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40. APPLICATIONS OF UNIFORM CONVERGENCE

We will now move to some more advanced applications of uniform convergence to in-
tegration and differentiation theory. We will then apply these to power series and use
them to finally define a number of important transcendental functions.

40.1 Integration and differentiation.

Our first application is to convergence of Riemann integrals. Recall that the Osgood
Bounded Convergence Theorem (cf Theorem 38.2) states that if t fnunPN are uniformly
bounded functions ra, bs Ñ R and f : ra, bs Ñ R is such that fn Ñ f pointwise and f is
Riemann integrable, then

≥b
a fnpxqdx Ñ

≥b
a f pxqdx. As it turns out, the statement is easier

to make once we replace pointwise convergence by uniform convergence:

Theorem 40.1 Let a † b be reals and t fnunPN and f functions ra, bs Ñ R such that
´

@n P N : fn Riemann integrable
¯

^ fn Ñ f uniformly (40.1)

Then

f Riemann integrable ^ lim
nÑ8

ª b

a
fnpxqdx “

ª b

a
f pxqdx (40.2)

Proof. Notice that the additivity of the integral and Lemma 31.9 give
ˇ̌
ˇ
ª b

a
fmpxqdx ´

ª b

a
fnpxqdx

ˇ̌
ˇ “

ˇ̌
ˇ
ª b

a
p fn ´ fmqpxqdx

ˇ̌
ˇ § pb ´ aq sup

xPra,bs

ˇ̌
fnpxq ´ fmpxq

ˇ̌
(40.3)

By Lemma 39.7, fn Ñ f implies that the right-hand side is smaller than e ° 0 once m
and n are sufficiently large. It follows that

!ª b

a
fnpxqdx

)

nPN
is Cauchy (40.4)

and since this is a real-valued sequence and R is complete,

L :“ lim
nÑ8

ª b

a
fnpxqdx exists. (40.5)

In particular, given e ° 0, there is n0 P N such that

@n • n0 :
ˇ̌
ˇ
ª b

a
fnpxqdx ´ L

ˇ̌
ˇ † e. (40.6)

The uniform convergence in turn shows existence of n1 P N such that

@n • n1 : sup
xPra,bs

ˇ̌
fnpxq ´ f pxq

ˇ̌
†

e

b ´ a
. (40.7)

Set m :“ maxtn0, n1u. The assumed Riemann integrability of fm implies that there exists
d ° 0 such that for any marked partition P of ra, bs,

}P} † d ñ

ˇ̌
ˇRp fm, Pq ´

ª b

a
fmpxqdx

ˇ̌
ˇ † e (40.8)
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The linearity of f fiÑ Rp f , Pq in turn gives
ˇ̌
Rp f , Pq ´ Rp fm, Pq

ˇ̌
§ pb ´ aq sup

xPra,bs

ˇ̌
fmpxq ´ f pxq

ˇ̌
† e (40.9)

where the second inequality follows from (40.7) and the fact that m • n1. The triangle
inequality then shows that, for each marked partition P of ra, bs with }P} † d, we have

ˇ̌
Rp f , Pq ´ L

ˇ̌
§

ˇ̌
Rp f , Pq ´ Rp fm, Pq

ˇ̌

`

ˇ̌
ˇRp fm, Pq ´

ª b

a
fmpxqdx

ˇ̌
ˇ `

ˇ̌
ˇ
ª b

a
fmpxqdx ´ L

ˇ̌
ˇ † 3e

(40.10)

thus proving that f is Riemann integrable and the integral of f equals L. ⇤
The next application is to differentiation:

Theorem 40.2 Given real numbers a † b, let t fnunPN be a sequence of differentiable func-
tions pa, bq Ñ R such that

Dx0 P pa, bq : lim
nÑ8 fnpx0q exists (40.11)

and
t f 1

nunPN is uniformly Cauchy (40.12)

Then there exists a differentiable function f : pa, bq Ñ R such that

fn Ñ f uniformly ^ f 1
n Ñ f 1 uniformly (40.13)

In particular, the derivative can be exchanged with the limit n Ñ 8.

