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UCLA and University of South Bohemia, and TU Munich
We consider gradient fields (φx : x ∈ Zd) whose law takes the

Gibbs-Boltzmann form Z−1 exp{−∑〈x,y〉 V(φy − φx)}, where the sum
runs over nearest neighbors. We assume that the potential V admits
the representation

V(η) := − log
∫

$(dκ) exp
[
− 1

2 κη2]
where $ is a positive measure with compact support in (0, ∞). Hence
the potential V is symmetric but non-convex in general. While for
strictly convex V’s the translation-invariant, ergodic gradient Gibbs
measures are completely characterized by their tilt, a non-convex po-
tential as above may lead to several ergodic gradient Gibbs measures
with zero tilt. Still, every ergodic, zero-tilt gradient Gibbs measure for
the potential V from above scales to a Gaussian free field.

1. Introduction. Gradient fields belong to a class of models that arise
in equilibrium statistical mechanics, e.g., as approximations of critical sys-
tems and as effective interface models. Although their definition is rather
simple, and in fact quite a lot is known (see the reviews by Funaki [15], Ve-
lenik [28] or Sheffield [25]), much is still there to be learned. In this note we
study gradient fields on a lattice. Here the field is a collection of real-valued
random variables φ := {φx : x ∈ Zd} and the distribution of φ on RZd

is
given by the formal expression

1
Z

exp
{
− ∑
〈x,y〉

V(φy − φx)
}

∏
x∈Zd

dφx, (1.1)

where dφx is the Lebesgue measure, 〈x, y〉 refers to an unordered nearest-
neighbor pair on Zd, and V is an even, measurable function — called the
potential — which is bounded from below and grows superlinearly at ±∞.

Of course, to define the measure (1.1) precisely we have to restrict the
above expression to a finite subset of Zd and fix the φ’s on its boundary; Z
is then the normalizing constant. Another way to regularize the expres-
sion (1.1) is to consider directly measures on all of RZd

whose conditional
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2 M. BISKUP AND H. SPOHN

probabilities in finite sets take the above form. In our context this standard
definition is hampered by the fact that, due to the unbounded nature of the
fields φx, no such infinite-volume measures may exist at all. However, if one
restricts attention to (the σ-algebra generated by) the gradient variables,

ηxy := φy − φx, |x− y| = 1, (1.2)

then infinite volume measures exist under the above conditions on V. Since
the measure depends only on gradients, we refer to such measures as gra-
dient Gibbs measures (GGM), in accord with Funaki [15] and Sheffield [25].

Throughout we will focus on translation-invariant GGMs. An important
characteristic is their tilt. For a translation-invariant GGM µ there exists a
unique tilt vector t ∈ Rd such that

Eµ(ηb) = t · b (1.3)

for every edge b of Zd — which we regard as a vector in this formula.
Of course, this definition is really meaningful only for the GGMs that are
ergodic — i.e., trivial on the σ-algebra of events invariant under all lattice
translations. Indeed, in the ergodic case t represents the average incline of
typical configurations.

For the case of quadratic V — the massless free field — the measure (1.1)
is Gaussian and so many desired characteristics are amenable to explicit
computations. The challenge for mathematicians has been to develop an
equivalent level of understanding for non-quadratic V’s. A good amount of
progress in this direction has been made in the last 10 to 15 years: Brydges
and Yau [7] (and also earlier works, e.g., by Gawȩdzki and Kupiainen [12]
and Magnen and Sénéor [19]) studied the effect of analytic perturbations of
the quadratic potentials and concluded that the large scale behavior is that
of the massless free field. Naddaf and Spencer [23] proved the same non-
perturbatively for strictly convex potentials V and GGMs with zero tilt. The
corresponding extension to non-zero tilt was obtained by Giacomin, Olla,
and Spohn [13]. For the same class of potentials, Funaki and Spohn [16]
proved a bijection between the ergodic GGMs and their tilt. Sheffield [25]
characterized translation-invariant GGMs by means of a Gibbs variational
principle and extended Funaki-Spohn’s results to fields taking only a dis-
crete set of values. We refer to the reviews by Funaki [15], Velenik [28] and
Sheffield [25] for further results and references.

As a unifying feature, all the (non-perturbative) results mentioned are
based on the strict convexity of the potential V — be it for the avail of
the Brascamp-Lieb inequality [23, 13, 16], Helffer-Sjöstrand random walk
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SCALING LIMIT OF GRADIENT FIELDS 3

representation [23, 13], coupling to Langevin dynamics [16], and the clus-
ter swapping-algorithm [25]. One would naturally like to have a non-per-
turbative approach that works even for non-convex potentials. With this
motivation, Biskup and Kotecký [5] recently studied the GGMs for non-
convex V that are a log-mixture of centered Gaussians,

V(η) := − log
∫

$(dκ) e−
1
2 κη2

, (1.4)

where $ is a positive measure with compact support in (0, ∞). Surprisingly,
already for the simplest non-trivial case,

$ := pδκ1 + (1− p)δκ2 (1.5)

with κ1 � κ2 > 0, it was shown that, in d = 2, there is a value p ∈ (0, 1) at
which one can construct two distinct, translation-invariant, gradient Gibbs
measures of zero tilt.

The relevant conclusion from [5] for the general theory is that the one-
to-one correspondence between ergodic GGMs and their tilt breaks down
once V is sufficiently non-convex. The next natural question is to under-
stand what happens to the scaling limit. The purpose of this note is to show
that, regardless of the occurrence of phase transition, for potentials of the
form (1.4), every translation-invariant, ergodic GGM with zero tilt scales to
a Gaussian free field.

The proof is based on the fact — utilized already in [5] — that (1.4) allows
us to represent every GGM as a mixture over Gaussian gradient measures
with a random coupling constant κxy for each edge 〈x, y〉. Its covariance is
simply the inverse of the operator

(Lκ f )(x) := ∑
y : |y−x|=1

κxy
[

f (y)− f (x)
]
, (1.6)

where we take, once for all, κxy = κyx. The fluctuations in the Gaussian mea-
sure can be analyzed by invoking a random walk representation; Lκ is the
generator of a random walk with symmetric random jump rates known,
equivalently, under the name random conductance model. The name arises
naturally from the electrostatic interpretation of this problem; cf. Doyle and
Snell [9], in which one views Zd as a resistor network with conductance κxy
— or resistivity 1/κxy — assigned to an edge 〈x, y〉. As it turns out (see
Lemma 3.2), if the initial GGM is ergodic then so is the law of the conduc-
tances. This makes homogenization a possible tool.

Much work has been done in the past two decades on the problem of
random walks with random conductances. For our purposes it suffices to
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4 M. BISKUP AND H. SPOHN

invoke two known results: Kipnis and Varadhan’s [18] invariance princi-
ple (i.e., scaling of the random walk to Brownian motion) and Delmotte
and Deuschel’s [10] annealed derivative heat-kernel bounds. (Note that in
the Helffer-Sjöstrand random walk representation, as used in [23, 13], one
also has to study a random walk in a random environment. However, this
random environment fluctuates in time, while in our case it is static.) This
handles the fluctuations of the field; an important technical issue is thus
the control of the mean. This is where the zero tilt restriction comes in (see
Lemma 3.4, Corollary 5.8 and discussion in Sect. 6).

Note: While this paper has been in the process of revision, further de-
velopments occurred in the study of gradient models with non-convex po-
tentials. Cotar, Deuschel and Müller [8] have shown that for non-convex
perturbations of potentials V where the size of non-convex region is small
compared to typical fluctuations of the field, the conclusions are as in the
convex case. (Their precise condition is a bound on the L1-norm of the neg-
ative part of second derivative.) This is a high-temperature result; work in
progress by Adams, Kotecký and Müller [1] addresses the low-temperaure
case when non-convexities are allowed only sufficiently far away from the
absolute minimum of V. Our contribution remains valuable despite these
advances as it applies to all potentials of the kind (1.4), including those for
which phase coexistence occurs.

