x P X : rXpx, x0q † d1
ñ

ˇ̌
gpxq ´ gpx0q

ˇ̌
†

1
2

e

e ` | f px0q|
. (24.13)

Set again d2 :“ mintd, d1
u. Then for all x P X with rXpx, x0q † d2 we have

ˇ̌
p f ¨ gqpxq ´ p f ¨ gqpx0q

ˇ̌
“

ˇ̌
ˇ f pxq

`
gpxq ´ gpx0q

˘
` gpx0q

`
f pxq ´ f px0q

˘ˇ̌
ˇ

§

ˇ̌
f pxq

ˇ̌ˇ̌
gpxq ´ gpx0q

ˇ̌
`

ˇ̌
gpx0q

ˇ̌ˇ̌
f pxq ´ f px0q

ˇ̌

†
1
2

e| f pxq|

e ` | f px0q|
`

1
2

e|gpx0q|

e ` |gpx0q|
§ e{2 ` e{2 “ e,

(24.14)

where in the last inequality we noted that, by (24.12),
ˇ̌
f pxq

ˇ̌
§

ˇ̌
f px0q

ˇ̌
`

ˇ̌
f pxq ´ f px0q

ˇ̌
§

ˇ̌
f px0q

ˇ̌
` e (24.15)

which then leads to the resulting bound. ⇤

Lemma 24.4 (Quotient Rule for continuity) Let pX, rXq be a metric space and f , g : X Ñ R

functions with Domp f q “ Dompgq “ X. Let x0 P X and assume that f and g are continuous
at x0 and gpx0q ‰ 0. Then also their quotien f {g with Domp f {gq :“ tx P X : gpxq ‰ 0u

defined by

p f {gqpxq :“
f pxq

gpxq
(24.16)

is continuous at x0.

Proof. We first prove this for f :“ 1. Assume that g is continuous at x0 with gpx0q ‰ 0.
Pick e ° 0 and let d ° 0 be such that

@x P X : rXpx, x0q † d ñ

ˇ̌
gpxq ´ gpx0q

ˇ̌
† min

!1
2

egpx0q
2,

1
2

|gpx0q|

)
. (24.17)

Then for any x with rXpx, x0q † d,
ˇ̌
gpxq

ˇ̌
•

ˇ̌
gpx0q

ˇ̌
´

ˇ̌
gpxq ´ gpx0q

ˇ̌
•

ˇ̌
gpx0q| ´ |gpx0q

ˇ̌
{2 “ |gpx0q|{2 (24.18)

which by gpx0q ‰ 0 implies x P Domp1{gq. Moreover,
ˇ̌
ˇ

1
gpxq

´
1

gpx0q

ˇ̌
ˇ “

|gpxq ´ gpx0q|

|gpxq||gpx0q
§ 2

|gpxq ´ gpx0q|

gpx0q2 † e (24.19)

proving the continuity of 1{g at x0. This extends to function f {g by the Product Rule
proved in Lemma 24.3. ⇤

As a consequence we get:

Corollary 24.5 (Continuity of polynomials and rational functions) All polynomials are
continuous on all of R. Any rational function of the form Rpxq :“ Ppxq{Qpxq where P and Q
are polynomials is continuous on its domain DompRq :“ tx P R : Qpxq ‰ 0u.

Proof. The constant maps f pxq “ c and the identity map f pxq :“ x are continuous by our
earlier observations. Any power gpxq :“ xn is then continuous by applying the product
rule inductively. Constant multiples of powers are continuous by the product rule as
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well; the sum rule then implies continuity of all polynomials. The quotient rule extends
this to the continuity of rational functions on their domain. ⇤

We remark that, for the Sum Rule, we did not need that f and g are real valued; it
was enough to assume that they take values in a linear vector space with a norm-metric.
For the Product Rule we needed that f and g take values in a normed algebra such that
the norm of the product of two elements is bounded by the product of the norms; i.e.,
}a ¨ b} § }a} }b}.

Another operation that is useful for generating continuous functions (or checking con-
tinuity of functions in general) is composition:

Lemma 24.6 (Composition Rule) Let pX, rXq, pY, rYq and pZ, rZq be metric spaces and let
f : X Ñ Y and g : Y Ñ Z be functions. Let x0 P Domp f q be such that f px0q P Dompgq. If f is
continuous at x0 and g is continuous at f px0q, then g ˝ f pxq :“ gp f pxqq is continuous at x0.

Proof. Pick e ° 0 and let h ° 0 be such that rYpy, f px0qq † h (and y P Dompgqq implies
rZpgpyq, gp f px0qqq † e. Given this h, let d ° 0 be such that rXpx, x0q † d (and x P Domp f q)
implies rYp f pxq, f px0qq † h. But then for all such x we also get rZpgp f pxqq, gp f px0qqq † e
thus implying continuity of g ˝ f at x0. ⇤

24.3 Alternative characterizations.

Two alternative characterizations of continuity appear in the literature (sometimes even
as alternative definitions) and are often called upon in practice. The first one of these is
based on the concept of limit of sequences that we discussed at length earlier.

