Publications & preprints:

[55]

M. Biskup, R. Fukushima, W. König, Eigenvalue fluctuations for lattice Anderson Hamiltonians: Unbounded potentials, preprint   pdf TeX arXiv

[54]

M. Biskup and J. Lin, Sharp asymptotic for the chemical distance in long-range percolation, preprint   pdf TeX arXiv

[53]

M. Biskup and P.-F. Rodriguez, Limit theory for random walks in degenerate time-dependent random environments, preprint   pdf TeX arXiv

[52]

M. Biskup, O. Louidor, On intermediate level sets of two-dimensional discrete Gaussian Free Field, preprint   pdf TeX arXiv

[51]

M. Biskup, J. Ding. S. Goswami, Return probability and recurrence for the random walk driven by two-dimensional Gaussian free field, preprint   pdf TeX arXiv

[50]

M. Biskup, W. König and R.S. dos Santos, Mass concentration and aging in the parabolic Anderson model with doubly-exponential tails, Probab. Theory Rel. Fields (to appear)   pdf TeX arXiv published

[49]

M. Biskup and O. Louidor, Full extremal process, cluster law and freezing for two-dimensional discrete Gaussian Free Field, preprint   pdf TeX arXiv

[48]

M. Biskup and E.B. Procaccia, Eigenvalue vs perimeter in a shape theorem for self-interacting random walks, Ann. Appl. Probab. (to appear)   pdf TeX arXiv

[47]

M. Biskup and E.B. Procaccia, Shapes of drums with lowest base frequency under non-isotropic perimeter constraints, preprint   pdf TeX arXiv

[46]

M. Biskup and O. Louidor, Conformal symmetries in the extremal process of two-dimensional discrete Gaussian Free Field, preprint   pdf TeX arXiv

[45]

M. Biskup, R. Fukushima and W. König, Eigenvalue fluctuations for lattice Anderson Hamiltonians, SIAM J. Math. Anal. 48 (2016), no. 4, 2674--2700   pdf TeX arXiv published

[44]

M. Biskup and W. König, Eigenvalue order statistics for random Schrödinger operators with doubly-exponential tails, Commun. Math. Phys. 341 (2016), 179--218   pdf TeX arXiv published

[43]

M. Biskup and T. Richthammer, Gibbs measures on permutations over one-dimensional discrete point sets, Ann. Appl. Probab. 25 (2015), no. 2, 898--929   pdf TeX arXiv published

[42]

M. Biskup and O. Louidor, Extreme local extrema of two-dimensional discrete Gaussian free field, Commun. Math. Phys. 345 (2016), no. 1, 271--304   pdf TeX arXiv published

[41]

M. Biskup, O. Louidor, E.B. Procaccia, R. Rosenthal, Isoperimetry in two-dimensional percolation, Commun. Pure Appl. Math. 68 (2015), no. 9, 1483--1531   pdf TeX arXiv published

[40]

M. Biskup, M. Salvi and T. Wolff, A central limit theorem for the effective conductance: Linear boundary data and small ellipticity contrasts, Commun. Math. Phys. 328 (2014), no. 2, 701--731.  pdf TeX arXiv published

[39]

M. Biskup, O. Louidor, A. Rozinov and A. Vandenberg-Rodes, Trapping in the random conductance model, J. Statist. Phys. 150 (2013), no. 1, 66--87   pdf TeX arXiv published

[38]

M. Biskup, Recent progress on the Random Conductance Model, Prob. Surveys 8 (2011) 294--373   pdf TeX arXiv published

[37]

M. Biskup and N. Crawford, Absence of magnetism in continuous-spin systems with long-range antialigning forces, J. Statist. Phys. 144 (2011), no. 4, 731--748   pdf TeX arXiv published

[36]

M. Biskup and O. Boukhadra, Subdiffusive heat-kernel decay in four-dimensional i.i.d. random conductance models, J. Lond. Math. Soc. 86 (2012), no. 2, 455--481.  pdf TeX arXiv published

[35]

M. Biskup and R. Kotecký, True nature of long-range order in a plaquette orbital model, J. Statist. Mech. 2010 (2010), no. 11, P11001.  pdf TeX arXiv published

[34]

M. Biskup, Graph diameter in long-range percolation, Random Structures & Algorithms 39 (2011), no. 2, 210--227.  pdf TeX arXiv published

[33]