The plan of this paper is as follows: In Sect. 2 we define precisely the con-
cept of the gradient Gibbs measure and state our main theorem. In Sect. 3
we introduce the extended gradient Gibbs measures and characterize their
conditional marginals. This will naturally lead to the aforementioned con-
nections with random walks in reversible random environments. To keep
the main line of the argument intact, we first finish proving our main re-
sult in Sect. 4 and only then expound on the random-walk connections in
Sect. 5. Sect. 6 is devoted to discussion of the limitations to zero tilt and
some open questions concerning gradient Gibbs measures.

2. Main results.

2.1. Gradient Gibbs measures. As mentioned above, infinite volume mea-
sures on the field variables (φx) may not always exist — particularly, in
sufficiently low dimensions. To make our statements uniform in dimen-
sion, we will focus attention on the gradient variables. However, not even
that will be entirely straightforward because the gradient variables satisfy
a host of “hard-core” constraints which, in a sense, encapsulate most of the
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SCALING LIMIT OF GRADIENT FIELDS 5

interaction. Since η is gradient, one has

ηx1,x2 + ηx2,x3 + ηx3,x4 + ηx4,x1 = 0, (2.1)

whenever (x1, · · · , x4) are the vertices of a cycle in Zd of length four. We
will often write ηb for the positively-oriented edge b in Zd. Throughout we
will only work with positively oriented edges and will use B(Λ) to denote
the set of such edges with both endpoints in the set Λ ⊂ Zd.

The constraints (2.1) are implemented at the level of the a priori measure
which is defined as follows: Fix a configuration η ∈ RB(Zd) that obeys (2.1)

and, for Λ ⊂ Zd finite, let ν
(ηB(Λ)c )
Λ be the Lebesgue measure on the linear

subspace of configurations (η′b) such that η′b = ηb for all b 6∈ B(Λ) and
that η′ obeys the constraints (2.1). Note that, if φ̄ is a configuration such

that ηxy = φ̄y − φ̄x for every nearest-neighbor pair 〈x, y〉, then ν
(ηB(Λ)c )
Λ is to

within a normalization constant the projection to gradient variables of the
Lebesgue measure on {φx : x ∈ Λ} subject to the boundary condition φ̄.

Next we will give a precise definition of the notion of gradient Gibbs
measure. For a finite Λ ⊂ Zd, consider the specification γΛ, which is a mea-
sure in the first coordinate and a function of the boundary condition in the
second coordinate, that is defined by

γΛ(dηB(Λ)|ηB(Λ)c)

:=
1

ZΛ(ηB(Λ)c)
exp

{
− ∑

〈x,y〉
x∈Λ, y∈Λ∪∂Λ

V(ηxy)
}

ν
(ηB(Λ)c )
Λ (dηB(Λ)). (2.2)

Here ZΛ(ηB(Λ)c) is the normalizing constant.

DEFINITION 2.1. Let EB(Λ) := σ({ηb : b ∈ B(Λ)}). We say that a mea-
sure µ on RB(Zd) is a gradient Gibbs measure if the regular conditional proba-
bility µ(−|EB(Λ)c) in any finite Λ ⊂ Zd satisfies

µ
(
−
∣∣EB(Λ)c

)
(η) = γΛ(−|ηB(Λ)c) (2.3)

for µ-a.e. η.

Most of this paper is restricted to translation invariant gradient Gibbs
measures. To define the required notation, for each x ∈ Zd let τx : RB(Zd) →
RB(Zd) be the “translation by x” which acts on configurations η by shifting
the origin to position x,

(τxη)yz := ηy+x,z+x, (y, z) ∈ B(Zd). (2.4)
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6 M. BISKUP AND H. SPOHN

We say that µ is translation invariant if µ ◦ τ−1
x = µ for all x ∈ Zd, and that

it is ergodic if µ(A) ∈ {0, 1} for every event A such that τ−1
x (A) = A for

all x ∈ Zd.

2.2. Scaling limit. As is usual for problems involving random fields,
we will interpret samples from gradient Gibbs measures as random lin-
ear functionals on an appropriate space of functions. Let C∞

0 (Rd) denote
the set of all infinitely differentiable functions f : Rd → R with compact
support. Given a configuration η = (ηb) of gradients satisfying the con-
ditions (2.1), we can find a configuration of the field φ = (φx) such that
(1.2) holds for every nearest-neighbor pair of sites. The configuration φ is
determined uniquely once we fix the value at one site, e.g., φ0. For any
function f ∈ C∞

0 (Rd) we introduce the random linear functional

φ( f ) :=
∫

dx f (x) φbxc (2.5)

which, under the condition ∫
dx f (x) = 0, (2.6)

does not depend on the choice of the special value φ0.
The functional φ( f ) can be naturally extended to a somewhat larger

space defined as follows. Let ∆ denote the Laplace differential operator
in Rd and consider the set

H0 := {∆g : g ∈ C∞
0 (Rd)}. (2.7)

Note that each f ∈ H0 automatically obeys (2.6). The set H0 is endowed
with a natural quadratic form f 7→ ( f , f ) + ( f ,−∆−1 f ) defined as

(∆g, ∆g) + (∆g,−∆−1∆g) =
∫

Rd
dx
(
|∆g(x)|2 + |∇g(x)|2

)
. (2.8)

We thus define the norm

‖ f ‖H :=
[
( f , f ) + ( f ,−∆−1 f )

]1/2 (2.9)

and let H be the completion of H0 in this norm. Note that H is the case
of k = −1/2 in the family of Sobolev spaces Wk,2(Rd). The condition that
( f ,−∆−1 f ) < ∞ is natural once we realize that this quantity will represent
the variance of the limiting Gaussian field.

The extension of φ toH is implied by the following lemma:
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SCALING LIMIT OF GRADIENT FIELDS 7

LEMMA 2.2. Suppose $ in (1.4) has support bounded away from zero and
let µ be a translation-invariant, ergodic zero-tilt gradient Gibbs measure for the
potential V. Then there exists a constant c < ∞ such that for each f ∈ H0,

‖φ( f )‖L2(µ) ≤ c‖ f ‖H. (2.10)

In particular, φ extends to a linear functional φ : H → R.

Note that (2.10) means that the map f 7→ φ( f ) is continuous in L2-norm.
If we want to avoid questions about accumulations of null sets, this permits
us to work with only a countable number of f ’s at each time. (In particu-
lar, we do not claim that f 7→ φ( f ) is continuous in any pointwise sense.)
This will not pose any problem because we will content ourselves with the
(weaker) definition of a Gaussian free field based on the standard approach
via Gaussian Hilbert spaces (cf. Sheffield [26, Sect. 2.4]):

DEFINITION 2.3. We say that a family {ψ( f ) : f ∈ H} of random variables
on a probability space (Ω, F , P) is a Gaussian free field if the map f 7→ ψ( f ) is
linear a.s. and each ψ( f ) is Gaussian with mean zero and variance

E
(
ψ( f )2) = ( f ,−∆−1 f ). (2.11)

Our goal is to show that the family of random variables {φ( f ) : f ∈ H}
has asymptotically, in the scaling limit, the law of a linear transformation
of a Gaussian free field. To pass to this limit, we have to impose that the
test functions are slowly varying, which we take to be on the scale ε−1. For
ε > 0 and a function f : Rd → R, let

fε(x) := ε(d/2+1) f (εx) (2.12)

and note that the normalization ensures

‖ fε‖2
H = ( fε, fε) +

(
fε, (−∆)−1 fε

)
= ε2( f , f ) +

(
f , (−∆)−1 f

)
≤

ε≤1
‖ f ‖2

H. (2.13)

Let φε denote the linear functional acting on f ∈ C∞
0 (Rd) via

φε( f ) := φ( fε) =
∫

dx f (x)
(
ε(−d/2+1)φbx/εc

)
. (2.14)

The main theorem is the Gaussian scaling limit for φε( f ):
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8 M. BISKUP AND H. SPOHN

THEOREM 2.4 (Scaling to GFF). Suppose V is as in (1.4) with $ compactly
supported in (0, ∞). Let µ be a gradient Gibbs measure for the potential V which
we assume to be ergodic with respect to the translations of Zd and to have zero tilt.
Then for every f ∈ H,

lim
ε↓0

Eµ(eiφε( f )) = exp
{1

2

∫
dx f (x) (Q−1 f )(x)

}
, (2.15)

where Q−1 is the inverse of the operator

Q f :=
d

∑
i,j=1

qij
∂2

∂xj∂xi
f , (2.16)

with (qij) denoting some positive semi-definite, non-degenerate, d× d matrix. In
other words, the law of φε on the linear dual E ′ of any finite-dimensional linear
subspace E ⊂ H converges weakly to that of a Gaussian field with mean zero and
covariance (−Q)−1.

