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1

INTRODUCTION

1. PHASE TRANSITIONS IN EQUILIBRIUM SYSTEMS

Phase transitions are phenomena manifested by jumps or infinitely sharp peaks occurring
in otherwise smooth physical quantities. There are plenty of phase transitions around us: a flu
epidemic suddenly paralyzes the population in a large city, the financial market experiences
a collapse of prices, water turns into ice. Whereas the first two examples are dynamic,
involving a flow of time, the third example is static: water under cooling freezes to ice no
matter how fast or slow the cooling process actually is. This is so because both substances are
specific phases of the chemical H2O in thermal equilibrium, i.e., in the idealized state where
all the memory about the initial state is lost due to natural relaxation processes.
The concept of equilibrium and its probabilistic description was pioneered in the last

century by Boltzmann, to whom we owe the crucial discovery that the probability to find
a configuration (e.g., an arrangement of particles with given positions and velocities) is pro-
portional to exp(−β × energy), where β is the inverse temperature. The connection with
existing empirical thermodynamics was later established by Gibbs, who also discovered the
importance of convexity properties of thermodynamic functions and used them to formulate
the second law of thermodynamics in terms of a variational principle. The latter entails
that, amongst all a priori states, equilibrium corresponds to the minimum or maximum of
some thermodynamic potential (e.g., the Helmholtz free energy or pressure), whose selection
depends on the parametrization.
Despite an early criticism on conceptual grounds, the Boltzmann-Gibbs theory was very

successful in providing a theoretical background to many experimental facts. Nevertheless,
attempts demonstrate mathematically within this description the occurrence of a phase tran-
sition failed, the reason being that the exponential weight factor did not seem to have any
non-analyticities in β (at least not in the examples of realistic gases that had actually been
tested). Only in the 1930’s was it realized that an additional idealization is needed: the
so-called thermodynamic limit . This is because the peaks signaling phase transitions are
smooth in any finite system, and become sharper and narrower as the system size tends
to infinity. Strictly speaking, it is then only in an infinite system that they become actual
singularities; however, the typical size of a physicist’s system is 1023 particles, a number
fairly ‘close’ to infinity.
Mathematically, the procedure of the thermodynamic limit was put on a firm basis by

Dobrushin, Lanford and Ruelle (DLR), who proposed to study directly the infinite-volume
measures, with the conditional distributions inside any finite volume given the outside (ex-
emplified by prescribing a boundary condition) being of the Boltzmann type. The measures
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arising thereby (and named after Gibbs) carry along a significant deal of information about the
‘true’ (i.e., finite) physical system. They embody the bulk, i.e., macroscopic, properties like
the particle density or the degree of spontaneous magnetization, as well as the microscopic
inter-dependence structure (i.e., the correlations). However, the most interesting aspect is
their multiplicity: The occurrence of more than one distinct Gibbs measures in association
with a single Hamiltonian and temperature indicates coexistence of different phases of the
system. In such a case, the system is said to undergo a first-order phase transition. Higher-
order phase transitions also exist, the distinction being whether it is the first or a higher
derivative of the thermodynamic potential that exhibits a jump.
A famous, but mathematically yet rather unfounded, example of a first-order phase tran-

sition is the above water/ice transition. There are two Gibbs measures: one describing ice
with particles arranged in a crystalline order, the other featuring essentially chaotic particle
arrangements. Notably, the two phases pertain to one and the same particle system: it is
the boundary condition that chooses between water and ice1. Due to the passage to the
thermodynamic limit, no finite part of the boundary condition really matters—it is its tail
behavior that determines the resulting phase. For this reason, the phase coexistence goes also
by another name, long-range order, to express that the tendency to assume a certain order is
global, notwithstanding the locality of interactions.
Over the last thirty years, long-range order has been established in a plethora of classical

lattice systems, wherein the DLR-characterization of the equilibrium phases has proved to be
extremely fertile. In fact, the theoretical foundations seem to be by and large complete, at
least for systems with not too ill-behaved interactions. Some progress has been made also for
continuum systems (e.g., non-ideal classical gases), but there a lot of ‘fundamental’ questions
are still wide open (like the existence of the liquid-vapor transition2). In the area of lattice
systems, finer questions concerning the broad variety of phases, critical behavior and the
quantitative aspects of the universality are currently under intensive study.

DLR-formalism.

The DLR-formalism is a leitmotif for this thesis. Let us therefore quickly recount its most
important definitions and claims. For a detailed exposition and proofs of the claims made
below we refer to Georgii’s monograph [Ge].
We begin by restraining the set of systems of interest. We shall concentrate on models

with an underlying lattice structure and with a finite state space at each of the lattice sites.

1This distinctive role of the boundary condition applies only to the system with no particle conservation,
as described by the grandcanonical ensemble. If the system does not allow for the particle exchange, the
situation is more complicated. We refer the reader to [vEFS, Section 2.6.5] for a discussion of these issues.

2Progress in the case of a realistic interaction between particles has recently been made in [LMP] (see also
[P]), nevertheless, the two-particle forces of Lenard-Jones type are still beyond reach.
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Furthermore, we shall suppose that the state space is the same at all lattice sites. This is just
a mild limitation, since the extension to the more general case is rather straightforward.
Thus let S be a single-site state space and let the underlying spatial structure be the

d-dimensional hypercubic lattice Zd. The configuration space is then Ω = SZ
d

. We denote
configurations in Zd by σ ∈ Ω, configurations in Λ ⊂ Zd by σΛ ∈ SΛ. There is a natural
topology on Ω, the product topology, which in turn generates a natural σ-algebra F , namely,
the Borel σ-algebra of quasi-local observables. Let FΛ be the projection of F onto a finite
set Λ ⊂ Zd and let TΛ be the projection of F onto the complement Λc = Zd \ Λ. Then the
measure µ satisfies the DLR-condition with interaction Hamiltonians (HΛ)Λ⊂Zd if

µ
(
σΛ|TΛ

)
(σ̃) =

e−βHΛ(σΛ|σ̃Λc )

Zσ̃
Λ (β)

for σ, σ̃ ∈ Ω and all Λ finite, (1.1)

where σ̃ is the boundary condition. The volume dependence of the Hamiltonians is to be
chosen such that HΛ′ − HΛ, for any Λ ⊂ Λ′, does not depend on the configuration in Λ.
This is to ensure so-called consistency , asserting that Eµ