Theorem 24.7 (AC)(Sequential characterization) Let pX, rXq and pY, rYq be metric spaces
and let f : X Ñ Y be a function with Domp f q “ X. Then for all x P X:

f is continuous at x ô

´
@txnunPN P XN : xn Ñ x ñ f pxnq Ñ f pxq

¯
(24.20)

where the convergences are relative to rX on the left and rY on the right.

Proof. We start with ñ. Assume that f is continuous at x and let txnunPN be a se-
quence. Given e ° 0, the continuity yields a d ° 0 such that rXpxn, xq † d implies
rYp f pxq, f pxnqq † e. Under the assumption xn Ñ x, there exists n0 P N such that n • n0
implies rXpxn, xq † d. Summarizing, this shows that given e ° 0 there is n0 P N such
that n • n0 implies rYp f pxnq, f pxqq † e, thus proving f pxnq Ñ f pxq in pY, rYq.

The proof of  is done by contrapositive. Suppose f is NOT continuous at x. Then,
using that (24.1) and (24.4) are equivalent,

De ° 0 @d ° 0 : f
`
BXpx, dq

˘
r BY

`
f pxq, e

˘
‰ H (24.21)

Specializing to d P t2´n : n P Nu, the Axiom of Choice allows us to pick a sequence
txnunPN P XN such that

@n P N : xn P BXpx, 2´n
q ^ f pxnq R BY

`
f pxq, e

˘
. (24.22)

But this means that xn Ñ x while f pxnq Û f pxq, proving the negation of the statement
on the right of (24.20) — as is required in the proof by contrapositive. ⇤

A simpler but memorable way to state the conclusion of Theorem 24.7 is:
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Corollary 24.8 (AC) A function (between two metric spaces) is continuous if and only if it
turns convergent sequences into convergent sequences.

The reliance on the Axiom of Choice is annoying but this is not of much loss is prac-
tice. Indeed, the sequential characterization is typically used to disprove continuity by
demonstrating a sequence xn Ñ x with f pxnq Û f pxq. To give an example, consider the
function in (24.2) albeit now defined on all of R:

f pxq :“

#
1, if x •

?

2,
0, if x †

?

2,
(24.23)

Then taking xn :“
?

2 ´ 2´n gives f pxnq “ 0 so f pxnq Ñ 0, yet xn Ñ

?

2 and f p

?

2q “ 1.
Hence f is NOT continuous at x “

?

2 by ñ in (24.20) (for if it were continuous than we
would have f pxnq Ñ f p

?

2q).
Another useful characterization of continuity comes in:

Theorem 24.9 (Topological characterization of continuity) Let pX, rXq and pY, rYq be met-
ric spaces and let f : X Ñ Y be a function with Domp f q “ X. Then the following are equivalent:

(1) f is continuous,
(2) @O Ñ Y : O open ñ f ´1

pOq open
(3) @C Ñ Y : C closed ñ f ´1

pCq closed

Proof. Assume that f is continuous on X and let O Ñ Y be open. Then for each x0 P

f ´1
pOq, there is e ° 0 such that BYp f px0q, eq Ñ O. The continuity of f at x0 phrased via

(24.4) then gives d ° 0 such that BXpx0, dq Ñ f ´1
pOq thus proving that f ´1

pOq is open.
We have shown (1) ñ (2). For the converse, assume (2), pick x0 and, given e ° 0,

let O :“ BYp f px0q, eq. Since x0 P f ´1
pOq and O is open, f ´1

pOq is open and so there
exists d ° 0 such that BXpx0, dq Ñ f ´1

pBYp f px0q, eqq. But that implies (24.4) proving
continuity of f at x0. As x0 was arbitrary, we get continuity of f everywhere.

The above proves the equivalence of (1) and (2). As for (3), this is equivalent to (2) by
the fact that f ´1

pY rOq “ X r f ´1
pOq. ⇤

The properties (2) and (3) are phrased using only the notions of open and closed sets
and are thus only the property of the topology induced by the metric structure of the
underlying spaces. This is the basis of:

Definition 24.10 (Continuity in topological spaces) Let pX, T q and pY,Sq be topological

spaces. A map f : X Ñ Y with Domp f q “ X is said to be continuous if

@O P S : f ´1
pOq P T (24.24)

(Here T is the prescribed collection of open subsets of X and S is the collection of open

subsets of Y, with both subject to the axioms making these a topology.)

While phrasing continuity this way is very elegant, matters get more complicated if
we want to talk about continuity at a point. (This is still possible in topological spaces
but the definition is more intricate.) The restriction to maps with full domain is essential
albeit easily circumvented by resorting to relative topologies. Note that the proof of the
Composition Rule becomes very elementary in this context.
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24.4 Open and closed maps.