REMARKS 2.5. Here are some additional observations and remarks con-
cerning the model under consideration and the results above:

(1) Since (−Q) is dominated by a multiple of (−∆) from below, the inte-
gral in (2.15) — interpreted as the quadratic form ( f , Q−1 f ) — is well
defined for all f ∈ H.

(2) Note that, in (2.14), the individual φ’s get scaled by ε(−d/2+1) and not
ε−

d/2 as one might expect from the conventional central limiting reason-
ing. This has to do with the fact that the variables (φx) are strongly cor-
related. These correlations are weaker for the gradients ηxy := φy − φx
which adhere to the “usual” central limit scaling. In d = 1 and for gen-
eral potentials V, the increments ηb are in fact i.i.d. and the scaling limit
follows from the standard CLT.

(3) In d > 1 the matrix (qij) is not necessarily a multiple of unity, since, in
general, µ is not guaranteed to be invariant under reflections and ro-
tations of Zd. (Nevertheless, we expect that every zero-tilt, translation-
invariant, ergodic measure for the isotropic interaction (2.2) will inherit
these symmetries.) To get convergence of φε to GFF in the sense of Def-
inition 2.3, one thus has to scale the argument of φ by the root of the
corresponding eigenvalue of q in each of its principal directions.

(4) The absence of strict convexity does not permit us to use the general
argument of Funaki and Spohn [16] for the existence of an ergodic GGM
with zero (or any other prescribed) tilt. To show that such GGMs do
exist — and that our Theorem 2.4 is not vacuous — we note that, by
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SCALING LIMIT OF GRADIENT FIELDS 9

Lemma 4.8 of Biskup and Kotecký [5], every weak limit of torus mea-
sures exhibits exponential concentration of the empirical tilt; one then
just needs to pick any ergodic component. Note that this lemma applies
only to zero tilt (cf. [5, Remark 4.9]).

(5) The restriction to zero tilt is actually a significant drawback of our anal-
ysis. The main reason is our inability to characterize the scaling limit
of the so called corrector for the corresponding random walk problem.
See Sect. 6 for more details.

(6) In the example studied by Biskup and Kotecký [5], cf. (1.5), the two
GGMs coexisting at the transitional value pt of p were proved to exhibit
different characteristic fluctuations. It follows that the corresponding
scaling limits will be distinguished by their stiffness coefficients qij.
Moreover, by Theorem 2.5 of [5], for κ1 � κ2 the transition in d = 2
model with (1.5) lies on a self-dual line, i.e.,

pt

1− pt
=
(κ2

κ1

)1/4
. (2.17)

The transition presumably stays on this line even as one slides the ratio
κ1/κ2 towards one. However, it disappears before κ1/κ2 hits one be-
cause for κ1 ≈ κ2 the potential V is convex and so there is only one
GGM with zero tilt [16]. At such point of disappearance physicists of-
ten expect non-trivial critical fluctuations. Notwithstanding, our results
show this is not the case.

(7) We avoid the context of the “stronger” definition of GFF as a random
element in an appropriate Banach space (cf. Gross [14] or Sheffield [26,
Sect. 2.2]). This definition is appealing in d = 1, where the limiting
functional f 7→ ψ( f ) actually admits the integral representation

ψ( f ) =
∫

R
f (t)ψtdt (2.18)

with t 7→ ψt denoting a continuous diffusion with generator Q, but in
d > 1 the corresponding field becomes less and less regular with in-
creasing dimension and the appeal is lost. However, this context would
be in demand if one wishes to discuss the notion of tightness and con-
vergence in law for the limit in Theorem 2.4.

Both Lemma 2.2 and Theorem 2.4 are proved in Sect. 4.

3. Extended gradient Gibbs measures.
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10 M. BISKUP AND H. SPOHN

3.1. Coupling to random conductance model. The key idea underlying the
representation (1.4) is that the auxiliary variable κ in the expression for V
may be elevated to a genuine degree of freedom associated with the corre-
sponding edge. Specifically, given a gradient Gibbs measure µ with poten-
tial (1.4), for each finite Λ ⊂ B(Zd) consider the measure µ̃Λ on RB(Zd) ×
RΛ defined by

µ̃Λ(A×B) :=
∫
B

∏
b∈Λ

$(dκb) Eµ

(
1A ∏

b∈Λ
eV(ηb)− 1

2 κbη2
b

)
, (3.1)

where A ⊂ RB(Zd) and B ⊂ RΛ are Borel sets. The representation (1.4)
ensures that (µ̃Λ) is a consistent family of measures; by Kolmogorov’s Ex-
tension Theorem these are projections from a unique measure µ̃ on config-
urations (ηb, κb) ∈ RB(Zd) ×RB(Zd). The restriction of µ̃ on the η’s gives us
back µ; we call µ̃ an extension of µ. The measure µ̃ is Gibbs for the Hamilto-
nian ∑〈x,y〉

1
2 κxyη2

xy, so we will refer to it as an extended gradient Gibbs measure
(see Biskup and Kotecký [5] for further facts on the extended GGMs).

To ease the notation, whenever b is an edge between x and y, we may
interchangeably write κb and κxy for the same quantity. Furthermore, for
the same reasons it will even be convenient to assume

κxy = κyx, |x− y| = 1, (3.2)

and work with the κ’s as symmetric objects.

We proceed by a series of lemmas that characterize the properties of µ̃.

LEMMA 3.1. Let µ be a gradient Gibbs measure for the potential V and let µ̃

be its extension to RB(Zd) × RB(Zd). Consider the σ-field E := σ({ηb : b ∈
B(Zd)}). For µ̃-a.e. η, the regular conditional distribution µ̃(−|E )(η), regarded
as a measure on the κ’s, takes the product form

µ̃(dκ|E )(η) =
⊗

b∈B(Zd)

[
eV(ηb)− 1

2 κbη2
b $(dκb)

]
. (3.3)

PROOF. Recall that EB(Λ) := σ({ηb : b ∈ B(Λ)}). The identity (3.1) im-
plies that µ̃Λ coincides with µ̃ on RB(Λ) × RB(Λ). But µΛ(−|EΛ) has the
desired product form by definition and so the claim follows by standard
approximation arguments.

LEMMA 3.2. Let µ be a gradient Gibbs measure and let µ̃ be its extension to
RB(Zd) ×RB(Zd). If µ is translation-invariant and ergodic then so is µ̃.
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SCALING LIMIT OF GRADIENT FIELDS 11

PROOF. The uniqueness of the extension of measures (3.1) implies that
µ̃ is translation-invariant if µ is translation invariant, and so it remains to
prove that ergodicity is inherited as well. Let A ⊂ RB(Zd) × RB(Zd) be a
translation-invariant event, i.e., (η, κ) ∈ A iff (τxη, τxκ) ∈ A for all x. Our
task is to show that µ̃(A) ∈ {0, 1}.

First we invoke the ergodicity of µ. Consider the function

f (η) := Eµ̃(1A |E )(η). (3.4)

Since A and µ̃ are translation invariant, we have

f (τxη) = Eµ̃(1A |E )(τxη) = Eµ̃(1A ◦τ−1
x |E )(η) = f (η), µ̃-a.s.. (3.5)

But f is E -measurable and the restriction of µ̃ to E is µ, which we assumed
to be ergodic. Hence f is constant almost surely. Let c denote this constant.

