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43. THE METRIC SPACE OF CONTINUOUS FUNCTIONS

We have previously dealt with uniform convergence from the perspective of individual
functions. Here we will observe that these notions can be categorized using metric space
convergence. This point of view brings a number of useful consequences to the whole
picture, including a functional-analytic version of the Arzelà-Ascoli Theorem.

We start with a definition:

Definition 43.1 Given metric spaces X and Y, we write

CpX, Yq :“
 

f P YX : Domp f q “ X ^ continuous
(

(43.1)

and
CbpX, Yq :“

 
f P YX : Domp f q “ X ^ continuous ^ bounded

(
(43.2)

for the space of continuous, resp., bounded and continuous functions X Ñ Y.

The key point for considering the space of bounded functions is:

Lemma 43.2 Let pX, rXq and pY, rYq be metric spcaes. For f , g P CbpX, Yq, let

r8p f , gq :“ sup
xPX

rY
`

f pxq, gpxq
˘

(43.3)

Then r8 is a metric on CbpX, Yq. If Y “ R and rY is such that @y, ỹ P R : rYpy, ỹq “ |y ´ ỹ|

then @ f , g P CbpX, Rq : r8p f , gq “ } f ´ g} where

} f } :“ sup
xPX

ˇ̌
f pxq

ˇ̌
(43.4)

is a norm on CbpX, Rq.

Proof. The symmetry, positivity and the triangle inequality are clear from the similar
properties of rY. For the strict positivity we note that if r8p f , gq “ 0 then @x P X : f pxq “

gpxq and so f “ g as desired. The corresponding properties when pY, rYq “ pR, | ¨ |q are
verified similarly. ⇤

We will henceforth call r8 the supremum metric and } ¨ } the supremum norm. These are
generally defined only for bounded functions even though r8p f , gq may be finite even
if both f and g are unbounded. The connection with the previously defined concepts is
now as follows:

Lemma 43.3 Let X and Y be metric spaces and t fnunPN and f functions from CbpX, Yq. Then

fn Ñ f uniformly ô fn Ñ f in
`
CbpX, yq, r8

˘
(43.5)

and
t fnunPN uniformly Cauchy ô t fnunPN Cauchy in

`
CbpX, yq, r8

˘
(43.6)

Proof. This is checked directly from the definition of uniform convergence and the
uniform-Cauchy property. ⇤

As it turns out, additional properties imposed on the metric spaces X and Y will result
in additional properties of the metric space pCbpX, Yq, r8q. For instance, we have:
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Lemma 43.4 Let pX, rXq and pY, rYq be metric spaces. Then

pY, rYq complete ñ
`
CbpX, yq, r8

˘
complete (43.7)

Proof. Let t fnunPN be a Cauchy sequence in pCbpX, Yq, r8q. By Lemma 43.3, t fnunPN is
uniformly Cauchy. Under the assumption that pY, rYq is completely, Lemma 39.7 implies
existence of f P CbpX, Yq such that fn Ñ f uniformly. By Lemma 43.3, fn Ñ f in
pCbpX, Yq, r8q. ⇤

Another observation concerns the space X:

Lemma 43.5 Let pX, rXq and pY, rYq be metric spaces. Then

pX, rXq compact ñ CpX, Yq “ CbpX, yq (43.8)

Proof. By a corollary to Bolzano-Weierstrass Theorem, a continuous functions on a com-
pact metric space is bounded. ⇤

The metric space point of view is useful as it allows us to apply general facts from
metric space theory to the specific set of continuous functions. We have already encoun-
tered an example of this in the proof of Lemma 42.5. Another example is:

Lemma 43.6 Let pX, rXq be a metric space and let a P X. For each z P X, let

fzpxq :“ rXpz, xq ´ rXpa, xq (43.9)

Then fz P CbpX, Rq for all z P X and

@z, z̃ P X : } fz ´ fz̃} “ rXpz, z̃q (43.10)

In particular, fpzq :“ fz defines an isometry of pX, rXq onto Ranp f q. The space pRanp f q, } ¨ }q

is a completion of pX, rXq.

Proof. The triangle inequality shows
ˇ̌
fzpxq

ˇ̌
§

ˇ̌
rXpz, xq ´ rXpa, xq

ˇ̌
§ rXpz, aq (43.11)

Equality occurs for x :“ a and so we get } fz} “ rXpa, zq. In particular, fz is Lipschitz
continuous and bounded, i.e., fz P CbpX, Rq, for all z P X. The proof of (43.10) follows
exactly the same lines with z̃ instead of a.