(
Eµ(A|TΛ)|TΛ′

)
= Eµ(A|TΛ′) for any

event A ∈ F , where Eµ stands for the expectation w.r.t. µ. In other words, consistency means
that also the conditional measures satisfy the DLR-condition in any smaller volume.
It follows from the Backward Martingale Theorem that the ‘thermodynamic limit’ of (1.1)

exists, i.e.,
lim

Λ↗Zd
Eµ(A|TΛ) = Eµ(A|T ) µ-a.s. ∀A ∈ F , (1.2)

where
T =

⋂
∆⊂Z

d

finite

T∆ (1.3)

is the tail σ-algebra. The significance of the measure Eµ( · |T ) lies in that: (1) it is an
infinite-volume Gibbs measure, (2) it is extremal in the sense that it is {0, 1}-valued on the
events in T . In fact, there is an important decomposition theorem claiming that any Gibbs
measure can be uniquely decomposed into extremal Gibbs measures. Naturally, physical
phases are then associated with the extremal Gibbs measures3, rather than with non-trivial
convex combinations (the coefficients in the latter represent our ‘degree of uncertainty’ about
the phase of the system).
The denominator in (1.1) is the partition function, with the superscript indicating the

boundary condition. Physically, this is one of the most important quantities, and it grows or
decays exponentially with |Λ|. The rate of this decay

fβ = − lim
Λ↗Zd

1
β|Λ| logZ

σ̃
Λ (β) (1.4)

3In fact, the extremal translation-invariant measures, in order to account for possible breaking of trans-
lation symmetry that is not reflected in the appearance of physically ‘non-equivalent’ phases. See [vEFS,
Section 2.4.9] for a commentary on these subtleties.
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is the free energy (or pressure, according to the context). It turns out that for not too wild
interactions the limit exists and is independent of the boundary condition. In macroscopic
thermodynamics, free energy (or pressure) are important thermodynamic potentials connect-
ing up the various internal parameters of the system (e.g., in the thermodynamic equation of
state). In fact, one of the main achievements of Boltzmann’s probabilistic formalism is that it
provides a way to compute these hitherto ad hoc given quantities on the basis of microscopic
considerations. Unfortunately, such a computation is often a highly cumbersome task, insofar
completed only for a couple of simple, predominantly two-dimensional, models.

The contents of this thesis.
This thesis presents four papers, cited hereafter by the first letter in the authors’ names,

i.e., [BdH], [BCK], [B], and [BBCK], demonstrating on examples of specific systems three
basic techniques to deal with phase-transition phenomena:

(1) Variational principles and large deviation theory.
(2) Correlation inequalities, in particular, FKG and reflection positivity.
(3) Perturbative expansion techniques exemplified by the Pirogov-Sinai theory.

In the remainder of this introductory chapter, we endeavor to explain the pivotal notions of
these techniques and to outline how they are used in the four papers. For better orientation
of the reader, the papers are made clearly visible by the appearance of ♣ in the heading.

2. VARIATIONAL PRINCIPLES AND SYSTEMS WITH FROZEN RANDOMNESS

Drawing our attention back to equilibrium thermodynamics, let us recall that in the origi-
nal Gibbs description of a gas characterized by volume V and temperature T , the pressure was
obtained by taking the infimum of the quantity E−TS

V , where E denotes the energy and S the
entropy, over all admissible4 volumes V . This suggests the presence of an underlying varia-
tional principle. And, indeed, underneath lies a variation principle for the specific energy5: in
the class of translation-invariant measures (and Hamiltonians), an alternative characterization
of (1.1) is that the Gibbs measures are minimizers of the functional µ → f(µ) = e(µ)−Ts(µ),
where

e(µ) = lim
Λ↗Zd

1
|Λ|Eµ(HΛ) and s(µ) = − lim

Λ↗Zd

kB
|Λ|Eµ

(
logµΛ), (2.1)

with µΛ denoting the projection of µ onto FΛ and kB denoting the Boltzmann constant.
Here e(µ) is the specific energy of µ, whereas s(µ) is the entropy associated with the mea-

4In physics jargon, the word ‘volume’ refers tacitly to some regular container, e.g., a cylinder with a piston.
Having the ‘shape’ fixed, the infimum then runs over the numerical volume of the enclosed gas.

5This applies to the case when only one external parameter of the system is to be controled, namely,
the specific energy. We refer to Wightman’s excellent introduction to Israel’s book [I] for a comprehensive
treatment of these variational principles and their interpretation in classical thermodynamics.
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sure µ, which roughly equals the logarithm of the effective number of configurations per-site
on which µ is supported.
The significance of the variational principle for µ → f(µ) lies in its large deviation content:

under the counting measure on SΛ, conditioned on having a fixed specific energy (this gives
rise to the microcanonical ensemble), the probability that the periodized empirical measure
λΛ is ‘close’ to some measure ν decays exponentially in |Λ|, with the rate β

(
f(µ)− fβ

)
. Here

β is adjusted such that a Gibbs measure corresponding to β has the same specific energy as
the microcanonical measure above. The minimum of f(µ) is indeed the very number fβ in
(1.1) and it is attained by the measures satisfying the DLR condition, which implies that the
microcanonical measure above converges weakly as Λ ↗ Zd to a Gibbs measure defined in
the DLR-sense. This procedure requires the indentification β = (kBT )−1, whereby originates
the interpretation of β as the inverse temperature.
In a sense, the function β → fβ comprises all the information about possible phase tran-

sitions in β variable: At the points where β → fβ is not continuously differentiable (by
convexity, fβ has always the right and left derivatives), there are at least two distinct ex-
tremal Gibbs measures, distinguished by the value of the specific energy (which is essentially
given by the right or left derivative dfβ

dβ ). This becomes understandable if one views β → fβ as
the Legendre transform of the rate function for large deviations in the energy. Namely, a cusp
in β → fβ is reflected by a flat piece in the graph of this rate function, yielding that two
distinct values of energy are equally probable, at least on an exponential scale. With a little
bit of additional effort, the existence of two distinct minimizers of µ → f(µ) (characterized
by these two energies) can be shown.
This observation offers a consistent strategy for establishing first-order phase transitions:

prove that β → fβ exhibits a cusp and use some general arguments to prove the existence and
study the properties of the distinct phases. This was first adopted in the well-known Peierls ar-
gument, and it lies is the cornerstone of the Pirogov-Sinai theory outlined below. On the other
hand, the large deviation principle and some specific knowledge on the free energy can also
be used to disprove first-order phase transitions. In fact, this is what happens in [BdH].