We will use a standard approximation argument to show that c ∈ {0, 1}.
Since A is an event from the product σ-algebra, there exists a sequence of
events

An ∈ σ
(
{ηxy, κxy : |x− y| = 1, |x| ≤ n}

)
(3.6)

such that
µ̃(A4An) −→n→∞

0. (3.7)

The bound
‖ 1An − 1A ‖L1(µ̃) ≤ µ̃(A4An) (3.8)

shows that then 1An → 1A in L1(µ̃). Since A is translation invariant, we
have 1A = 1A 1τ−1

x (A). Each indicator can be approximated by the indicator
of the event An; a simple bound gives

‖ 1An 1τ−1
x (An)− 1A 1τ−1

x (A) ‖L1(µ̃) ≤ 2µ̃(A4An). (3.9)

For x with |x| > 2n + 1, the fact that µ̃(−|E ) is a product measure (cf
Lemma 3.1) implies that An and τ−1

x (An) are independent. Hence,

Eµ̃(1An 1τ−1
x (An) |E ) = Eµ̃(1An |E )Eµ̃(1τ−1

x (An) |E ). (3.10)

Rolling the approximations backwards, we then conclude that the left-hand
side converges to c in L1(µ̃), while the right-hand side converges to c2 (note
that all expectations are bounded). It follows that c = c2, i.e., c ∈ {0, 1}. As

µ̃(A) = Eµ̃( f ) = c, (3.11)

the proof is finished.
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12 M. BISKUP AND H. SPOHN

3.2. Random walk connections. Our next goal will be to characterize also
the conditional measure given the κ’s. This will in turn require some facts
from the theory of random walks with random conductances. We will fre-
quently borrow facts from an associated potential theory which will be ex-
pounded in Sect. 5.

Let us pick a configuration κ = (κb) with κb ∈ (0, ∞), and recall the for-
mula (1.6) for the generator Lκ of the random walk among conductances κ.
We will focus on the action of Lκ on functions of both the environment κ
and the position x that satisfy the following shift-covariance property

g(κ, x + b)− g(κ, x) = g(τxκ, b), (3.12)

with x ∈ Zd and b a coordinate unit vector in Rd, subject to the condition

g(κ, 0) = 0. (3.13)

This makes the function completely determined by its values at the neigh-
bors of the origin. A function of this kind is said to be harmonic for the above
random walk if

Lκg(κ, ·) = 0 (3.14)

for (almost) every κ. As it turns out, harmonic, shift-covariant functions are
uniquely determined (a.s.) by their mean with respect to ergodic measures
on the conductances:

LEMMA 3.3. Let ν be a translation-invariant, ergodic probability measure on
configurations κ = (κb) ∈ RB(Zd) such that ν(ε ≤ κb ≤ 1/ε) = 1 for some ε > 0.
Let g : RB(Zd) ×Zd → R be a measurable function which is

(1) harmonic in the sense of (3.14), ν-a.s.,
(2) shift-covariant in the sense of (3.12–3.13), ν-a.s.,
(3) square integrable in the sense that Eν|g(·, x)|2 < ∞ for all x with |x| = 1.

If Eν(g(·, x)) = 0 for all x with |x| = 1, then g(·, x) = 0 a.s. for all x ∈ Zd.

We defer the proof, and further discussion of the consequences of shift-
covariance and harmonicity, to Sect. 5. Returning to the gradient fields, we
now characterize the conditional law given the κ’s:

LEMMA 3.4. Let µ be a translation-invariant, ergodic gradient Gibbs measure
with zero tilt and let µ̃ be its extension to RB(Zd) ×RB(Zd). Consider the σ-field
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SCALING LIMIT OF GRADIENT FIELDS 13

F := σ({κb : b ∈ B(Zd)}). For µ̃-a.e. κ, the conditional law µ̃(−|F )(κ), re-
garded as a measure on the set of configurations {(φx) ∈ RZd

: φ0 = 0} with
the φ’s defined from the η’s via (1.2), is Gaussian with mean zero

Eµ̃(φx|F )(κ) = 0, x ∈ Zd, (3.15)

and the covariance given by (−Lκ)−1. Explicitly, for each f : Zd → R with finite
support and ∑x f (x) = 0,

Varµ̃

(
∑
x

f (x)φx

∣∣∣∣F)(κ) = ∑
x

f (x)(−L−1
κ f )(x). (3.16)

PROOF. The fact that the conditional measure is multivariate Gaussian
law with covariance L−1

κ is checked by direct inspection of (3.1). The only
non-trivial task is to identify the mean. First we note that the loop condi-
tions (2.1) ensure that there exists a function u : RB(Zd) × Zd → R such
that

u(κ, 0) = 0 (3.17)

and
u(κ, x + b)− u(κ, x) = Eµ̃(ηx,x+b|F )(κ) (3.18)

for all unit vectors b in the coordinate directions. We claim that u is har-
monic in the sense of (3.14). Indeed,

Lκu(κ, x) = Eµ̃

(
∑

y : |y−x|=1
κxy(φy − φx)

∣∣∣F)(κ), (3.19)

where we write, thanks to the loop conditions, ηxy = φy − φx. Using that
µ̃ is Gibbs, we can now also condition on σ(φy : y 6= x); the conditional
measure µ{x} is Gaussian with the explicit form

µ{x}(dφx) =
1
Z

exp
{
−1

2
φ2

x ∑
y : |y−x|=1

κxy + φx ∑
y : |x−y|=1

κxyφy

}
dφx, (3.20)

where Z is an appropriate normalization constant. It is easy to check that
the mean of φx ∑y : |y−x|=1 κxy under µ{x} is exactly ∑y : |y−x|=1 κxyφy, prov-
ing Lκu(κ, x) = 0.

Next we observe that the translation invariance of µ̃ implies

u(τxκ, b)− u(τxκ, 0) = Eµ̃(η0,b|F )(τxκ)
= Eµ̃(ηx,x+b|F )(κ) = u(κ, x + b)− u(κ, x) (3.21)
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14 M. BISKUP AND H. SPOHN

and so u is shift-covariant as defined in (3.12–3.13). Finally, the definition
of u and the fact that µ̃ has zero tilt imply

Eµ̃

(
u(·, x)

)
= Eµ̃(η0,x) = 0, |x| = 1. (3.22)

As u obeys all conditions of Lemma 3.3, we have Eµ̃(φx|F ) = u(·, x) = 0
µ̃-a.s.

Our reference to the random walk with generator Lκ is not limited to
Lemma 3.3; we will also need to know some specific properties of this ran-
dom walk. First, we will need to know that the position of the walk satisfies
a Central Limit Theorem. Let X = (Xt) denote the continuous-time random
walk with the generator Lκ and let Px

κ denote the law of X subject to the ini-
tial condition Px

κ (X0 = x) = 1. The following lemma goes back to Kipnis
and Varadhan [18].

LEMMA 3.5 (Annealed CLT). Let µ be a measure on RB(Zd) which is tran-
slation-invariant and ergodic, and obeys µ(ε ≤ ωb ≤ 1/ε) = 1 for some ε > 0.
Then there exists a positive semidefinite, non-degenerate, d× d matrix q such that,
for every t > 0, the annealed distribution EµP0

κ (εXtε−2 ∈ ·) converges weakly to
the law of the multivariate normal N (0, tq).

The main result of [18] actually shows that the annealed law of the entire
path t 7→ εXtε−2 converges to that of (a linear transform of) Brownian mo-
tion. However the above is all what will be needed for the purposes of the
present paper.

Apart from a central-limit asymptotics, we will also need to have an es-
timate on the heat kernel of the above random walk. The following lemma
is a consequence of the main result of Delmotte and Deuschel [10].

LEMMA 3.6 (Heat-kernel upper bound). Let µ be a law of the conductances
satisfying the ellipticity condition µ(ε < κb < 1/ε) = 1 for some ε > 0. Then
there is a c1 < ∞ such that

Eµ

∣∣∇i∇jP0
κ (Xt = ·)

∣∣ ≤ c1

td/2+1
, 1 ≤ i, j ≤ d, t > 0. (3.23)

Here ∇i is the discrete spatial derivative in the i-th coordinate direction, i.e.,
∇i f (x) := f (x + êi)− f (x).