Recall that a completion of pX, rXq is a metric space pX, rq for which there is an isom-
etry f : X Ñ X such that Ranpfq is dense in X. The density of Ranp f q in Ranp f q is trivial
so all we need to check that pRanp f q, } ¨ }q is complete. This follows from the fact that
pCbpX, Rq, } ¨ }q is complete by Lemma 43.4 and the observation that a closed subset of a
complete metric space is complete with respect to the relative metric. ⇤

The simplicity of the previous proof is particularly striking when we recall how diffi-
cult was our original proof of this fact in 131AH. Indeed, there we built X as the set of
equivalence classes of Cauchy sequences of elements from pX, rXq while here we only
appeal to elementary notions from metric spaces theory and (via Lemma 43.4) the com-
pleteness of pR, | ¨ |q. This is no surprise as our original argument was modeled on Can-
tor’s proof of the completeness of the reals (and could even be used to construct the reals
from the rationals).
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We will now move to demonstrate the strength of these notions by giving a version of
the Arzelà-Ascoli Theorem cast in the language of metric space of continuous functions
with uniform metric:

Theorem 43.7 (Arzelà-Ascoli Theorem, functional form) Let X and Y be metric spaces.
Assume

X compact ^ Y compact (43.12)

Then for all F Ñ CbpX, Yq,

F is compact in pCbpX, Yq, r8q (43.13)

is equivalent to

F is closed, uniformly bounded and equicontinuous (43.14)

Here the word “closed” still refers to the metric space pCbpX, Yq, r8q.

Proof. We start by proving that (43.13) implies (43.14). Assume that F is compact in
pCbpX, Yq, r8q. Then F is closed and bounded in pCbpX, Yq, r8q, where the latter means
that there exists f P F such that suphPF r8p f , hq † 8. The fact that f is bounded in turns
means that there exists y P Y such that supxPX rYp f pxq, yq † 8. But then

r :“ sup
hPF

rY
`
y, hpxq

˘
§ sup

hPF
r8p f , hq ` sup

xPX
rYp f pxq, yq † 8 (43.15)

and we then have Ranphq Ñ BYpy, rq for all h P F, implying that F is uniformly bounded
in accord with Definition 41.1.

In order to prove that F is equicontinuous, note that compactness of F implies total
boundedness. Given e ° 0 there thus exist n P N and f0, . . . , fn P F such that

F Ñ

n§

i“0

Bp fi, rq (43.16)

where Bp f , rq :“ th P CpX, Yq : r8ph, f q † ru. Each fi is continuous and, since X is
compact, it is even uniformly continuous. Thus for each i “ 0, . . . , n there exists di ° 0
such that‘rXpx, x̃q † d implies rYp fipxq, fipx̃qq † e. Taking instead d :“ mini“0,...,n di,
we may assume that all di’s are equal to d. Given f P F , and setting i0 :“ minti “

0, . . . , n : f P Bp fi, rqu, for any x0, x P X with rXpx, x0q † d we then have

rY
`

f pxq, f px0q
˘

§ rY
`

f pxq, fi0pxq
˘

` rY
`

fi0pxq, fi0px0q
˘

` rY
`

f px0q, fi0px0q
˘

† 3e
(43.17)

This applies to all f P F and x0 so F is equicontinuous as desired.
Let us now move to the opposite implication; namely, that (43.14) implies (43.13).

Let F Ñ CpX, Yq be closed, uniformly bounded and equicontinuous. Let t fnunPN P

FN. Since the functions in this sequence are equicontinuous the Arzelà-Ascoli Theo-
rem (Theorem 42.3) shows the existence of a subsequence t fnk ukPN and a function f such
that fnk Ñ f uniformly. Since F is closed, f P F. It follows that F is sequentially compact
and hence (assuming the Axiom of Choice), compact. ⇤
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We remark that, in class, the above was stated under the weaker assumption that Y is
locally compact. This turns out to be incorrect because the most standard definition of
this notion is different than what was stated in class:

Definition 43.8 (Local compactness) A metric space pX, rXq is said to be locally com-
pact if for each x P X there is r ° 0 such that the closure of Bpx, rq is compact.

What the argument given in class gave was that it suffices that Y has the Heine-Borel
property; namely, that all bounded closed subsets of Y are compact. This is stronger
than local compactness but not by my in practical sense. Indeed, one can always make
the Heine-Borel property fail in a a locally compact space if we re-metrize the space by
a bounded metric. What matters more is that the above works for Y being the reals
endowed with the Euclidean metric.

We also note that, while our proof of Theorem 43.7 relied on the equivalence between
sequential compactness and compactness, this can be avoided.
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