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39. UNIFORM CONVERGENCE

Having discussed the salient aspects of differential and integral calculus, we will move
to a new topic; namely, uniform convergence of functions. We then give applications to
functions defined by uniformly convergent series.

39.1 Uniform convergence.

A ubiquitous but important problem in analysis is exchange of limits. As an example,
we are interested to know under what conditions a two dimensional array tam,num,nPN

of real numbers satisfies

lim
mÑ8 lim

nÑ8 am,n “ lim
nÑ8 lim

mÑ8 am,n (39.1)

assuming that the inner limits both exist. Writing A :“ tpk, `q P N ˆ N : k § `u for
which limmÑ8 1Apm, nq “ 0 and limnÑ8 1Apm, nq “ 1 shows that (39.1) definitely does
not hold automatically. The problem clearly stems from the fact that the larger the m
the larger the n needs to be taken for am,n to be close to its n Ñ 8 limit. This can be
circumvented by requiring the closeness of am,n to its n Ñ 8 limit uniformly in m:

Lemma 39.1 (Exchange of limits) Let tam,numPN P RNˆN obey

@m P N : bm :“ lim
nÑ8 am,n exists (39.2)

and
@n P N : cn :“ lim

mÑ8 am,n exists (39.3)

If, in addition to (39.2), we also have

lim
nÑ8 sup

mPN

|bm ´ am,n| “ 0 (39.4)

then
lim

mÑ8 bm exists ^ lim
nÑ8 cn exists ^ lim

mÑ8 bm “ lim
nÑ8 cn (39.5)

The existence of all limits is in R but the supremum in (39.4) is in extended reals.

We leave the easy proof of this lemma to a homework exercise. Note that (39.4)
strengthens (39.2) to the desired uniformity (in m). Notwithstanding, our main inter-
est in uniformity is the context of sequences of functions:

Definition 39.2 (Pointwise and uniform convergence) Given sets A Ñ B, a metric
space pX, rq, a function f : B Ñ X and a sequence of functions t fnunPN from B to X
(with all of this having domain B), we say:

‚ fn Ñ f pointwise on A if

@x P A : lim
nÑ8 r

`
fnpxq, f pxq

˘
“ 0 (39.6)

‚ fn Ñ f uniformly on A if

lim
nÑ8 sup

xPA
r

`
fnpxq, f pxq

˘
“ 0 (39.7)

If A “ B then “on A” suffix is usually dropped.

It is immediate that uniform convergence implies pointwise convergence:
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Lemma 39.3 For any t fnunPN and f functions A Ñ X,

fn Ñ f uniformly ñ fn Ñ f pointwise (39.8)

Proof. The uniform convergence implies that, given e ° 0, there is n0 P N such that

@n • n0 : sup
xPA

r
`

fnpxq, f pxq
˘

† e (39.9)

But then for any z P A, we have

@n • n0 : r
`

fnpzq, f pzq
˘

† e (39.10)

thus showing that rp fnpzq, f pzqq Ñ 0 and proving pointwise convergence. ⇤
We note that another way to see (39.8) is by writing the definitions (39.6–39.7) in logi-

cal primitives as

fn Ñ f pointwise :“ @e ° 0 @x P X Dn0 P N @n • n0 : r
`

fnpxq, f pxq
˘

† e (39.11)

while

fn Ñ f uniformly :“ @e ° 0 Dn0 P N @x P X @n • n0 : r
`

fnpxq, f pxq
˘

† e (39.12)

and so the “mere” difference is the swap of “@x P X” and “Dn0 P N.” We have actually
seen this kind of a swap in the definition of uniform continuity (vs continuity).

39.2 Relation to continuity.

In order to give an example of these notions, consider the functions t fnunPN of the
type p0, 8q Ñ R defined by

fnpxq :“
nx

1 ` nx
(39.13)

Then fnpxq Ñ 1 for x ° 0 yet fnp0q “ 0 for all n P N and so fn Ñ 1p0,8q pointwise.
Note, however, that the convergence is not uniform because supx°0 | fnpxq ´ 1| “ 1 for
all n P N, due to the Intermediate Value Theorem and the fact that all of these function
tend continuously to zero as x Ñ 0`.

At this point it is interesting to note that, while each fn in (39.13) is continuous, the
limit function 1p0,8q is not. As our next theorem shows, already this would be enough to
invalidate uniform convergence:

Theorem 39.4 (Continuity preserved by uniform convergence) Given metric spaces X
and Y let t fnunPN and f functions X Ñ Y (with domain X) such that fn Ñ f uniformly. Then

@x0 P X :
`
@n P N : fn continuous at x0

˘
ñ f continuous at x0 (39.14)

In particular, a uniformly convergent sequence of continuous functions has a continuous limit.