PROOF. By formula (1.5b) in [10, Theorem 1.1],

Eµ

∣∣∇i∇jP0
κ (Xt = x)

∣∣ ≤ c′1
Pc′2t(0, x)

t
, (3.24)
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SCALING LIMIT OF GRADIENT FIELDS 15

where Pc′2t(0, x) is the probability of the continuous-time simple random
walk to be at x at time c′2t. This probability is bounded from above by a
constant times t−d/2.

4. Proof of main result.

4.1. Regularity estimates. The goal of this section is to prove Theorem 2.4
concerning the scaling limit of φ( fε). We begin by proving L2-continuity of
the random functional f 7→ φ( f ) on H as stated in Lemma 2.2. For conve-
nience of notation, whenever R is an operator on `2(Zd) we will extend it
to an operator on L2(Rd) via the formula

( f ,R f ) :=
∫

dxdy f (x) f (y)R
(
bxc, byc

)
, (4.1)

whereR(x, y) is the kernel ofR in the canonical basis in `2(Zd).

PROOF OF LEMMA 2.2. Let µ̃ be the extended gradient Gibbs measure
corresponding to µ. Recall the notation Lκ for the generator of the random
walk among conductances κ = (κb) and let L denote the generator of the
simple-random walk (i.e., the special case of Lκ when all κb = 1). Pick
f ∈ {∆g : g ∈ C∞

0 (Rd)}. Lemma 3.4 and the fact that φ( f ) is linear in the
η’s imply

‖φ( f )‖2
L2(µ̃) = Eµ̃

(
( f ,−L−1

κ f )
)

(4.2)

where ( f ,L−1
κ f ) is as defined above. By assumption on the support of $

we know that κb ≥ a µ̃-a.s. by which we immediately have the operator
inequalities

(−Lκ) ≥ a(−L) and (−Lκ)−1 ≤ a−1(−L)−1. (4.3)

Therefore, it suffices to bound the quadratic form associated with the (ho-
mogeneous) discrete Laplacian L by the quadratic form defining the H-
space: (

f , (−L)−1 f
)
≤ c‖ f ‖2

H (4.4)

for some constant c < ∞ and all f in a dense subset ofH.
To this end we pick f ∈ H in the Schwartz class and let

f̂ (k) := (2π)−d/2
∫

f (x)eik·xdx (4.5)
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16 M. BISKUP AND H. SPOHN

be its (L2-norm preserving) Fourier transform. A direct calculation now
yields

(
f , (−L)−1 f

)
=
∫

[−π,π]d
dk

1
(−L̂)(k)

∣∣∣∣ ∑
k′ : ∃`∈Zd

k−k′=2π`

f̂ (k′)
d

∏
j=1

1− e−ik′j

ik′j

∣∣∣∣2, (4.6)

where

(−L̂)(k) := 4
d

∑
j=1

sin2(k j/2) (4.7)

is the generalized eigenvalue of the lattice Laplacian. Introducing−∆̂(k) =
|k|2 to denote the corresponding quantity for the continuum Laplacian, we
invoke the Cauchy-Schwarz inequality for the sum over k′ to get

(
f , (−L)−1 f

)
≤
∫

[−π,π]d
dk
{

∑
k′ : ∃`∈Zd

k−k′=2π`

∣∣ f̂ (k′)
∣∣2(1− ∆̂(k′)−1)} c(k) (4.8)

where

c(k) := ∑
k′ : ∃`∈Zd

k−k′=2π`

1
(−L̂)(k)

−∆̂(k′)
1− ∆̂(k′)

d

∏
j=1

(2 sin(k′j/2)

k′j

)2

(4.9)

is well defined on the set B := {k ∈ [−π, π]d : k j 6= 0, j = 1, . . . , d} of full
Lebesgue measure in [−π, π]d. We claim that

c := sup
k∈B

c(k) < ∞. (4.10)

We will show this by proving that the summand in (4.9) is bounded by a
constant times the product ∏j(|k′j|+ 1)−2. Indeed, for the k′ = k term we
use that the ratio ∆̂(k)/L̂(k) is bounded throughout B, and same for the
ratios k 7→ sin(k j/2)/k j. When k′ 6= k, we set i to be the first index j where
k′j 6= k j and bound the 4 sin(k′i/2)2 term by−L̂(k). Then we bound the ratio
of ∆̂(k)-terms by unity and the j-th term in the product by a constant times
(|k′j|2 + 1)−2. (The sin(k′i/2)-term is not needed because |k′i| ≥ 2π.)

The product ∏j(|k′j|+ 1)−2 is summable over k′ ∈ k + (2πZ)d uniformly
in k ∈ B and so (4.10) is proved. Bounding c(k) by its supremum in (4.8),
we can merge the sum and the integral to get ‖ f ‖2

H. The desired bound (4.4)
follows.
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SCALING LIMIT OF GRADIENT FIELDS 17

REMARK 4.1. The inclusion of L2-norm of f into ‖ f ‖H is crucial for the
bound (4.4). Indeed, on the basis of (4.6) it is not hard to construct func-
tions for which the ratio ( f ,−L−1 f )/( f ,−∆−1 f ) is arbitrarily large. This is
caused by the fact that the spectrum of −∆ extends all the way to infinity
while that of −L is bounded.

The continuity established in Lemma 2.2 allows us to work only with
smooth and compactly-supported test functions. We will nevertheless need
one more regularity bound before we can delve into the proof of our main
result:

LEMMA 4.2. Let µ be a translation-invariant law on the conductances subject
to the ellipticity condition, µ(ε < κb < 1/ε) = 1 for some ε > 0. Then there
exists c < ∞ such that whenever f = ∆g for some g ∈ C∞

0 (Rd),

Eµ

(
f , etLκ f

)
≤ c‖∇g‖2

∞ λ(supp g)2 1
td/2+1

, (4.11)

where λ(A) is the set function on Borel subsets of Rd defined by

λ(A) := ∑
x∈Zd

d

∑
i=1

∫
Ri

dz 1{x+z∈A} (4.12)

with Ri denoting the set of points in [0, 1]d with vanishing i-th coordinate.

PROOF. Translation invariance of µ and a simple integration by parts
tells us

Eµ

(
∆g, etLκ ∆g

)
= ∑

x,y∈Zd

∫
[0,1]d

dz
∫

[0,1]d
dz′ ∆g(x + z)∆g(y + z′)EµPx

κ (Xt = y)

= ∑
x,y∈Zd

d

∑
i,j=1

∫
Ri

dz
∫

Rj

dz′ ∂ig(x + z)∂jg(y + z′)∇i∇jEµPx
κ (Xt = y),

(4.13)

where ∂i stands for the partial derivative with respect to the i-th coordinate.
Restricting the integrations and sums so that the arguments x + z and y + z′

are in the support of g, bounding the partial derivatives by ‖∇g‖∞, and
applying the estimate (3.23), we obtain the desired bound.

The consequence of Lemma 4.2 that will concern us is as follows:
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18 M. BISKUP AND H. SPOHN

COROLLARY 4.3. For µ as in Lemma 4.2 and any f ∈ {∆g : g ∈ C∞
0 (Rd)},

lim
M→∞

sup
0<ε<1

∫ ∞

M
dt Eµ ε−2( fε, etε−2Lκ fε

)
= 0. (4.14)

PROOF. Pick f of the form f = ∆g and note that fε = ∆g(ε), where
g(ε)(x) := ε

d/2+1g(xε). First we observe

‖∇g(ε)‖∞ = ε
d/2‖∇g‖∞. (4.15)

Next we note that, since the support of g is the closure of a non-empty
bounded open set, a simple covering argument tells us that

εdλ(supp g(ε)) −→
ε↓0

d| supp g|, (4.16)

where | supp g| is the Lebesgue measure of supp g. As a consequence, there
exists a constant C(g) < ∞ such that

λ(supp g(ε)) ≤ C(g)ε−d, 0 < ε < 1. (4.17)

Plugging (4.15) and (4.17) into (4.11), we get for ε ∈ (0, 1),

Eµ ε−2( fε, etε−2Lκ fε

)
≤ c‖∇g‖2

∞C(g)2 1
td/2+1

. (4.18)

The functions on the left (indexed by ε) are uniformly integrable in t in all
d ≥ 1.