Proof. For each n P N define fn : pa, bq Ñ R by

fnpxq :“

#
fnpxq´ fnpx0q

x´x0
, if x ‰ x0,

f 1
npx0q, if x “ x0.

(40.14)

Since fn is continuous (being differentiable) and the derivative at x0 exists, fn is contin-
uous on pa, bq. Langrange’s Mean-Value Theorem shows

@x P pa, bq Dx P pa, bq : fnpxq “ f 1
npxq (40.15)

(For x “ x0 we use directly the definition.) Since t f 1
nunPN is uniformly Cauchy, so

is tfnunPN. Lemma 39.7 shows that there exists a function f : pa, bq Ñ R such that fn Ñ f
uniformly. Being a uniform limit of continuous functions, f is continuous.

Define f : pa, bq Ñ R by

f pxq :“ lim
nÑ8 fnpx0q ` fpxqpx ´ x0q. (40.16)

Since fnpxq “ fnpx0q ` fnpxqpx ´ x0q, the uniform convergence fn Ñ f implies uniform
convergence fn Ñ f . Next pick x P pa, bq and observe that the above Mean-Value Argu-
ment implies that also the functions yn : pa, bq Ñ R defined by

ynpyq :“

#
fnpyq´ fnpxq

y´x , if y ‰ x,
f 1
npxq, if y “ x,

(40.17)
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converge uniformly to y : pa, bq Ñ R defined by

ypyq :“

#
f pyq´ f pxq

y´x , if y ‰ x,
f 1

pxq, if y “ x.
(40.18)

By Corollary 39.5, this justifies the exchange of limits in the formula

lim
yÑx

f pyq ´ f pxq

y ´ x
“ lim

yÑx
lim

nÑ8
fnpyq ´ fnpxq

y ´ x

“ lim
nÑ8 lim

yÑx

fnpyq ´ fnpxq

y ´ x
“ lim

nÑ8 f 1
npxq

(40.19)

proving that f 1
pxq exists and f 1

n Ñ f pointwise. Since t f 1
nunPN is uniformly Cauchy,

Corollary 39.8 implies that f 1
n Ñ f 1 uniformly. ⇤

This theorem is usually applied in proofs that a function constructed as a limit is
smooth. We will get to such examples momentarily, but before we do that let us demon-
strate the power of the result by using it to construct a function that is not differentiable
at any given finite or countable set of points:

Lemma 40.3 Let A Ñ R be finite or countable. Then there exists f : R Ñ R bounded, differ-
entiable with f 1 bounded yet such that

 
x P R : f 1 NOT continuous at x

(
“ A (40.20)

Proof. Consider the function h : R Ñ R defined by

hpxq :“

#
x2

1`x2 sinp1{xq, if x ‰ 0,
0, if x “ 0.

(40.21)

(While sin has not yet been defined, all we need that it is a a bounded differentiable
function whose derivative, to be denoted cos, exists and is bounded on R but does not
admit a limit at ˘8.) Then h is differentiable with

h1
pxq :“

#
´

1
1`x2 cosp1{xq ´

2x
p1`x2q2 sinp1{xq, if x ‰ 0,

0, if x “ 0,
(40.22)

This h1 is bounded and continuous on R r t0u but does not admit a limit as x Ñ 8.
Now pick A (to be assumed infinite countable for simplicity) and let tqnunPN enumerate
its points. Then define f : R Ñ R by

f pxq :“
8ÿ

n“0
2´nhpx ´ qnq (40.23)

Since h and h1 are bounded, Theorem 40.2 shows that f is differentiable with

f 1
pxq “

8ÿ

n“0
2´nh1

px ´ qnq (40.24)

where the series converges uniformly on R.
For x ‰ A, all functions under the sum are continuous are continuous at x and so

Theorem 39.4 tells us that also f 1 is continuous at x. For x “ qm, the same holds except
for the term corresponding to n “ m, which is not continuous at qm. Hence, nor is f 1. ⇤
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40.2 Power series and transcendental functions.