♣ [BdH]—Uniqueness of the Gibbs state.
In the paper ‘A Heteropolymer near a Linear Interface’ [BdH], we study a polymer with hy-

drophobic and hydrophilic monomers in the vicinity of an oil-water interface. The interaction
Hamiltonian is of the form

HΛ = −
∑
i∈Λ
(ωi + h)sign(Si), (2.2)

where ωi indicates whether the i-th monomer is hydrophobic (ωi = +1) or hydrophilic (ωi =
−1), Si ∈ Z is the vertical coordinate of the i-th monomer w.r.t. the interface, and h expresses
the asymmetry between the effects of the two media (i.e., oil in Λ×Z+ and water in Λ×Z−).
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The spatial configuration of the polymers is modeled by directed paths on Z2 (see Fig. 1).
The analysis of the model is delicate because of the distribution of the monomer species along
the path—their types are fixed and sampled from i.i.d. sequences of ±1’s with equal densities.
The interaction favors hydrophobic monomers placed in oil (Si > 0, ωi = +1) and hydrophi-

lic monomers placed in water (Si < 0, ωi = −1), i.e., a fairly restricted arrangement, whereas
entropy favors as much freedom for fluctuations as possible. The free-energy minimization can,
in fact, exhibit either of these options, depending on the parameter values: it has been shown
in [BodH] that there is a non-trivial localization/delocalization transition (see Fig. 2).
In the delocalized phase, which occurs for h large enough, the fact that there are two types

of monomers favoring different sides of the interface is irrelevant: the free energy corresponds
to the entire path being on one side of the interface, namely fβ = |h|. The localized phase,
which occurs for h close to zero, is then characterized by fβ > |h|, i.e., an excess over the
‘delocalized’ value. This indicates that the path stays close to the interface. However, as our
analysis shows, the mathematical justification of this fact is a non-trivial issue.

hydrophobic monomer

hydrophilic monomer

oil

water

Fig. 1. A configuration of the heteropolymer near an oil-water interface.

The next question we address in [BdH] concerns the ergodic path behavior , i.e., whether
Cesaro averages along the polymer converge a.s. to deterministic quantities. Both the question
of localization and ergodicity are answered in the affirmative, relying extensively on the large
deviation nature of the free energy. Namely, if the path shoots away for an atypically long
excursion, then it pays for doing so by an amount per monomer given by the excess free
energy β(fβ − |h|) on an exponential scale. With the help of this idea, estimates on the
typical excursion length and height are derived, leading via a coupling argument to an ergodic
theorem for all local observables. As a consequence of using non-perturbative analysis based
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on large deviation theory, the result applies to the entire localized region, all the way up
to the transition line. This would hardly have been the case if, for instance, perturbative
methods of the Pirogov-Sinai type had been invoked.

h

1

β

localized phase

delocalized phase

Fig. 2. Phase diagram for the heteropolymer near a linear interface as was found
in [BodH]. The localized phase corresponds to fβ > h, the delocalized phase to
fβ = h. The h ≤ 0 part of the phase diagram is completely symmetric.

In order to formulate the ergodic theorem, we have to operate with infinite-volume measures
that are Gibbsian for the Hamiltonian (2.2) in the sense of DLR. Here arises a non-trivial
obstacle due to the underlying randomness: the Gibbs measures are (measure-valued) random
variables depending on the entire monomer configuration ω = (ωi). On the one hand, it is not
a priori clear how one should ‘sample’ such random measures (i.e., how to obtain measurable
functions ω → µω such that µω is Gibbsian for every ω), because even the number of possible
Gibbs measures is in principle ω-dependent. On the other hand, since we are interested only
in typical ω, and this is a notion that cannot be quantified without having measurability,
we can from the start restrict ourselves to ‘samples’ that are measurable w.r.t. the σ-algebra
of ω. Thus, we put forward the concept of measurable Gibbsian sections, denoting measurable
functions from {−1,+1}Z to the set of Gibbs measures. Within this class we then prove our
ergodicity and uniqueness assertions.

3. CORRELATION INEQUALITIES

In the realm of lattice models, the orchestrated use of a system’s special symmetries at
times offers a ‘miraculous’ solution to an otherwise intractable problem like evaluating the
free energy of the model in a ‘closed form’. Apart from the scarcity of such results, the
disadvantage of this ‘exact approach’ lies in its low adaptability—the symmetries often sit too
deeply in the arguments to allow for more than cosmetic changes. However, other properties
like various correlation inequalities, discovered originally also as particular symmetries, have
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over the years proved to be a little more robust. Here we shall discuss some of the latter,
namely, the FKG-inequality and reflection positivity.

FKG-inequality.
The FKG-inequality, named after Fortuin, Kasteleyn and Ginibre, is based upon the con-

cept of monotone events. Let us suppose that S possesses some a priori ordering, and let us
extend this to a partial order on SZ

d

by putting

σ � ω iff σx ≤ ωx ∀x ∈ Z
d. (3.1)

Note that having a partial order on configurations enables us to work with monotone functions:
we say that f is monotone increasing if f(σ) ≤ f(ω) for any σ � ω. Monotone events are
then those events whose indicator function is monotone. Moreover, the partial order can be
raised also to measures: we say that µ1 ≥ µ2 if µ1(A) ≥ µ2(A) for all monotone increasing
events A.
The measure µ is said to be FKG if it exhibits positive correlations of increasing events,

i.e., if

µ(A ∩B) ≥ µ(A)µ(B) for all A,B increasing. (3.2)

This concept is strengthened to the strong FKG-property by requiring that µ( · |A) be FKG
for any A that enforces a single configuration on a finite set of sites. The advantage of this
stronger notion is the following necessary and sufficient condition:

Proposition III.1. For any two configurations σ1 and σ2, let σ1∧σ2 denote their minimum
and σ1 ∨ σ2 their maximum. Then µ is strong FKG if and only if

µ(σ1 ∧ σ2)µ(σ1 ∨ σ2) ≥ µ(σ1)µ(σ2) ∀σ1,σ2.

Moreover, the same is true if σ1 and σ2 are required to differ on at most two positions.

Proof. See [FKG]. �

Despite its rather simple formulation, the FKG-inequality has some rather deep conse-
quences. For instance, it implies that the thermodynamic limit of finite-volume Gibbs states
with extreme boundary conditions exists and gives rise to extremal and ergodic measures. All
other Gibbs measures (defined by taking thermodynamic limits of finite-volume measures)
are sandwiched between these two extremes in the partial order on measures. In particular,
if the two extremes coincide then there is uniqueness. Important is also the easy accessibility
of a domination argument:
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Proposition III.2. On a finite lattice Λ, let µ1 and µ2 be two probability measures such
that µ1( · ) = 1

Z1
W1( · ) and µ2( · ) = 1

Z2
W2( · ), where W1 and W2 are non-negative functions

and Z1 and Z2 are normalizing constants. If at least one of the measures is FKG and if W1
W2

is monotone increasing, then µ1 ≥ µ2.