4.2. Scaling limit. Having dispensed with regularity considerations, we
can now proceed to establish the principal fact underlying the proof of The-
orem 2.4:

PROPOSITION 4.4. Let µ be a translation-invariant, ergodic measure on κ =
(κb) ∈ RB(Zd) such that µ(δ ≤ κb ≤ 1/δ) = 1 for some δ > 0. Then there exists
a positive semidefinite, non-degenerate, d× d matrix q = (qij) such that

lim
ε↓0

(
fε, (−Lκ)−1 fε

)
=
(

f , (−Q)−1 f
)

(4.19)

in µ-probability for each f ∈ C∞
0 (Rd) ∩H, where Q is defined from q by (2.16).

Key to the proof is the following lemma:
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SCALING LIMIT OF GRADIENT FIELDS 19

LEMMA 4.5. For every t > 0 and any f ∈ C∞
0 (Rd) ∩H

Θε(t) := ε−2( fε, e tε−2Lκ fε

)
−
(

f , e tQ f
)
−→
ε↓0

0 in L2(µ). (4.20)

PROOF. Let (Xt)t≥0 be the continuous-time random walk with the gener-
ator Lκ and let Px

κ denote the law of the walk started from x. By Lemma 3.5,
the annealed law of εXtε−2 tends weakly to that of multivariate normal

Nt := N
(
0, tq

)
(4.21)

for some positive semidefinite, non-degenerate, d× d matrix q = (qij). As
a consequence, if G ⊂ C∞

0 (Rd) is a family of functions that are uniformly
equicontinuous and bounded, we have

Eµ

(
sup
g∈G

∣∣∣ E0
κ

(
g(εXtε−2)

)
− Eg(Nt)

∣∣∣2 ) −→
ε↓0

0. (4.22)

Now let Q be the generator of the Brownian motion with mean zero and
covariance q; i.e., Q is the operator in (2.16). Then we have(

f , e tQ f
)

=
∫

dy f (y)E
(

f (y +Nt)
)
. (4.23)

As Lκ is the generator of the random walk (Xt), we derive similarly

ε−2( fε, e tε−2Lκ fε

)
= εd

∫
[0,1]d×[0,1]d

dz1dz2 ∑
x∈Zd

f (εx + εz1)Ex
κ

(
f (εz2 + εXtε−2)

)
.

(4.24)
We thus need to show that the right-hand side of (4.24) tends to that of
(4.23). Note that if f is supported in [−M, M]d, the integral in (4.23) can be
restricted to y ∈ [−M, M]d and the sum over x in (4.24) to, say, |x| ≤ 2M/ε
(once ε� 1).

Substituting y = εx + εz with x ∈ Zd, |x| ≤ 2M/ε, and z ∈ [0, 1]d in
(4.23) allows us to put both terms on the same footing. Subtracting (4.23)
from (4.24), taking expectation with respect to µ and applying the Cauchy-
Schwarz inequality we thus get

EµΘε(t)2

≤ ‖ f ‖2 εd
∫

[0,1]d

dz ∑
x : |x|≤2M/ε

Eµ

∣∣∣ Ex
κ f (εz + εXtε−2)− E f (εx + εz +Nt)

∣∣∣2.

(4.25)
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20 M. BISKUP AND H. SPOHN

Using translation invariance of µ, we may replace Ex
κ f (εz + εXtε−2) by the

expression E0
κ f (εx + εz + εXtε−2) inside the expectation. For f ∈ C∞

0 (Rd),

G :=
{

f (εx + εz + ·) : |x| ≤ 2M/ε, z ∈ [0, 1]d
}

(4.26)

is an equicontinuous family of uniformly bounded functions. Then (4.22)
tells us that the right-hand side of (4.25) tends to zero as ε ↓ 0, which proves
the desired claim (4.20).

PROOF OF PROPOSITION 4.4. To extract (4.19) from (4.20), we note that
for any f ∈ C∞

0 (Rd) ∩H,(
f , (−Lκ)−1 f

)
=
∫ ∞

0
dt
(

f , e tLκ f
)
. (4.27)

Replacing f by fε and scaling t by ε2, we find

( fε, (−Lκ)−1 fε) =
∫ ∞

0
dt ε−2( fε, etε−2Lκ fε

)
. (4.28)

By (4.20) the function under integration tends to ( f , e tQ f ) in probability for
each t; the monotonicity in t (and continuity of the limit) ensures that the
convergence is actually uniform (in probability) on compact intervals. By
Corollary 4.3, the integral can be truncated to a finite interval in L1-norm,
and similarly for the integral of the limit which is finite as f is in the domain
of Q−1. It follows that(

fε, (−Lκ)−1 fε

)
−→
ε↓0

∫ ∞

0
dt
(

f , e tQ f
)

=
(

f ,−Q−1 f
)
, (4.29)

in µ-probability (and L1(µ)). This is the desired conclusion (4.19).

REMARK 4.6. We note that, to control the tail of the integral in (4.27) in
d ≥ 3 it suffices to invoke the diagonal heat-kernel estimate,

EµP0
κ (Xt = x) ≤ c1

td/2
, x ∈ Zd, (4.30)

which in the elliptic case is an immediate consequence of the mixing the-
ory for Markov chains based on isoperimetric inequalities. This is sufficient
because the finiteness of the Green function in d ≥ 3 permits us to define
( f , (−Lκ)−1 f ) even for f ≥ 0. This enables us to reduce the general case
to positive f by decomposing the test function into a positive and negative
part and applying

Eν

(
f , etLκ f

)
≤ ‖ f ‖2

1
c1

td/2
, (4.31)
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which is uniformly integrable when d ≥ 3. However, to include d = 2, we
cannot disregard the cancellations due to the vanishing of

∫
f (x)dx and

thus the stronger derivative bound (3.23) is necessary. A similar situation
occurred in Giacomin, Olla and Spohn [13] where a stronger Nash continu-
ity estimate was required to include d = 2.

Finally, we are ready to establish the main result of this paper:

PROOF OF THEOREM 2.4. Let µ be a translation-invariant, ergodic gra-
dient Gibbs measure with zero tilt and let µ̃ be its extension to RB(Zd) ×
RB(Zd). We want to prove that φ( fε) tends weakly to a normal random vari-
able with mean zero and variance ( f , (−Q)−1 f ). By Lemma 2.2 it suffices
to prove this for f ∈ C∞

0 (Rd) ∩H.
By Lemma 3.4 we know that φ( f ) is Gaussian conditional on κ. The stan-

dard formula for any Gaussian random variable X,

E(eiX) = eiE(X)− 1
2 Var(X), (4.32)

implies via (3.15–3.16)

Eµ̃(eiφ( f )|F )(κ) = e−
1
2 ( f ,(−Lκ)−1 f ). (4.33)

By Proposition 4.4 we have ( fε, (−Lκ)−1 fε, ) → ( f , (−Q)−1 f ) in µ̃-proba-
bility. Since the right-hand side of (4.33) is a bounded continuous function
of this inner product, (2.15) follows by means of the Bounded Convergence
Theorem.

5. Potential theory for random conductance model. The proof of the
key Lemma 3.3 leads us to the study of potential theory for operators de-
pending on a random environment that falls into the class of random con-
ductance models. A good deal of what is to follow exists explicitly, or im-
plicitly, in the literature. We borrowed some of the notation from the pa-
per of Mathieu and Piatnitski [21] although the formalism draws on earlier
works in homogenization theory; see, e.g., the book by Jikov, Kozlov and
Oleinik [17]. Notwithstanding, the content of Sect. 5.2 is presumably new.