Proof. The proof uses a so called 3e-argument. Let e ° 0. The fact that fn Ñ f uniformly
implies the existence of n0 P N such that

@n • n0@x P X : rY
`

fnpxq, f pxq
˘

† e (39.15)

The fact that fn0 is continuous at x0 in turn gives a d ° 0 such that

@x P X : rXpx, x0q † d ñ rY
`

fn0pxq, fn0px0q
˘

† e. (39.16)
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The triangle inequality now shows

rY
`

f pxq, f px0q
˘

§ rY
`

f pxq, fn0pxq
˘

` rY
`

f px0q, fn0px0q
˘

` rY
`

fn0pxq, fn0px0q
˘
.

(39.17)

For x such that rXpx, x0q † d, (39.15–39.16) show that each term on the right is † e and
so rYp f pxq, f px0qq † 3e. As e was arbitrary, we have shown that f continuous at x0. ⇤

The statement is not limited to continuity; in fact, a relatively minor variation on the
proof of Theorem 39.4 gives:

Corollary 39.5 Let X and Y be metric spaces, t fnunPN and f functions X Ñ Y (with do-
main X) such that fn Ñ f uniformly. Let x0 P X be such that

@n P N : lim
xÑx0

fnpxq exists (39.18)

Assuming, in addition, that Y is complete, we then have

lim
xÑx0

f pxq exists ^ lim
nÑ8 lim

xÑx0
fnpxq exists (39.19)

and
lim

xÑx0
f pxq “ lim

nÑ8 lim
xÑx0

fnpxq (39.20)

Proof. Redefining fn by its limit at x0, we can assume that each fn is continuous at x0.
The uniform convergence then gives existence of n0 P N such that

@n • n0@x P X r tx0u : rY
`

fnpxq, f pxq
˘

† e. (39.21)

(Here x0 was removed since we have now changed fn’s at x0.) The triangle inequality

rY
`

fnpxq, fmpxq
˘

§ rY
`

fnpxq, f pxq
˘

` rY
`

fmpxq, f pxq
˘

(39.22)

then implies
@n, m P n0 @x P X r tx0u : rY

`
fnpxq, fmpxq

˘
† 2e (39.23)

Taking x Ñ x0 and using that fn and fm are continuous at x0 gives

@n, m • n0 : rY
`

fnpx0q, fmpx0q
˘

§ 2e (39.24)

proving that t fnpx0qunPN0 is Cauchy. As Y is complete, L :“ limnÑ8 fnpx0q exists.
The existence of the limit shows that there is n1 P N such that rYp fnpx0q, Lq † e for

all n • n1. Set m :“ maxtn0, n1u and use the continuity of fm to find d ° 0 such that

@x P X : rXpx, x0q † d ñ rYp fmpxq, fmpx0qq † e (39.25)

Combining (39.21) with (39.25) and the definition of m, for all x P X such that 0 †

rXpx, x0q † d we have

rY
`

f pxq, L
˘

§ rY
`

f pxq, fmpxq
˘

` rY
`

fmpxq, fmpx0q
˘

` rY
`

fmpx0q, L
˘

† 3e
(39.26)

As this holds for all e ° 0, we have proved that f pxq Ñ L as x Ñ x0, as desired. ⇤
We note that the statement is very similar to that of Lemma 39.1 and can be made to

subsume it provided we “compactify” N by adding a point at infinity.
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39.3 Application to uniformly convergent series.

The previous proof touched on the need to consider Cauchy sequences when the limit
object is not (yet) available. The same applies to uniform convergence:

Definition 39.6 Let A be a set and pX, rq a metric space. A sequence of functions t fnunPN

from A to X is said to be uniformly Cauchy if

@e ° 0 Dn0 P N @m, n • n0@x P X : r
`

fnpxq, fmpxq
˘

† e. (39.27)

To see how this ties to uniform convergence, we prove:

Lemma 39.7 Let t fnunPN and f be functions from a set A to a metric space pX, rq. Then

fn Ñ f uniformly ñ t fnunPN uniformly Cauchy (39.28)

On the other hand, if pX, rq is complete, then

t fnunPN uniformly Cauchy ñ D f P XA : fn Ñ f uniformly. (39.29)

Proof. We will start with (39.28). Let e ° 0. Then

sup
xPX

r
`

fnpxq, fmpxq
˘

§ sup
xPX

r
`

fnpxq, f pxq
˘

` sup
xPX

r
`

f pxq, fmpxq
˘

(39.30)

Under the uniform convergence fn Ñ f , both terms on the right are smaller than e
once m and n are sufficiently large. This is exactly what is required by (39.27).