Proof. Suppose µ2 is FKG. Then for any monotone increasing event A we have

µ1(A) = Eµ1(1lA) =
Z2

Z1
Eµ2

(
1lA

W1

W2

)
≥ Z2

Z1
Eµ2(1lA)Eµ2

(
W1

W2

)
= µ2(A), (3.3)

where the last equality follows from the observation that Eµ2

(
W1
W2

)
= Z1

Z2
. The case when only

µ1 is known to be FKG is analogous. �
Reflection positivity.
Reflection positivity (RP) is a technique, dating back to the early days of constructive

quantum field theory, that uses ‘correlations of half-spaces’. Indeed, it stood as one of the
cornerstones in the Osterwalder-Schrader axiomatic scheme [OS], ensuring positive definite-
ness of certain scalar products. Later it was revived in lattice statistical mechanics in the
context of classical-spin (either discrete or continuum) and quantum-spin systems. For in-
stance, it provides the only currently known way to establish rigorously the symmetry breaking
in the quantum Heisenberg antiferromagnet [DLS], and its lack for the quantum Heisenberg
ferromagnet is the main cause why this model is still unresolved. Moreover, it finds nice
applications to discrete classical systems, where the perturbative methods either do not work
(e.g., in the Heilmann-Lieb models of liquid crystals [HL]) or are more complicated (e.g., in
the Potts ferromagnet [KS]).
Let us explain the use of RP for proofs of phase transitions in lattice systems. For that it

is convenient to study equlibrium measures on finite tori. Let TN be a lattice torus of size
N , with N even, and let P ⊂ TN be a hyperplane perpendicular to one of the coordinate
directions. Here P is thought to be composed of two antipodal components (see Fig. 3). In
this way, TN splits into two equal components TL

N and TR
N (where P belongs to both).

Analogously one also considers observables that reside only in these half-spaces. Given P ,
we can define σ-algebras FL and FR of events depending only on configurations in the left
and right half-spaces6. The latter are mirror symmetric w.r.t. each other, so we can define
the reflection operator ϑP acting on functions as [ϑP f ](σ) = f(ϑPσ), where (ϑPσ)x = σϑP x

with ϑPx denoting the mirror image of x w.r.t. P .

Definition III.3. We say that the measure µ on TN is reflection positive if

Eµ

(
f [ϑP g]

)
= Eµ

(
[ϑP f ] g

)
(3.4)

Eµ

(
f [ϑP f ]

) ≥ 0, (3.5)

6It is convenient to use the same symbol to denote the sets of functions measurable w.r.t. the σ-algebra.
Hence, in particular, f ∈ FL means that f depends only on the configuration in the left half-space.
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TL
N TR

N

P

Fig. 3. Lattice torus TN with two components of P .

for all f, g ∈ FL and all planes P ⊂ TN .

The properties (3.4) and (3.5) are reminiscent of a scalar product. Indeed, the map f, g →
Eµ

(
f [ϑP g]

)
can be viewed as a non-negative definite bilinear form and, in particular, the

Cauchy-Schwarz relation holds:∣∣Eµ

(
f [ϑP g]

)∣∣ ≤ Eµ

(
f [ϑP f ]

)1/2
Eµ

(
g [ϑP g]

)1/2
. (3.6)

This relation is the starting point of the so-called chessboard estimates, through which re-
flection positivity enters the phase-transition proofs in short-range discrete-spin models7.
Roughly, the idea is that events of the type

∏
x fx, where fx depends only on a neighborhood

of x, can be ‘split from each other’ by a repeated use of (3.6) w.r.t. all possible planes P , and
at the same time can be ‘spread out’ all over the torus. In this way, local correlations can
be efficiently estimated in terms of global events, which often constitutes a rather significant
simplification for the analysis of the former.
The precise statement for fx being the indicator of a ‘behavioral pattern’ in a box centered

at x, i.e., the indicator of a set of configurations on the sites of this box, is given in the
following proposition, which is originally due to [FL].

Proposition III.4 (Chessboard estimates). Let τ be the shift operator on TN , with N

even, and let µ be a reflection-positive measure on TN . Let {cx} be a collection of distinct
hypercubes of size 1, with cx centered at x, and associate with cx a particular behavioral
pattern Bx. Then

Eµ

(∏
x

1lBx
)
≤
∏
x

Eµ

(
χTN

Bx
) 1

|TN | .

7Long-range models cannot be treated by the chessboard estimates because the interaction between half-
spaces cannot be separated. An alternative way to prove symmetry breaking in these models is by using
spin-wave arguments, see [Ge, Chapter 20].
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Here |TN | denotes the number of sites in TN , and

χTN

Bx =
∏

y-even

1lBx◦τy
∏

y-odd

1lB∗
x◦τy

induces Bx on all even translates of cx and its mirror image B∗x to all odd translates of cx.

Proof. See [FL]. �

Chessboard estimates are useful in establishing items (i) and (ii) of Proposition III.5 below,
taken over from [KS]. The idea behind the claim is as follows: If we know that two distinct be-
havioral patterns occur with a probability very close to one under some translation-invariant
measure µ, then the typical configurations are actually ‘composed’ mostly of these two pat-
terns (as follows from the Ergodic Theorem). Moreover, if we can show that the two behavioral
patterns ‘avoid’ each other in the typical configurations under µ, then a long-range order is
inevitable.