We now move to the positive side of the story by demonstrating its application to func-
tions given as a convergent power series. Theorem 40.1 allows us to integrate these
term-by-term. However, more important is usually the corresponding statement for dif-
ferentiation. The following is a direct consequence of Theorem 40.2:

Corollary 40.4 Let tanunPN P RN be such that

R :“
“
lim sup

nÑ8
|an|

1{n‰´1
° 0 (40.25)

with `8
´1 :“ 0 and 0´1 :“ `8. Let x0 P R. Then f : px0 ´ R, x0 ` Rq Ñ R defined

by f pxq :“
∞8

n“0 anpx ´ x0q
n is arbitrary many times differentiable with the k-th derivative

satisfying

f pkq
pxq “

8ÿ

n“k

„ k´1π

i“0

pn ´ iq
⇢

anpx ´ x0q
n (40.26)

where the series converges absolutely on px0 ´ R, x0 ` Rq and uniformly on any compact subin-
terval thereof.

Proof. Let k P N obey k • 1. Following the proof of Lemma 39.10, for each r P p0, Rq

and e P p0, R ´ rq there exists A P p0, 8q such that (39.39) holds. This means that

@x P rx0 ´ r, x0 ` rs :
ˇ̌
ˇ

dk

dxk anpx ´ x0q
n
ˇ̌
ˇ § Ar´k nk

´ r
R ´ e

¯n
(40.27)

The right-hand side is summable on n and so the series of k-th derivatives converges
uniformly on rx0 ´ r, x0 ` rs by the Weierstrass M-test. The claim now follows by an
inductive application of Theorem 40.2. ⇤

We now use these to prove:

Lemma 40.5 (Exponential, sine and cosine) The real-valued functions exp, sin and cos are
well-defined for all x P R by

exppxq :“
8ÿ

n“0

xn

n!
(40.28)

sinpxq :“
8ÿ

n“0
p´1q

n x2n`1

p2n ` 1q!
(40.29)

cospxq :“
8ÿ

n“0
p´1q

n x2n

p2nq!
(40.30)

where the series converge absolutely everywhere and uniformly on any compact subinterval of R.
Moreover, these functions are arbitrary many times differentiable on R with the derivatives

exp1
pxq “ exppxq ^ sin1

pxq “ cospxq ^ cos1
pxq “ ´ sinpxq (40.31)

at each x P R.
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Proof. We claim that the quantity R from (40.25) equals `8 for all three series. To see
this, note that for n • 3 we have n{3 • 1 and n ´ rn{3s • n ´ n{3 ´ 1 • n{3 and so

n! •

π

n{3§i§n

i • pn{3q
n{3 (40.32)

and so |n!|1{n
• pn{3q

1{3. It follows that lim supnÑ8p1{n!q1{n
“ 0 thus proving that the

radius of convergence of all three series is infinite. Corollary 40.4 allows us to differenti-
ate the series term-ty-term which then readily shows (40.31). ⇤

The exp function, to be called exponential, obeys the following:

Lemma 40.6 The function exp defined above obeys

@x, y P R : exppx ` yq “ exppxq ¨ exppyq (40.33)

In particular, setting e :“
∞8

n“0
1
n! we have

@x P R : exppxq “ ex (40.34)

where ex :“ inft q
?

ep : p P Z ^ q • 1 ^ x § p{qu.

We leave the proof of the lemma to a homework exercise while noting that the main
idea is the following fact: If f : R Ñ R is continuous and obeys f px ` yq “ f pxq f pyq for
all x, y P R then either f vanishes identically everywhere, or there is a ° 0 such that
f pxq “ ax for all x P R. The continuity assumption cannot be dropped; indeed, without
that other solutions that are not of this form exist.