Moving to (39.29), here we first observe that the assumption that t fnunPN is uniformly
Cauchy implies that t fnpxqunPN is Cauchy for all x P X. Thanks to the assumed com-
pleteness, the pointwise limit f pxq :“ limnÑ8 fnpxq exists for each x. Passing to the limit
m Ñ 8 in (39.27) we then get fn Ñ f uniformly. ⇤

The second part of the previous proof can be partially summarized as:

Corollary 39.8 Let t fnunPN and f be functions from a set A to a metric space pX, rq. Then

fn Ñ f pointwise ^ t fnunPN uniformly Cauchy ñ fn Ñ f uniformly. (39.31)

The above shows that, modulo extraction of a limit function (which is where the com-
pleteness is needed), uniform Cauchy property is necessary and sufficient for a point-
wise limit being a uniform limit. Phrasing statements using the uniform Cauchy prop-
erty allows us to not to commit to there being a limit function right from the start.

In order to demonstrate the connection between continuity and uniform convergence,
we will study real-valued functions defined by infinite series of the form

∞8
n“0 fn. Here

is a key tool in this endeavor:

Lemma 39.9 (Weierstrass M-test) Let X be a metric space and let t fnunÑ8 be real-valued
functions on X such that, for a sequence tMnunPN P r0, 8q

N,

@x P X@n P N :
ˇ̌
f pxq

ˇ̌
§ Mn (39.32)

and
8ÿ

n“0
Mn † 8 (39.33)

Preliminary version (subject to change anytime!) Typeset: May 21, 2023



MATH 131BH notes 226

Then there exists a function f : X Ñ R such that
nÿ

k“0

fk Ñ f uniformly (39.34)

(We will denote f as
∞8

n“0 fn.)

Proof. Let n § m be naturals. Then for all x P X,
ˇ̌
ˇ

nÿ

k“0

fkpxq ´

nÿ

k“0

fkpxq

ˇ̌
ˇ §

mÿ

k“n`1

ˇ̌
fkpxq

ˇ̌
§

8ÿ

k“n`1

Mk (39.35)

The convergence (39.29) ensures that the sum on the right is less than e once n is suffi-
ciently large. As the bound does not depend on x, we get that the sequence of partial
sums t

∞n
k“0 fkunPN is uniformly Cauchy. As the sequence is R valued, and R is com-

plete, the claim follows from Lemma 39.7. ⇤
In order to give a concrete example, we consider functions given as power series:

Lemma 39.10 Let tanunPN P RN be such that

R :“
“
lim sup

nÑ8
|an|

1{n‰´1
° 0 (39.36)

with the convention `8
´1 :“ 0 and 0´1 :“ `8. Let x0 P R. Then for all x P px0 ´ R, x0 ` Rq,

f pxq :“
8ÿ

n“0
anpx ´ x0q

n (39.37)

converges absolutely and defines a continuous function f : px0 ´ R, x0 ` Rq Ñ R.

Proof. Let r P p0, Rq and let e P p0, R ´ rq. As pR ´ eq
´1

° R´1, the definition of R ensures
that there exists n0 P N such that

@n • n0 : |an| §
1

pR ´ eqn (39.38)

Denoting A :“ maxt|ak|pR ´ eq
k : k “ 0, . . . , n0u Y t1u, we then have

@n P N : |an| §
A

pR ´ eqn (39.39)

Denoting fnpxq :“ anpx ´ x0q
n, we then have

Mn :“ sup
xPrx0´r,x0`rs

ˇ̌
fnpxq

ˇ̌
§ |an|rn

§ A
´ r

R ´ e

¯n
(39.40)

Since r † R ´ e, this is summable on n and so the Weierstrass M-test shows that the the
series defining f converges pointwise absolutely as well as uniformly on rx0 ´ r, x0 ` rs.
By Theorem 39.4, the limit function is continuous on rx0 ´ r, x0 ` rs. Since this holds for
all r P p0, Rq, we get the claim. ⇤

We finish by noting that, while the above criterion for uniform convergence also im-
plies absolute convergence, these are distinct notions. For instance,

∞8
n“1p´1q

n 1
n 1r0,ns

converges uniformly on R yet not pointwise absolutely at any point.
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