Proposition III.5. Suppose X and Y denote two behavioral patterns on a cube c ∈ TN ,
and let µα

N be a translation-invariant Gibbs measure on TN , with the Hamiltonian depending
continuously on a parameter α ∈ [αX , αY ]. Let A ∈ ( 12 , 1] and B ∈ [0, 14 ] be such that

B ≤
[
1
2 −

√
1
2 − A

2

]2
, and let εa, εb ∈ (0, 12 ). If for all α ∈ [αX , αY ] and all N large enough

(0) X ∩ Y = ∅,
(1) µα

N (X ∪ Y) ≥ A,

(2) µα
N

(X ∩ (Y ◦ τy)
) ≤ B, ∀y ∈ TN

and
(3a) µαX

N (X ) ≥ 1− εa,

(3b) µαY
N (Y) ≥ 1− εb,

then there exists αc ∈ [αX , αY ] and two distinct infinite-volume translation-invariant extremal
Gibbs states µXαc

and µYαc
, such that

µXαc
(X ) ≥ 1− ε̄ and µYαc

(Y) ≥ 1− ε̄,

where ε̄ = ε̄(A,B) is such that ε̄→ 0 as A→ 1 and B → 0.
Proof. See [KS]. �

♣ [BCK]—Partially ordered/disordered phases.
In the paper ‘Coexistence of Partially Disordered/Ordered Phases in an Extended Potts

Model’ [BCK], we study the Gibbs states for the following Hamiltonian:

H(σ) = −J
∑
〈x,y〉

δσxσy − κ
∑
〈x,y〉
(δRσxδ

R
σy + δSσxδ

S
σy )− h

∑
x

(δSσx − δRσx). (3.7)
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Here σx ∈ R ∪ S with R = {1, . . . , r} and S = {r + 1, . . . , r + s}, while δσxσy indicates that
σx = σy, δRσx indicates that σx ∈ R, and δSσx indicates that σx ∈ S. The parameters J, κ > 0
are fixed and h ∈ R is arbitrary. Due to the first term in (3.7), the model is an extension of
the (r + s)-state Potts model. Note that the rest of the interaction introduces an attraction
(since κ > 0) of the spins within the two spin families R and S.
Due to the second and the third term in (3.7), our model can be viewed as an interpolation

between the Potts and the Ising model with an external field (the latter is obtained by setting
J = 0 and shifting the field by the amount 1

β log
r
s ). The Potts model itself is one of the

systems where a good control is possible over the entire regime of temperatures, featuring
so-called ordered states at low temperatures and disordered states at high temperatures, with
a sharp first-order transition in between. This transition was first rigorously established in
[KS], employing reflection positivity. On the other hand, the Ising model exhibits a phase
transition when the corresponding external field changes from negative to positive values.
Therefore, a rather rich phase structure can be expected for the Hamiltonian (3.7). Indeed,
the phase diagrams are as depicted in Fig. 4.

OS

OR

DS

DR

r+s

r+1

s+1

2

r+s+2

h

T

OS

OR

DS

DR

r+s

r+1

s+1

2

r+s+1

s+2

s+1

h

T

Fig. 4. Phase diagram for the extended Potts model. The left picture corresponds
to the symmetric case when r = s 1, the right picture to the strongly asymmetric
case r  s 1. The figures attached to the lines and the points denote the number
of proved coexisting translation-invariant Gibbs states. The dotted line shows the
region where the Gibbs state is known to be unique.

Let first r = s. Then both families R and S are completely symmetric with respect to
the flip symmetry h↔ −h and, consequently, the coexistence between R-states and S-states
(i.e., the transition governed by the Ising part of the interaction, i.e., by the second and the
third term in (3.7)) can occur only on the symmetry line h = 0. This line is crossed by the
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order/disorder transition line and the parameter space is thus divided into four (not discon-
nected) regions: the OS -region with s ordered states, the OR-region with r ordered states, the
DS -region where a single disordered state concentrated on spins of the S-family exists, and,
finally, the DR-region with a single disordered state concentrated on the spins in the R-family.
All these regions meet at a quadruple point where there are altogether r + s+ 2 states.
It is interesting to ponder about what happens with the phase diagram when we let r

grow above s. There are two possibilities: either the whole picture undergoes a ‘smooth
deformation’ but does not change qualitatively, or some new coexistence line starts forming.
Though we cannot really answer this question for r, s, r−s small, the second option seems to
be more plausible. Namely, we prove for r  s 1 that the quadruple coexistence point splits
into two triple points, which are connected by a non-trivial piece of a transition line directly
between the OS and DR-states. Of interest in both cases is also the coexistence between
DR and DS . These two phases are not strictly separated in the phase diagram: there is a
path in the parameter space connecting the two phases (presumably) without encountering a
phase transition on the way. This is a situation analogous to the liquid-vapor transition. As
is argued below, some characterization is still possible in terms of a graphical representation,
but no thermodynamic ‘order’ parameter is available in this case.

Graphical representation.
It is crucial for our analysis that the model offers a beautiful reformulation in terms of a

graphical representation. The latter is best explained by a coupling with a Bernoulli bond
process [ES]: Let p = 1 − e−βJ and assume only the first term in (3.7). Let each bond of
Zd be occupied with probability p and vacant with probability 1− p if the spins at the end-
points agree, but let it be vacant with probability 1 if they disagree. The choice is made
independently of all the other bonds. The joint measure on spin and bond configuration is
the Edwards-Sokal measure, and the bond marginal is the Fortuin-Kasteleyn representation
(FK) of the Potts model [FK]. This graphical representation inherits various properties of the
spin system, but has interesting features on its own too (for instance, it is strong FKG). This
is of importance since phase transition can often be characterized in terms of percolation of
occupied bonds (i.e., the existence of an infinite cluster).
In the full model (3.7), the graphical representation is constructed along very much the same

lines. However, two terms are now playing the role of the Potts interaction. Consequently,
the number of possible ‘bond states’ has to be larger. There are five types of bonds: ordered
bonds OS and OR, disordered bonds DS and DR, and the ‘vacant’ bond state V. Whereas
the DS -state can occur whenever the end-points belong both to the S-family, the OS state
can occur only when the end-points are equal and belong to S. The vacant bond state is
independent of the spins at the end-points.
The important feature of this representation is that the corresponding Gibbs states are
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strong FKG with respect to the order OS # DS # V # DR # OR. Moreover, as h increases,
the measures are increasing in the sense of FKG. However, this being applicable without regard
of the particular values of J and κ, monotonicity alone does not suffice to make the above
conclusion about phase coexistence—some additional arguments are needed. For instance, we
need to know that while ascending along a vertical line, an R–S transition is to be encountered.
As a glance at Proposition III.4 shows, this can be converted to a question about correlations,
which is in turn well suited for chessboard estimates. Thus, if reflection positivity is also
available, a consistent scheme for proving all the above phenomena is established.