M. Biskup and R.H. Schonmann, Metastable behavior for bootstrap percolation on regular trees, J. Statist. Phys. 136 (2009), no. 4, 667-676. pdf TeX arXiv published

[32]

M. Biskup and H. Spohn, Scaling limit for a class of gradient fields with non-convex potentials, Ann. Probab. 39 (2011), no. 1, 224--251.  pdf TeX arXiv published

[31]

M. Biskup and T.M. Prescott, Functional CLT for random walk among bounded random conductances, Electron. J. Probab. 12 (2007), Paper no. 49, 1323--1348.   pdf TeX arXiv published

[30]

N. Berger, M. Biskup, C.E. Hoffman and G. Kozma, Anomalous heat-kernel decay for random walk among bounded random conductances, Ann. Inst. Henri Poincaré 274 (2008), no. 2, 374--392. pdf TeX arXiv published

[29]

M. Biskup, Reflection positivity and phase transitions in lattice spin models, In: R. Kotecký (ed), Methods of Contemporary Mathematical Statistical Physics, Lecture Notes in Mathematics, vol. 1970, Springer-Verlag Berlin Heidelberg, 2009, pp. 1-86.   pdf arXiv published

[28]

M. Biskup, L. Chayes and S.A. Kivelson, On the absence of ferromagnetism in typical 2D ferromagnets, Commun. Math. Phys. 274 (2007), no. 1, 217-231.   pdf TeX arXiv published

[27]

M. Biskup and R. Kotecký, Phase coexistence of gradient Gibbs states, Probab. Theory Rel. Fields 139 (2007), no. 1-2, 1-39.  pdf TeX arXiv published

[26]

M. Biskup, L. Chayes and S. Starr, Quantum spin systems at positive temperature, Commun. Math. Phys. 269 (2007), no. 3, 611-657   pdf TeX arXiv published

[25]

M. Biskup, L. Chayes and S.A. Smith, Large-deviations/thermodynamic approach to percolation on the complete graph, Random Structures & Algorithms 31 (2007), no. 3, 354-370.   pdf TeX arXiv published

[24]

M. Biskup and R. Kotecký, Forbidden gap argument for phase transitions proved by means of chessboard estimates, Commun. Math. Phys. 264 (2006), no. 3, 631-656.  pdf TeX arXiv published

[23]

N. Berger and M. Biskup, Quenched invariance principle for simple random walk on percolation clusters, Probab. Theory Rel. Fields 137 (2007), no. 1-2, 83-120.   pdf TeX arXiv published

[22]

M. Biskup, L. Chayes and N. Crawford, Mean-field driven first-order phase transitions in systems with long-range interactions, J. Statist. Phys. 122 (2006), no. 6, 1139-1193.  pdf TeX arXiv published

[21]

K.S. Alexander, M. Biskup and L. Chayes, Colligative properties of solutions: II. Vanishing concentrations, J. Statist. Phys. 119 (2005), no. 3-4, 509-537.  pdf TeX arXiv published

[20]

K.S. Alexander, M. Biskup and L. Chayes, Colligative properties of solutions: I. Fixed concentrations, J. Statist. Phys. 119 (2005), no. 3-4, 479-507.  pdf TeX arXiv published

[19]

M. Biskup, L. Chayes and S.A. Kivelson, Order by disorder, without order, in a two-dimensional spin system with O(2) symmetry, Ann. Henri Poincaré 5 (2004), no. 6, 1181-1205.  pdf TeX arXiv published

[18]

Z. Nussinov, M. Biskup, L. Chayes and J. van den Brink, Orbital order in classical models of transition-metal compounds, Europhys. Lett. 67 (2004), no. 6, 990-996.  pdf TeX arXiv published

[17]

M. Biskup, L. Chayes and Z. Nussinov, Orbital ordering in transition-metal compounds: I. The 120-degree model, Commun. Math. Phys. 255 (2005), no. 2, 253-292.  pdf TeX arXiv published

[16]

M. Biskup, C. Borgs, J.T. Chayes, and R. Kotecký, Partition function zeros at first-order phase transitions: Pirogov-Sinai theory, J. Statist. Phys. 116 (2004), no. 1-4, 97-155.  pdf TeX arXiv published

[15]

M. Biskup, On the scaling of the chemical distance in long range percolation models, Ann. Probab. 32 (2004), no. 4, 2938-2977.  pdf TeX arXiv published

