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26. INTERMEDIATE VALUE THEOREM

We will now move to an application of continuity that has played an important role in
the development of the concept itself. We start with the classical result dating back to
B. Bolzano in 1817 (although attributions to K. Weierstrass are made as well).

Theorem 26.1 (Intermediate Value Theorem) Let a † b be reals and f : ra, bs Ñ R a
continuous function with Domp f q “ R. Assume f paq § f pbq. Then

@y P
“

f paq, f pbq
‰

Dx P ra, bs : y “ f pxq (26.1)

To put this in words, a continuous function on a bounded closed interval achieves all values
between the values at the endpoints.

Proof. Let y P r f paq, f pbqs. We can assume that f paq † f pbq (for otherwise x :“ a will do)
and that y † f pbq (for otherwise x “ b will do). Define

x :“ sup
 

z P ra, bs : f pzq § y
(

(26.2)

Since the set contains a (because f paq § y), we have x P ra, bs. First we claim that
f pxq § y. Indeed, the properties of the suprema ensures existence of a sequence tznunPN

with @n P N : f pznq § y such that zn Ñ x. But the continuity of f then guarantees
f pznq Ñ f pxq and so f pxq § y.

Next we claim that f pxq “ y. Indeed, if NOT then f pxq † y. But this means that x † b
(for y § f pbq) and by continuity of f at x, for each e ° 0 there exists d ° 0 such that

f
`
rx, x ` dq

˘
Ñ

`
f pxq ´ e, f pxq ` e

˘
(26.3)

For e :“ y ´ f pxq this gives @z P rx, x ` dq : f pzq § y which by x † b contradicts the
definition of x. Hence f pxq “ y and we are done. ⇤

Remark 26.2 We note that another way to prove this would be to literally limit the proof
of the Bolzano-Weierstrass theorem. Indeed, since y P r f paq, f pbqs we first check whether
y P r f paq, f pcqs or y P r f pcq, f pbqs for c :“ a`b

2 . Taking the first interval in which this is true
and labeling it ra1, b1s we can proceed recursively. This defines two sequences tanunPN

and tbnunPN such that a0 “ a and b0 “ b and

@n P N : an § an`1 § bn`1 § bn ^ bn`1 ´ an`1 “
1
2

pbn ´ anq (26.4)

and, moreover,
@n P N : f panq § y § f pbnq. (26.5)

As both tanunPN and tbnunPN converge to the same x P ra, bs, continuity of f tells us (by
a “Squeeze Theorem” argument) that y “ f pxq.

A standard application of the Intermediate Value Theorem is:

Corollary 26.3 Each odd-degree polynomial has a root in R.

Proof. An odd degree polynomial is a non-zero multiple of Ppxq “ x2n`1
` Qpxq where n

is a natural and Q is a polynomial with degpQq § 2n. A simple limit argument for
x fiÑ Qpxq{x2n`1 as x Ñ ˘8 ensures that Ppxq ° 0 for x sufficiently large positive
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and Ppxq † 0 for x sufficiently large negative. As P is continuous, the IVT ensures
existence of an x P R with Ppxq “ 0. ⇤

Another application comes in:

Corollary 26.4 Let I Ñ R be a non-empty bounded closed interval and let f : I Ñ I be a
continuous function with Domp f q “ I. Then Dx P I : f pxq “ x.

We leave the proof of this lemma to homework. Note that the assumption that I is
closed is crucial; indeed, f pxq “ x{2 maps p0, 1q into itself without having a fixed point.
As it turns out, this corollary is a special case of an important theorem:

Theorem 26.5 (Brower’s fixed point theorem) Let B :“ tx P Rd : }x}2 § 1u be the unit
(Euclidean) ball in Rd and let f : B Ñ B a continuous function with Domp f q “ B. Then f has
a fixed point in B; i.e., Dx P B : f pxq “ x.

The proof of this theorem is more complicated as it uses facts from differential geom-
etry. The statement actually extends to continuous functions on compact subsets of Rd

and, in fact, even those in complete linear spaces of infinite dimension. (That version
goes by the name Schauder’s fixed point theorem.) These fixed point theorems find
(at times surprising) applications in mathematics; e.g., optimization, game theory, etc.
Their strength is in their relatively general and abstract formulation. The price one pays
for this (e.g., compared to Banach’s fixed point theorem) is lack of uniqueness and/or
method to construct a solution.

Another simple corollary of the Intermediate Value Theorem is:

Corollary 26.6 Let f : R Ñ R be continuous and 2-periodic; i.e., @x P R : f px ` 2q “ f pxq.
Then Dx P R : f px ` 1q “ f pxq.