5.1. Basic notions. Consider a translation-invariant ν probability mea-

sure on Ω := R
B(Zd)
+ (endowed with the product σ-algebra) satisfying the

ellipticity condition

∃ε > 0 : ν(ε ≤ κb ≤ 1/ε) = 1, b ∈ B(Zd). (5.1)
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Let L2(ν) denote the closure of the set of all local functions in the topology
induced by the inner product

〈h, g〉 := Eν

(
h(κ)g(κ)

)
. (5.2)

Let B := {ê1, . . . , êd} denote the set of coordinate vectors in Zd. The trans-
lation by the vectors in B induce natural unitary maps T1, . . . , Td on L2(ν)
defined via

(Tjh) := h ◦ τêj , j = 1, . . . , d. (5.3)

Apart from the square integrable functions we will also need to work with
vector fields by which we will generally mean measurable functions u : Ω×
B → R or Ω × B → Rd depending on the context. We will sometimes
write u1, . . . , ud for u(·, ê1), . . . , u(·, êd) — note that these may still be vector
valued.

REMARK 5.1. While we index vector fields only by the positive coordi-
nate vectors, in certain situations it is convenient to have them defined also
for the negative coordinate directions via

u(κ,−b) := −u(τ−bκ, b), b ∈ B. (5.4)

As we will see this definition will automatically ensure that the cycle con-
dition (see Lemma 5.2 below) holds for the trivial cycles crossing only a
single edge.

Let L2
vec(ν) be the set of all vector fields with (u, u) < ∞, where (·, ·)

denotes the inner product

(u, v) := Eν

(
∑
b∈B

κb u(κ, b) · v(κ, b)
)

. (5.5)

Examples of such functions are the gradients ∇h of local functions h ∈
L2(ν) defined componentwise via the formula

(∇h)j := Tjh− h, j = 1, . . . , d. (5.6)

We denote by L2
∇(ν) the closure of the set of gradients of local functions in

the topology induced by the above inner product.

LEMMA 5.2. Let u ∈ L2
∇. Then u satisfies the cycle condition

n

∑
j=0

u(τxj κ, xj+1 − xj) = 0 (5.7)
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for any finite (nearest-neighbor) cycle (x0, x1, . . . , xn = x0) on Zd. In particular,
there exists a shift-covariant function ū : Ω × Zd → Rd such that u(κ, b) =
ū(κ, b) for every b ∈ B.

PROOF. The cycle condition (5.7) holds trivially for all gradients of local
functions. Indeed, if u = ∇h then, in light of (5.4) we have

u(τxj κ, xj+1 − xj) = (∇h)xj+1−xj(τxj κ) = h ◦ τxj+1(κ)− h ◦ τxj(κ). (5.8)

A corresponding limit extends this to all of L2
∇. To define ū(·, x), we in-

tegrate properly shifted values of u along a path from zero to x; the cycle
condition guarantees that the result is independent of the choice of the path
and that ū is shift covariant.

We will henceforth use the convention to write ū for the extension of a
shift-covariant vector field u ∈ L2

vec to a function on Zd. Notice that the
shift Tj extends naturally via

Tjū(κ, x) := ū(τêj κ, x) = (Tju)(κ, x). (5.9)

Next let us characterize the functions in (L2
∇)⊥:

LEMMA 5.3. For u ∈ L2
vec(ν), let Lu be the function in L2(ν) defined by

(Lu)(κ) := ∑
b∈B

[
κbu(κ, b)− (τ−bκ)b u(τ−bκ, b)

]
, (5.10)

where −b is the coordinate vector opposite to b. Then we have

u ∈ (L2
∇)⊥ ⇔ Lu = 0, ν-a.s.. (5.11)

If u satisfies the cycle condition and ū is its extension, then Lu(τxκ) = Lκ ū(κ, x).

PROOF. These are direct consequences of the definitions, the translation
invariance of ν and a simple calculation.

Note that Lu plays the role of divergence — i.e., the total flow out of a
given vertex — of vector field u. However, we prefer to denote it by L to
emphasize its connection with the operator Lκ.
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5.2. Uniqueness of harmonic embedding. Clearly, all u ∈ L2
∇ are shift co-

variant and have zero mean. A natural question is whether every shift-
covariant zero-mean u is in L2

∇. (Note that this is analogous to asking whe-
ther every closed differential form is exact.) Our answer to this is in the
affirmative:

THEOREM 5.4. Suppose ν is ergodic. Then every u ∈ L2
vec(ν) which obeys

the cycle condition (5.7) and Eνu = 0 satisfies u ∈ L2
∇.

Recall again that (5.7) and zero expectation are necessary for u ∈ L2
∇. The

above says that these conditions are also sufficient. To prove the theorem,
we will need the following lemma:

LEMMA 5.5. Let Pj denote the orthogonal projection onto Ker(1 − Tj) in
L2

vec(ν). If ν is ergodic and u ∈ L2
vec(ν) satisfies (5.7), then Pju = Eν(Pju),

ν-almost surely.

PROOF. Fix u ∈ L2
vec(ν) that obeys (5.7) and let ū be the correspond-

ing shift-covariant function. We will prove the claim only for the compo-
nent u1 = u(·, ê1); the other cases follow analogously. By translation co-
variance and the L2-Ergodic Theorem,

ū(·, nê1)
n

=
1
n

n−1

∑
k=0

Tk
1 u1 −→n→∞

P1u1, in L2(ν). (5.12)

If ν were separately ergodic (i.e., ergodic with respect to T1 alone) then the
claim would immediately follow by the fact that every T1-invariant func-
tion must be constant. To make up for the potential lack of separate ergod-
icity, we note that translation covariance of u and the fact that ū obeys the
cycle conditions yield

Tjū(·, nê1) = ū(·, nê1 + êj)− ū(·, êj)

= ū(·, nê1)− u(·, êj) + Tnê1 u(·, êj)
(5.13)

It follows that Tj
1
n ū(·, nê1) also converges to P1u1 (in L2) and so, by the

continuity of Tj,
TjP1u1 = P1u1. (5.14)

Hence P1u is invariant under all shifts and so it is constant ν-a.s.

PROOF OF THEOREM 5.4. Suppose ν is ergodic and let u ∈ L2
vec(ν) obey

(5.7) and Eνu = 0. The boundedness of the κb’s away from zero and infinity
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ensures that u ∈ L2
vec(ν) iff all of its components are in L2(ν). Our task is to

construct functions hε ∈ L2(ν) such that ∇hε → u in L2
vec(ν). We define

hε := − ∑
n≥0

Tn
1 u1

(1 + ε)n+1 (5.15)

and note that this is the unique solution of the equation (1 + ε− T1)hε =
−u1. This observation implies

(1− T1)hε = −u1 − εhε (5.16)

and so the first component of ∇hε converges to that of u provided εhε → 0
in L2(ν). To see what happens with the other components of ∇hε, we note
that the cycle condition (5.7) translates into

(1− Tj)u1 = (1− T1)uj. (5.17)

Applying this to the definition of hε, we conclude

(1− Tj)hε = −uj − εh̃ε, (5.18)

where h̃ε is defined as hε but with u1 replaced by uj. Again, it suffices to
show that εh̃ε → 0 in L2(ν) which will boil down to the same argument as
for j = 1.