♣ [B]—Reflection positivity of the random-cluster measures.
As already mentioned, in the process of proving various properties of the phase diagram in

[BCK], a variant of the FK-representation has been used. It is an interesting and frequently
used feature of the latter that it allows a natural continuation to non-integer values of the
total number of possible spins q = r + s. In this way the so-called random-cluster model
is recovered: Take a Bernoulli bond process, where bonds are occupied with probability p

and vacant with probability 1− p, independently of each other, and assign each configuration
an additional weight q per connected component. The appropriately normalized measure
then corresponds, for q positive integer, to the FK-representation of the q-state Potts model.
Moreover, this continuation respects the natural FKG-property of the FK-representation.
Unfortunately, the other important tool, namely, reflection positivity, could not be proved

for other than integer values of q since the existing argument used a mapping back onto the
q-state Potts model. This situation was settled negatively in the paper ‘Reflection Positivity
of the Random-Cluster Measure Invalidated for Noninteger q’ [B], where a counterexample to
reflection positivity is constructed whenever q is not integer. An interesting feature of the proof
is the use of analytic continuation: there is a representation (derived in Proposition 2 of [B])
whose terms are either positive or vanish when q is integer, but whose analytic continuation
to non-integer q is no longer positive8. In this way, reflection positivity of the Potts model
can be viewed as the result of extensive cancelations due to the special choice of q. Or, if seen
from the perspective of field theory where reflection positivity supplements certain convexity
properties, the random-cluster measure is not a ‘good field theory’ unless q is integer.

4. PIROGOV-SINAI THEORY

For finite systems, as the temperature goes to zero (β → ∞) the Gibbs measures tend to
be more and more concentrated around the minima of the Hamiltonian. For infinite systems,
however, there is for any β < ∞ a positive density of fluctuations (i.e., ‘spots’ with energy
larger than the absolute minimum). It turns out, and this is the subject of Pirogov-Sinai

8This provides another example to the series worked out in [GG], pointing out several instances in models
of statistical mechanics where an ‘obvious’ analytic continuation fails.
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theory whose rudiments we intend to explain below, that these fluctuations can be controlled
by analytic methods.
Pirogov-Sinai theory [PSa,b] in its original form, developed in the late 1970’s and reformu-

lated by means of inductive procedures in the mid 1980’s [KP1,Z,BI], requires that the model
has only a finite number of ground states, i.e., configurations whose energy cannot be lowered
by changing a finite number of spins. Given a finite set A of spin-states at each site, we shall
assume for simplicity that these ground states are actually just the constant configurations,
i.e., those having all spins equal to the same value. Let the Hamiltonian in Λ be given by

HΛ =
∑

A∩Λ�=∅
ΦA, (4.1)

where (ΦA) are interaction potentials such that ΦA ≡ 0 if diam(A) > r (i.e., r is the inter-
action range). Given an arbitrary configuration σ, we define its contours as the connected
components of the union of all r-cubes, where σ is not equal to any of the ground states.
Each contour is actually a connected set of sites with a configuration on it. At the boundary
of the contour this configuration necessary ‘blends’ into a ground state. To the ground states
at the exterior boundary we refer as the external color , to the ground states at the internal
boundary components we refer as the internal colors.

Λ

Fig. 5. A contour configuration in Λ with three distinct ground states, distin-
guished by different shades of gray. Observe the possibility of contours inside
contours, as well as contours having more than one internal color. The external
color is always unique.

The introduction of contours is typically accompanied by the following rewrite of energies.
Let Λq denote the set of non-contour sites in Λ where the configuration equals the ground
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state q. Then
HΛ =

∑
q

eq|Λq|+
∑
Γα

E(Γα), (4.2)

where eq is the energy density in the q-th ground state9 and E(Γα) is the energy associated
with contour Γα.
With (4.2) in the hand, the partition function in volume Λ with a constant boundary

condition q can be written as

Zq
Λ =

∑
(Γα)

exp
(
−β

∑
q′

eq′ |Λq′ |
)∏

α

Ψ(Γα), (4.3)

where Ψ(Γα) = e−βE(Γα) and where the sum runs over all sets of mutually compatible contours
in Λr, the r-neighborhood of Λ, where compatibility is defined by requiring that the contours
do not overlap and that their internal/external colors match.
In order to get started, one is in need of the so-called Peierls condition

eβee(Γ)|Γ|Ψ(Γ) ≤ e−βτ |Γ|, for all Γ and τ > 0, (4.4)

where |Γ| denotes the number of sites in Γ and e(Γ) denotes its exterior color. This condition
ensures that contours are themselves sufficiently improbable. However, in order to show
that the ‘whole fluctuation’, comprising the contour itself and the ground states (with other
contours) in its interior, is unlikely to appear, we need such an exponential bound rather for
the functionals

Ze(Γ)(Γ) =

∏
q Z

q
Intq(Γ)

Z
e(Γ)
Int(Γ)e

−βee(Γ)|Γ|
Ψ(Γ), (4.5)

where Intq(Γ) denotes the components of the interior for which the interior color equals q.
Note that (4.5) is the ratio between the weight of the contour+interior and the weight of the
configuration where Γ is removed and the interior has the external color e(Γ).
With (4.5) one can recast (4.3) as

Zq
Λ = e−βeq|Λ|

∑
(Γα)

∏
α

Zq(Γα), (4.6)

where the sum now runs over the collections of spatially non-overlapping contours whose
external color is q (in particular, the matching condition for the internal/external colors of
the contours is not needed).

9Here we make a formal distinction between the eq ’s even though the fact that they correspond to
ground state configurations implies that they are all equal. Actually, the rewrite (4.2) enables us to treat
the ground state energies as independent parameters, which is particularly convenient while parametrizing
the phase diagram. When eq ’s are no longer equal, some of the q’s are not ground states any more—one then
often talks about reference states to avoid confusion.
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The significance of the rewrite in (4.6) lies in the fact that the multitude of colors (and the
related matching rules) as well as the explicit dependence on the energies (eq) have vanished
from the description. Thus, (4.6) gives rise to an explicit ‘decomposition’ of Zq

Λ into the
contribution due to energy (the exponential factor) and entropy (the sum thereafter). As
Proposition IV.2 below asserts, if q gives rise to a low temperature phase or, equivalently,
if the functionals Zq satisfy a bound of the type (4.4), then this decomposition provides
a consistent way to compute the free energy. In order to show how we need some more
technical definitions.
We first introduce the truncated functionals Z̃ by requiring

Z̃q(Γ) =

{
Zq(Γ) Zq(Γ) ≤ e−

1
3βτ |Γ|

0 otherwise,
(4.7)

(in the first case we call Γ stable, in the second case unstable) and define, for each q, the
metastable partition function Zq

Λ and free energy fq by the formulas

Zq
Λ =

∑
(Γα)

∏
α

Z̃q(Γα) (4.8)

fq = eq − 1
β
lim

Λ↗Zd

1
|Λ| logZ

q
Λ. (4.9)

The reason for using the truncated functionals is that both Zq
Λ and fq can be controlled by

the techniques of cluster expansion. In Proposition IV.1 below we formulate a theorem due to
[KP2] on the convergence criterion for the latter. In this claim, the ‘sans-serif’ capital letters
B,C, etc., denote sets of contours and Z(L, Z̃) denotes the partition function where only the
contours from L are allowed to appear. In particular, if L is the set of contours in Λr, then
Zq
Λ = Z(L, Z̃q). The symbol K is reserved for the set of all contours in Zd, and B is the set of
all finite subsets of K. The set C is said to be a cluster if it cannot be decomposed into two
subsets such that each contour in one is compatible with any contour in the other.