[14]

M. Biskup, C. Borgs, J.T. Chayes, L.J. Kleinwaks and R. Kotecký, Partition function zeros at first-order phase transitions: A general analysis, Commun. Math. Phys. 251 (2004), no. 1, 79-131.  pdf TeX arXiv published

[13]

M. Biskup, L. Chayes and R. Kotecký, Comment on: "Theory of the evaporation/condensation transition of equilibrium droplets in finite volumes", Physica A 327 (2003) 589-592.  pdf TeX arXiv published

[12]

M. Biskup, L. Chayes and R. Kotecký, A proof of the Gibbs-Thomson formula in the droplet formation regime, J. Statist. Phys. 116 (2004), no. 1-4, 175-203.  pdf TeX arXiv published

[11]

M. Biskup, L. Chayes and R. Kotecký, Critical region for droplet formation in the two-dimensional Ising model, Commun. Math. Phys. 242 (2003), no. 1-2, 137-183.  pdf TeX arXiv published

[10]

M. Biskup and L. Chayes, Rigorous analysis of discontinuous phase transitions via mean-field bounds, Commun. Math. Phys. 238 (2003), no. 1-2, 53-93.  pdf TeX arXiv published

[9]

M. Biskup, Ph. Blanchard, L. Chayes, D. Gandolfo and T. Krüger, Phase transition and critical behavior in a model of organized criticality, Probab. Theory Rel. Fields. 128 (2004), no. 1, 1-41.  pdf TeX arXiv published

[8]

M. Biskup, L. Chayes and R. Kotecký, On the formation/dissolution of equilibrium droplets, Europhys. Lett. 60 (2002), no. 1, 21-27.  pdf arXiv published

[7]

M. Biskup and W. König, Screening effect due to heavy lower tails in one-dimensional parabolic Anderson model, J. Statist. Phys. 102 (2001), no. 5/6, 1253-1270.  arXiv published

[6]

M. Biskup and W. König, Long-time tails in the parabolic Anderson model with bounded potential, Ann. Probab. 29 (2001), no. 2, 636-682.  arXiv published

[5]

M. Biskup, C. Borgs, J.T. Chayes, L.J. Kleinwaks and R. Kotecký, General theory of Lee-Yang zeros in models with first-order phase transitions, Phys. Rev. Lett. 84 (2000), no. 21, 4794-4797.  arXiv published

[4]

M. Biskup, L. Chayes and R. Kotecký, Coexistence of partially disordered/ordered phases in an extended Potts model, J. Statist. Phys. 99 (2000), no. 5/6, 1169-1206.  published

[3]

M. Biskup, C. Borgs, J.T. Chayes and R. Kotecký, Gibbs states of graphical representations of the Potts model with external fields, J. Math. Phys. 41 (2000), no. 3, 1170-1210.  published

[2]

M. Biskup and F. den Hollander, A heteropolymer near a linear interface, Ann. Appl. Probab. 9 (1999), no. 3, 668-687.  published

[1]

M. Biskup, Reflection positivity of the random-cluster measure invalidated for non-integer q, J. Statist. Phys. 92 (1998), no. 3/4, 369-375.  published

Popular articles, theses & unpublished preprints

[6]

M. Biskup, Lecture notes for the PCMI Undergraduate Summer School, preliminary version   pdf

[5]

M. Biskup, On Three Techniques for Rigorous Proofs of First Order Phase Transitions, PhD thesis (defended on July 30, 1999 at University of Nijmegen, The Netherlands) pdf

[5]

M. Biskup, L. Chayes and R. Kotecký, On the continuity of the magnetization and the energy density for Potts models on two-dimensional graphs, mp-arc version (unpublished manuscript).

[4]

M. Biskup, P. Cejnar and R. Kotecký, Kvantové pocítace, Vesmír 76 (1997) 250--255; A popular article in Czech on quantum computing. journal  HTML transcript

[3]

M. Biskup, Decoherence and efficiency of quantum error correction, quant-ph/9608010 (unpublished manuscript).

[2]

M. Biskup, On the subshifts of compact type, Master Class paper (unpublished manuscript).

[1]

M. Biskup, Mean-Field Theory of Diluted Potts Models, Diploma thesis (in Czech), June 1994.


If unable to view/print the pdf files and/or unable to download the published, email biskup@math.ucla.edu.