For the sine and cosine functions we in turn get:

Lemma 40.7 The sin and cos functions defined above satisfy:
(1) @x P R : sinpxq

2
` cospxq

2
“ 1 and so sin and cos take values in r´1, 1s,

(2) the addition formulas hold:

@x, y P R :
sinpx ` yq “ sinpxq cospyq ` cospxq sinpyq

cospx ` yq “ cospxq cospyq ´ sinpxq sinpyq
(40.35)

(3) The number
p :“ 2 inf

 
t • 0 : cosptq “ 0

(
(40.36)

obeys p P p0, 8q and we have

@x P R : sinpxq “ ´ cospx ` p{2q “ ´ sinpx ´ pq (40.37)

and so, in particular,

@x P R : sinpx ` 2pq “ sinpxq ^ cospx ` 2pq “ cospxq (40.38)

showing that sin and cos are 2p-periodic.

Note that the above defines two fundamental numbers in analysis; the Euler num-
ber e, named after early 18-th century Swiss mathematician and scientist Leonard Euler,
and the Ludolphine number p, named after 16-th century German/Dutch mathemati-
cian Ludolph van Ceulen who computed p to 35 digits.

The definition e :“
∞8

n“0
1
n! makes it easy to check that e P p2, 3q. For p we use

that sin has to be increasing and non-negative on r0, p{2s and, being equal to negative
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of its second derivative, also concave. This, along with its taking values in r´1, 1s shows
2x{p § sinpxq § 1. Integrating over r0, p{2s then shows

p

4
“

x2

p

ˇ̌
ˇ
p{2

0
§

ª p{2

0
sinpxqdx § x

ˇ̌p{2
0 “

p

2
(40.39)

which in light of 1 “ cosp0q ´ cospp{2q “
≥p{2

0 sinpxqdx gives p P r2, 4s. If we instead use
the upper bound sinpxq § x, we even get p2

• 8, i.e., p •

?

8.
The Euler and Ludoplhine numbers are known to extremely high accuracy:

e “ 2.7182818284590452353602874713527 . . .
p “ 3.14159265358979323846264338327950288 . . .

(40.40)

Both numbers are irrational which, for e, is actually easy to show:

Lemma 40.8 e R Q

Proof. If e were rational, we could write it as e “ p{q for some natural p, q • 2. Then q!e
is an integer and, since n! divides q! when n § q, also

8ÿ

n“q`1

q!
n!

“ q! ´

qÿ

n“0

q!
n!

(40.41)

is an integer. But q • 2 implies q!{n! •
1

q`1 2´pn´q´1q for n • q ` 1 and so

0 †

8ÿ

n“q`1

q!
n!

§

8ÿ

n“q`1

1
q ` 1

2´pn´q´1q
“

1
q ` 1

8ÿ

k“0

2´k
“

2
q ` 1

† 1 (40.42)

a contradiction. So we must have e R Q after all. ⇤
A curious fact (discovered by L. Euler) is that these numbers are closely related. In-

deed, the suspiciously similar form of the power series (40.28–40.30) is resolved into

@x P R : eix
“ cospxq ` i sinpxq (40.43)

where i is the imaginary number such that i2
“ ´1. (This requires defining these func-

tions for complex-valued arguments; the proof that they converge is however identical.)
In particular, we have

eip
“ ´1 (40.44)

The latter is merely a restatement of the definition of p (any odd multiple of p substi-
tuted for p still makes this TRUE), but the Euler formula (40.43) is quite important as it
lays the basis of polar representation of complex numbers.

We will return to power series representation of functions (not just transcendental
ones) when we discuss analytic functions. This will allow us to give an infinite series
representation for p as well albeit not so rapidly convergent as the one of e that the ar-
gument from Lemma 40.8, which incidentally applies to any number of the form

∞8
n“0

an
n!

with tanunPN P ZN of at most exponential growth, could be readily repeated.
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