Proposition IV.1 (Cluster expansion). Let a:K→ [0,∞), b:K→ [0,∞), and Z̃q:K→ C

be such that ∑
Γ′: Γ′∪Γ �=∅

ea(Γ′)+b(Γ′)|Z̃q(Γ′)| ≤ a(Γ) for each Γ ∈ K. (4.10)

Then Z(L, Z̃q) (= 0 for each finite L ⊂ K, and there exists a unique function ZT
q :B → C such

that

logZ(L, Z̃q) =
∑

C:C⊂L

ZT
q (C) for each L ∈ B. (4.11)



18 Techniques of proofs of phase transitions

Moreover, the function ZT
q is given by the formula

ZT
q (C) =

∑
B:B⊂C

(−1)|B|−|C| logZ(B, Z̃q), (4.12)

with ∑
C∈B

Γ′∩Γ �=∅ ∀Γ′∈C

|ZT
q (C)|eb(C) ≤ a(Γ) for each Γ ∈ K, (4.13)

and
ZT
q (C) = 0 whenever C is not a cluster. (4.14)

Proof. See [KP2]. �

Note that (4.10) is implied by the definition in (4.7), provided τ is large enough. Also note
that the condition Z(L, Z̃q) (= 0 ensures that (4.9) is ‘uniformly’ well defined (including taking
the right branch of the logarithm, when the weights are complex). For practical purposes
formula (4.11) is the most important, stating (when rephrased back into the language of
contours) that Zq

Λ is given by the exponential of the sum of all clusters that can be produced
in Λ. Formula (4.14) then implies that the exponent grows proportionally to |Λ|, because
the sum of the contributions coming from the clusters touching a finite contour (i.e., a finite
connected set of sites) is finite. If the cluster weights are translation invariant, then this also
yields the succinct expression for the free energy

fq = eq − 1
β

∑
C:C�0

1
‖C‖Z

T
q (C), (4.15)

where the sum goes over the clusters ‘containing the origin’, i.e., those C with 0 ∈ ∪Γ∈CΓ,
and where ‖C‖ denotes the size of the latter set.
Having assorted the main concepts and explained why they are well defined, we can now

state the main proposition of the (current version of) Pirogov-Sinai theory. This proposition
is originally due to [Z].

Proposition IV.2. Let f = minq fq and let aq = fq − f . Then there exists a C = C(β),
satisfying C(β)→ 0 as β →∞, such that the following holds:

(1) If Γ is unstable, then
ae(Γ)|Int(Γ)| ≥ 1

3τ |Γ|. (4.16)

In particular, if aq = 0, then all contours with external color q are stable.

(2) For all Λ and q

exp
(
−βfq|Λ| − C|∂Λ|

)
≤ Zq

Λ ≤ exp
(
−βf |Λ|+ C|∂Λ|

)
. (4.17)
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Moreover, the value f equals the free energy of the model.

Proof. See [Z]. �

Based on this assertion, the entire low-temperature phase diagram can be constructed.
Namely, the phases with fq = f (i.e., aq = 0) have all contours stable and so one can
use cluster expansions (in particular, formula (4.11)) to estimate the probability that there
is a contour encircling the origin in the Gibbs measure in Λ with boundary condition q.
With the help of (4.13) and a little bit of additional combinatorics, this probability vanishes
exponentially fast as β → ∞, uniformly in Λ. Therefore, the limit Λ ↗ Zd gives rise to
a measure concentrated on configurations that look like a ‘sea’ of q-spins with small ‘islands’
of other spin-states. The ergodic theorem then implies that the measures for {q: aq = 0} are
distinct. Hence, if there is more than one such q, then we have a first-order phase transition.
We have indicated how coexistence of phases is deduced from the evaluation of metastable

free energies fq. However, we would also like to know that the ground states with aq > 0
cannot yield a separate Gibbs state (note that aq ≥ 0 because (4.13) effectively leads to the
partition sum over a smaller set of configurations). This can be answered in the affirmative
based on the analysis leading to (4.16): by introducing a very large contour, any ‘unstable’
boundary condition gets flipped to a stable one, provided the volume is large enough. The
proof of this completeness of the phase diagram is due to [Z].

♣ [BBCK]—Two-phase coexistence line in the Potts model.
In the paper ‘Gibbs Structure and Phase Coexistence in the Potts model with External

Fields’ [BBCK], the above explained theoretical arsenal has been used to establish the basic
features of the phase diagram. The model we study is similar to that of [BCK], however, the
spins take values from the set {1, . . . , q + 2} and the Hamiltonian is

H(σ) = −J
∑
〈x,y〉

δσx,σy −
∑
x

q+2∑
j=1

hjδσx,j . (4.18)

The reasons for an interest in this model are very much like the ones we have already given
when describing [BCK]. However, there are two novel points here. First, the presence of ex-
ternal fields causes all sorts of technical difficulties (for instance, it undermines the FKG-order
on which the analysis in [BCK] was based). Second, there are certain intriguing subtleties in
the phase diagram, especially when hj = 0 for all j (= 1 (the one-field case). Let us elaborate
slightly more on the latter case, while referring to the respective chapter for a comprehensive
discussion of more general cases. Throughout, it is assumed that q is large.
When only h1 (= 0, both the aforementioned methods (i.e., reflection positivity and Pirogov-

Sinai theory) are doomed to fail when h1 is large positive and β is not close to 0 and ∞.
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Since the large-positive values of h1 can be handled by a high-fugacity expansion (a sort of
Pirogov-Sinai expansion around the point h1 = ∞), there is only a bounded region in the
(h1, β)-plain left unexplored (see Fig. 1 of [BBCK]). Interestingly, the phase transition line,
which presumably terminates in a critical point in this region, marks coexistence between
only two phases: a low-temperature ordered phase and a high-temperature disordered phase.
From the physics point of view, such a behavior is reminiscent of the liquid-vapor transition,

both because of the driving mechanism (order v. disorder) and because of the termination in
a critical point. In fact, to the best of our knowledge, such transition has not been rigorously
described before. Apart from applying Pirogov-Sinai theory to the appropriate graphical
representation (which has been done, for the case of the Potts model with a special kind of
external field, in [vEFK]), the main objective of the paper is to develop an alternative means
for analyzing the phase-coexistence line inside the region where the perturbative methods fail.