To prove that εhε → 0 we note that, for the inner product in (5.2),

〈hε, hε〉 = ∑
n≥0

n + 1
(1 + ε)n+2 〈u1, Tn

1 u1〉. (5.19)

Introducing the notation Anu for the average

Anu :=
1
n

n−1

∑
k=0

Tk
1 u, (5.20)

inserting this into the above sum and reordering the terms, we get

〈hε, hε〉 =
〈u1, u1〉
(1 + ε)2 + ∑

n≥1

n(εn− 1)
(1 + ε)n+2 〈u1, Anu1〉. (5.21)

By Lemma 5.5, the L2-Ergodic Theorem and the fact that u has zero expec-
tation in ν,

Anu1 −→n→∞
P1u1 = Eνu1 = 0, in L2(ν), (5.22)

and so 〈u1, Anu1〉 → 0 as n → ∞. A straightforward estimate now shows
that the sum in (5.21) is o(ε−2) and so ε2〈hε, hε〉 → 0 as desired.
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Not every function in L2
vec(ν) necessarily belongs to L2

∇(ν). A prime ex-
ample is the position vector field x(κ, b) = b. Indeed, let χ : RB(Zd) × B →
Rd be the projection

χ := −projL2
∇(ν)x. (5.23)

Since χ ∈ L2
∇(ν) it satisfies (5.7) and we may extend it to a function χ̄

mapping RB(Zd) × Zd → Rd by setting χ̄(·, 0) = 0 and integrating the
gradients along oriented paths. Lemma 5.3 implies that x̄ + χ̄ is harmonic,
Lκ(x̄ + χ̄) = 0. Moreover, Lemma 5.5 and (5.12) show that χ̄(·, nêj)/n→ 0
and so x + χ 6= 0. It follows that x 6∈ L2

∇ and so L2
∇ 6= L2

vec.
The function χ̄ is generally referred to as the corrector because it cor-

rects for the non-harmonicity of the position function. The corrector can
be defined by appealing to spectral theory (Kipnis and Varadhan [18]; see
also Berger and Biskup [4]); the above “projection” definition is inspired by
those in Giacomin, Olla and Spohn [13] or Mathieu and Piatnitski [21]. As
a side remark we note that the function x̄ + χ̄ actually allows us to charac-
terize the space of all square-integrable shift covariant functions:

COROLLARY 5.6. Suppose ν is ergodic. Then every shift-covariant R-valued
u ∈ (L2

∇)⊥ can be obtained from x + χ, where x is the position function and −χ
is its orthogonal projection onto L2

∇, by means of the linear transformation

uj(κ) =
d

∑
k=1

[
êk · (xj + χj)

]
Eνuk, j = 1, . . . , d. (5.24)

Here u1, . . . , ud stand for u(·, ê1), . . . , u(·, êd) and similarly for (Rd-valued ob-
jects) x1, . . . , xk and χ1, . . . , χd. In particular, for R-valued vector fields we have{

u ∈ L2
vec(ν) : shift covariant

}
= L2

∇ ⊕
{

λ · (x + χ) : λ ∈ Rd}. (5.25)

REMARK 5.7. The observation (5.25) — which in the language borrowed
from differential geometry implies that linear transforms of x + χ are the
only closed forms that are not exact — has previously been discovered in
the context of multicolored exclusion processes (Quastel [24, Theorem 9.1]).
However, while our proof is based only on soft, Poisson-equation based ar-
gument (5.15–5.22), that of [24] requires an explicit bound on the spectral
gap for the corresponding dynamics. The reason may be the reliance of [24]
on the spatial ergodic theorem which, naturally, leads to bounds involving
the Poincaré inequality and/or spectral gap.
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PROOF OF COROLLARY 5.6. This is a simple consequence of part (1) of
Theorem 5.4: Let w = (w1, . . . , wd) be the d-component vector field whose
(R-valued) components are defined by

wj :=
d

∑
k=1

[
êk · (xj + χj)

]
Eνuk, j = 1, . . . , d. (5.26)

We will show that w = u. First, both u and w obey the cycle condition
and so does u− w. As χ ∈ L2

∇(ν) implies Eνχ = 0 the fact Eνxk = xk = êk
shows Eνwj = Eνuj, i.e., Eν(u−w) = 0. Theorem 5.4(1) implies u−w ∈ L2

∇.
On the other hand, L(x + χ) = 0 implies Lw = 0 and so, by Lemma 5.3,
w ∈ (L2

∇)⊥. Thus u − w ∈ (L2
∇)⊥ holds as well. It follows that u = w as

claimed.
As to (5.25), the argument we just used ensures that a shift-covariant field

u ∈ L2
vec(ν) can be written as λ · (x + χ), where λ is a vector with compo-

nents λj := Eνuj, plus a shift-covariant vector field with zero expectation.
By Theorem 5.4(1), the latter is in L2

∇.

We still owe the reader the proof of Lemma 3.3:

PROOF. Proof of Lemma 3.3 Since g has square-integrable components,
we have g ∈ L2

vec(ν). As g is shift covariant and has zero expectation, The-
orem 5.4 implies that g ∈ L2

∇. But g is also harmonic and so Lemma 5.3 in
turn forces g ∈ (L2

∇)⊥. Thus g = 0 as desired.

Recall that χ̄ is the extension of χ subject to the condition χ̄(·, 0) = 0.
With this object at hand, we may even remove the restriction to zero slope
in Lemma 3.4:

COROLLARY 5.8. Let µ be a translation-invariant, ergodic gradient Gibbs
measure for the potential (1.4) and let µ̃ be its extension to RB(Zd) × RB(Zd).
Let t ∈ Rd be the tilt of µ and let F := σ({κb : b ∈ B(Zd)}). Then µ̃(−|F )(κ)
is Gaussian with mean

Eµ̃(φx − φ0|F )(κ) = t ·
[
x + χ̄(κ, x)

]
(5.27)

and the covariance given by (−Lκ)−1.

PROOF. Let ū denote the extension of the shift-covariant vector field
u(κ, b) := Eµ̃(η0,b|F )(κ), b ∈ B. Clearly, we have

ū(κ, x) = Eµ̃(φx − φ0|F )(κ), x ∈ Zd. (5.28)
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Inspecting the proof of Lemma 3.4, all formulas carry over except (3.22)
which becomes

Eµ̃

(
ū(·, x)

)
= t · x, x ∈ Zd. (5.29)

Thus ū− t · (x̄ + χ̄) is harmonic, shift-covariant, and of zero mean and so
ū = t · (x̄ + χ̄) by Lemma 5.3 and Theorem 5.4.

6. Discussion and open problems. The proofs in the present note of-
ten rely on the fact that the random walk with generator Lκ is uniformly
elliptic. This enters via the assumption that $, defining the potential V, has
support bounded away from zero. While we believe that the general pic-
ture carries over even if we let the support extend all the way to zero, a
number of steps in the proof become quite subtle. For instance, the point-
wise heat-kernel asymptotic for this walk may take a radically different
form (Berger, Biskup, Hoffman and Kozma [3]) and it is not known under
what conditions on the environment the walk scales to Brownian motion.
Progress in this direction for i.i.d. (or i.i.d. dominated) environments has
been made only recently (Mathieu [20], Biskup and Prescott [6], Barlow
and Deuschel [2]).

Another interesting open question concerns the annoying restriction to
zero-tilt gradient Gibbs measures. As is seen from Corollary 5.8, once the
tilt is nonzero, (4.33) has to be modified into

Eµ̃(ei[φ( f )−Eµ̃(φ( f ))]|F )(κ) = e−i (t·χ̄)( f )− 1
2 ( f ,(−Lκ)−1 f ). (6.1)

When we plug in fε for f , the second term in the exponent still converges
to ( f , (−Q)−1 f ) in probability as ε ↓ 0. To show convergence of φε − Eµ̃φε

to Gaussian free field, we thus have to show that (t · χ̄)( fε) converges in law
to a normal random variable. If V is strictly convex and of the form (1.4),
we in fact know this to be true by the main result of Giacomin, Olla and
Spohn [13]. However, the general case seems to be a hard open problem
(cf. [4, Conjecture 5]). Already in d = 1, where the corrector can be written
explicitly as the sum

χ̄(κ, x) =
1
C

x−1

∑
n=0

( 1
κn,n+1

− C
)

, (6.2)

with C := Eµ̃(1/κb), the desired result requires that the resistivities 1/κb
exhibit a specific correlation decay [11, Theorem 7.6]. Very little informa-
tion concerning this is known in d ≥ 2; see Mourrat [22] for some recent
progress in this direction.
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Our final remark concerns a generalization to potentials V where (1.4)
has been modified into

V(η) := − log
∫

$(dκ) e−Wκ(η), (6.3)

with (Wκ) denoting a family of strictly convex, even, measurable functions
with uniformly superlinear growth at ±∞ and a uniform lower bound. In
this case we may still consider the extended gradient Gibbs measures; how-
ever, the conditional law given the κ’s is no longer Gaussian. Notwithstand-
ing, given κ, the Helffer-Sjöstrand representation still applies and leads to a
random walk in a dynamic random environment. Its annealed CLT would
imply the Gaussian scaling limit for the φ-field.
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