As was just discussed, continuous functions are exactly those that preimage open, resp.,
closed sets into open, resp., closed sets. A natural question is: What are the properties
of the functions that image open, resp., closed sets into open, resp., closed sets. We give
these a formal name in:

Definition 24.11 (Open and closed maps) Let pX, T q and pY,Sq be topological spaces.

A function f : X Ñ Y with Domp f q “ X is then said to be

(1) open (or is an open map) if

@O Ñ X : O open (in X) ñ f pOq open (in Y) (24.25)

or, formally, @O P T : f pOq P S .

(2) closed (or is an closed map) if

@C Ñ X : C closed (in X) ñ f pCq closed (in Y) (24.26)

or, formally, @O P T : Y r f pX rOq P S

We caution that reader that (2) is a distinct property from (1). This is because com-
plementation does not work the same way with images as with preimages with the
exception of bijections:

Lemma 24.12 Let f : X Ñ Y be a bijection. Then f open ô f closed.

We leave the proof of this lemma to homework. To give some examples, note that the
function f : R Ñ R defined by

f pxq :“
x

1 ` x2 (24.27)

is closed (because it maps R onto a compact interval; the Bolzano-Weierstrass Theorem
then does the job) but not open (because it maps R, which is open onto a compact and
thus closed interval) while the map

gpxq :“
x|x|

1 ` x2 (24.28)

is open (being a continuous bijection of R onto an open subset p´1, 1q of R) but not
closed (because it maps R which is closed onto an open set p´1, 1q).

Closed maps are more prevalent thanks to the fact that the restriction to compact sets
is automatic for continuous functions:

Theorem 24.13 (Continuous image of a compact set is compact) Let f : X Ñ Y be a map
between (topological or) metric spaces X and Y with Domp f q “ X. Then

X compact ^ f continuous ñ f pXq compact (24.29)

Proof. Suppose X is compact and let f : X Ñ Y be continuous with Domp f q “ X. Con-
sider an open cover tOa : a P Iu of f pXq. The continuity of f (along with Domp f q “ X)
then implies that t f ´1

pOaq : a P Iu is an open cover of X. Since X is compact, there
exists F Ñ I finite such that t f ´1

pOaq : a P Fu is still an open cover of X. But then
tOa : a P Fu is a cover of f pXq, proving compactness thereof. ⇤
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Corollary 24.14 A continuous function (with full domain) on a compact space is closed.

Proof. Let f : X Ñ Y be continuous with X compact and Domp f q “ X. Let C Ñ X be
closed. Then C is compact and so f pCq is compact and thus closed. ⇤

The property of being open is harder to achieve which is the reason why open maps
appear in important theorems in analysis; for instance, complex analysis (where the
Open Mapping Theorem states that each non-constant holomorphic function is open)
and functional analysis (where its name sake, a.k.a. the Banach-Schauder Theorem, says
that a surjective continuous linear map between Banach spaces are open).

The main reason for our interest in these is:

Lemma 24.15 Let f : X Ñ Y be bijective and thus invertible. Then (assuming that X and Y
are topological or metric spaces),

f open ô f ´1 continuous (24.30)

Proof. Pick U Ñ X and let O :“ f pUq. To ease notation, denote g :“ f ´1. Then
(with g´1 denoting the preimage function) g´1

pUq “ O and so “g´1
pUq open” is equiva-

lent to “ f pUq open.” By Theorem 24.9, “ f open” is thus equivalent to “g continuous.” ⇤
As an application we show:

Lemma 24.16 Let n P N obey n • 2. Then f pxq :“ x1{n with Domp f q :“ r0, 8q is
continuous.

Proof. f is the inverse of gpxq :“ xn (with Dompgq :“ r0, 8q) which, by strict mono-
tonicity and everywhere invertibility, maps intervals in r0, 8q into intervals preserving
the open/closed status of the endpoints. By the characterization of open sets in R as
countable unions of open intervals, every open set in r0, 8q is mapped onto an open set
in r0, 8q by g. Hence g is open and so, by Lemma 24.15, f “ g´1 is continuous. ⇤

We finish with a consequence of Theorem 24.13:

Corollary 24.17 Let X be a metric space and f : X Ñ R a continuous function with Domp f q “

X. Then for all compact A Ñ X, the image f pAq is bounded and there exist x0, x1 P A such that

f px0q “ inf
 

f pxq : x P A
(

^ f px1q “ sup
 

f pxq : x P Au (24.31)

To put this in words, continuous real-valued functions on a compact set achieve their minimum
and maximum.

Proof. Let A Ñ X be compact. By Theoreem 24.13, f pAq is compact in R. The Heine-Borel
Theorem implies that f pAq is bounded and closed. Since the infimum/supremum of f
on A are adherent points of f pAq, we have infxPA f pxq P f pAq and supxPA f pxq P f pAq.
In particular, there are x0, x1 P A such that (24.31) holds. ⇤

Compactness is of course essential for the statement in Corollary 24.17 to hold. The
conclusion is very useful throughout mathematics.
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