Proof. Let gpxq “ f px ` 1q ´ f pxq. Then g is continuous with

gpx ` 1q “ f px ` 2q ´ f px ` 1q “ f pxq ´ f px ` 1q “ ´gpxq (26.6)

Note that this means that

gp0q “ 0 “ gp1q _ gp0q † 0 † gp1q _ gp0q ° 0 ° gp1q. (26.7)

In all three cases, the Intermediate Value Theorem implies existence of x P r0, 1s such
that gpxq “ 0. The latter is equivalent to f px ` 1q “ f pxq. ⇤

Also this result is a special case of a more general theorem:

Theorem 26.7 (Borsuk-Ulam) Let S :“ tx P Rd : }x}1 “ 1u be the unit sphere in Rd.
(We think of S as a metric space with Eulidean metric inherited from Rd.) Let f : S Ñ R be a
continuous function. Then

Dx P S : f p´xq “ f pxq (26.8)

Also this theorem requires some elementary facts from differential geometry so we
leave its proof to classes dealing with that topic. A popular way to state the result is that
at each time, there always exist two points on the opposite sides of the Earth where the
temperature is the same. (This includes the statement in Corollary 26.6, provided we
interpret a 2-periodic function on R as a function on a circle of circumference 2.)
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While the above results use various facts about metric spaces, the property underlying
the Intermediate Value Theorem has not been introduced yet. We fix that in:

Definition 26.8 (Connectedness) A topological space X is said to be connected if

@E Ñ X : E ‰ H ^ E open ^ X r E open ñ E “ X (26.9)

i.e., if X is not a disjoint union of two non-empty sets that are both open and closed. A

set A Ñ X is said to be connected if it is connected in the relative topology on A.

The definition immediately gives that R r t0u or R2 r R are NOT connected. How-
ever, as is intuitive, R itself or any subinterval thereof are connected although the proof
of this requires some work. Indeed, we have:

Lemma 26.9 Let a † b be reals. Then ra, bs is connected.

Proof. Let E Ñ ra, bs be non-empty and relatively open such that also Ec :“ ra, bs r E is
non-empty and relatively open. Without loss of generality (otherwise swap E and Ec),
assume a R E. Set x :“ infpEq. Then x ‰ a because a P Ec implies that ra, a ` dq Ñ Ec for
some d ° 0 by the fact that Ec is relatively open. But then x P E implies px ´ d1, xs Ñ E for
some d1

° 0 by the fact that E is relatively open, contradicting the definition of x. Hence
we must have x P Ec. But then px ´ d2, x ` d2

q Ñ Ec for some d2 by Ec being relatively
open which contradicts the fact that infpEq is an adherent point of E. Our assumptions
thus lead to a contradiction and so ra, bs is connected as desired. ⇤

We now state:

Theorem 26.10 (Intermediate Value Theorem, topological version) Let X, Y be topologi-
cal spaces and f : X Ñ Y a continuous function with Domp f q “ X. Then

X connected ñ f pXq connected (26.10)

Proof. Without loss of generality, we may assume that f pXq “ Y. Let E Ñ Y be non-
empty and open with Y r E open. Then also f ´1

pEq is non-empty and, by continuity,
open with f ´1

pY r Eq open. As f ´1
pY r Eq “ X r f ´1

pEq, the connectivity of E implies
f ´1

pEq “ X. But then E “ f pXq “ Y thus proving connectivity of f pXq. ⇤
To see that this implies Theorem 26.1 note that, by Lemma 26.9 and Theorem 26.10,

f pra, bsq is connected for any continuous f : ra, bs Ñ R with Domp f q “ ra, bs. Since
f paq, f pbq P f pra, bsq, if y P r f paq, f pbqs obeys y R f pra, bsq, then

f
`
ra, bs

˘
“
 

z P f pra, bsq : z ° y
(

Y
 

z P f pra, bsq : z † y
(

(26.11)

is a decomposition of f pra, bsq into two non-empty relatively open sets, in contradiction
with connectivity of f pra, bsq. It follows that we must have y P f pra, bsq after all meaning
that y “ f pxq for some x P f pra, bsq.

As a final item to discuss, we introduce another notion of connectivity:

Definition 26.11 (Path connectedness) Let X be a topological space. We say that X is

path connected if for all x, y P X there exists a function f : r0, 1s Ñ X such that

Domp f q “ r0, 1s ^ f continuous ^ f p0q “ x ^ f p1q “ y (26.12)
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The reason for the name is that the range of f is a continuous curve, or a path, in X.
As it turns out, we then have:

Theorem 26.12 Let X be a topological space. Then

X path connected ñ X connected (26.13)

The proof of this useful fact is left to homework. Note that the result immediately
implies that R or any interval in R is connected. (This is a bit of a cheat because the
proof of Theorem 26.12 actually follows very much that of Lemma 26.9.) To give a non-
trivial example where Theorem 26.12 is of independent value, note that R3 r R is path
connected and thus connected. Proving connectedness of R3 r R directly seems to be
difficult and path connectedness makes it rather easy.

We remark that the converse to (26.13) fails in general. To give a counterexample,
let tanunPN be a strictly decreasing sequence of positive reals with a0 :“ 1 and an Ñ 0.
Define the function h : p0, 1s Ñ r0, 1s by

hpxq :“

$
’&

’%

0, if Dn P N : x “ a2n,
1, if Dn P N : x “ a2n`1,
linear, otherwise.

(26.14)

Now take
A :“ pt0u ˆ r0, 1sq Y

 
px, hpxqq : x P p0, 1s

(
(26.15)

regarded as a subset of R2 with the Euclidean metric. Then A is connected (more or
less because every two disjoint closed subsets of R2 have a positive distance between
them) but not path connected because A contains no continuous path between px, hpxqq

(for x P p0, 1s) and a point of the form p0, yq — indeed, any such path would contain
sequences of points converging to p0, 0q and p0, 1q, which is impossible under continuity
(of the function defining the path) which dictates convergence to p0, yq.
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