Gibbs structure of Edwards-Sokal measures.
As in [BCK], our major tool of study is an appropriate graphical representation (see [H]

for a review of graphical representations in the Potts and related models). However, in this
case we actually take deliberately the advantage of working in the coupled system, i.e., in the
Edwards-Sokal coupling of the spin system and the graphical representation.
We begin by defining the notion of Gibbs measures for such combined systems. In par-

ticular, we allow the boundary spin/bond configurations in the Gibbsian specification to be
prescribed in independent sets of sites/bonds. Even though this might sound formal, there
are some advantages of this approach—certainly in the use of conditioning and the whole
‘extremal-decomposition’ theory. For such measures, we establish lots of general properties.
In particular, first we prove that there is actually a one-to-one correspondence between the
spin Gibbs measures and the Edwards-Sokal Gibbs measures. Moreover, since we are able to
prove that certain random-cluster marginals have nice FKG properties, the standard results
upon the convergence of finite-volume measures with wired and free boundary conditions are
shown to carry over for the Edwards-Sokal measures.
Having built a certain framework, we can relate various percolation properties in the graph-

ical representation to the existence and/or the non-existence of the phase transition in the
spin marginal. Finally, we also make a link to the DLR states of the graphical representations
defined in the sense of [Gr]. In particular, we prove that the DLR states of the graphical
representation are in close correspondence with the Edwards-Sokal measures having at most
one infinite cluster in the graphical marginal. This extends the recent partial solution given
by [Gr,PVdV] to the question raised in [vEFS] whether (and for what boundary conditions)
the measures obtained via a thermodynamic limit admit a DLR characterization.
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[vEFK] A.C.D. van Enter, R. Fernández, R. Kotecký, Pathological behavior of renormalization-group maps
at high fields and above the transition temperature, J. Stat. Phys. 79 (1995), 969–992.

[vEFS] A.C.D. van Enter, R. Fernández, A. Sokal, Regularity properties and pathologies of position-space
renormalization-group transformations: Scope and limitations of Gibbsian theory, J. Stat. Phys.
72 (1993), 879–1167.

[FK] C.M. Fortuin, P.W. Kasteleyn, On the random cluster model I. Introduction and relation to other
models, Physica 57 (1972), 536–564.

[FKG] C.M. Fortuin, J. Ginibre, P.W. Kasteleyn, Correlation inequalities on some partially ordered sets,
Commun. Math. Phys. 22 (1971), 89–103.
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A HETEROPOLYMER NEAR A LINEAR INTERFACE

Marek Biskup†! and Frank den Hollander†

Abstract. We consider a quenched-disordered heteropolymer, consisting of hydrophobic
and hydrophilic monomers, in the vicinity of an oil-water interface. The heteropolymer is
modeled by a directed simple random walk (i, Si)i∈N on N×Z with an interaction given by
the Hamiltonians Hω

n (S) = λ
∑n

i=1(ωi +h) sign(Si) (n ∈ N). Here, λ and h are parameters
and (ωi)i∈N are i.i.d. ±1-valued random variables. The sign(Si) = ±1 indicates whether
the i–th monomer is above or below the interface, the ωi = ±1 indicates whether the i–th
monomer is hydrophobic or hydrophilic. It was shown by Bolthausen and den Hollander
[BodH] that the free energy exhibits a localization/delocalization phase transition at a curve
in the (λ, h)–plane.

In the present paper we show that the free-energy localization concept is equivalent to
pathwise localization. In particular, we prove that free-energy localization implies exponen-
tial tightness of the polymer excursions away from the interface, strictly positive density of
intersections with the interface, and convergence of ergodic averages along the polymer. We
include an argument due to G. Giacomin, showing that free-energy delocalization implies
that there is pathwise delocalization in a certain weak sense.

†Mathematisch Instituut, Katholieke Universiteit Nijmegen.
�Department of Theoretical Physics, Charles University, Prague.
1991 Mathematics Subject Classification. Primary 60K35; secondary 82B44, 82D30.
Key words and phrases. Heteropolymer, quenched disorder, localization, Gibbs state.



24 Techniques of proofs of phase transitions

1. INTRODUCTION

Heteropolymers near an interface between two solvents are intriguing because of the
possibility of a localization/delocalization phase transition. A typical example is a poly-
mer consisting of hydrophobic and hydrophilic monomers in the presence of an oil-water
interface.
In the bulk of a single solvent, the polymer is subject to thermal fluctuations and

therefore is rough on all space scales. However, near the interface the polymer can
benefit from the fact that part of its monomers prefer to be in one solvent and part in
the other. The energy it may gain by placing as many monomers as possible in their
preferred solvent can, at least for low temperatures, tame the entropy-driven fluctuations.
Consequently, the polymer becomes captured by the interface and therefore is smooth on
large space scales. The two regimes of characteristic behavior are separated by a phase
transition.

1.1. The model. The polymer is modeled by a random walk path (i, Si)i∈L, where
L ⊆ Z indexes the monomers, Si ∈ Z and Si−Si−1 = ±1. The interface is the horizontal
in L× Z. We distinguish two cases:

(1) the singly-infinite polymer, where L = N and S0 = 0
(2) the doubly-infinite polymer, where L = Z and S0 ∈ 2Z.

The heterogeneity within the polymer is represented by assigning a random variable
ωi = ±1 to monomer i for each i ∈ L, where ωi = +1 means that monomer i is
hydrophobic and ωi = −1 that it is hydrophilic.
Let F (L) be the set of all finite connected subsets of L. In the simplest model, the

thermodynamics of the heteropolymer is governed by the family (Hω
Λ)Λ∈F (L) of Hamil-

tonians
Hω,λ,h

Λ (S) = λ
∑
i∈Λ
(ωi + h)∆i(S) (1.1)

w.r.t. the reference measure giving all paths S = (Si)i∈L equal probability, i.e., the
measure P for simple random walk (SRW). Here, λ and h are parameters, ω = (ωi)i∈L

is the disorder configuration, and

∆i(S) =

{
sign(Si) if Si (= 0
sign(Si−1) if Si = 0.

(1.2)

The role of the Hamiltonian is that (for λ > 0) it favors the combinations Si > 0, ωi = +1
and Si < 0, ωi = −1, so hydrophobic monomers in the oil above the interface (L× Z+)
and hydrophilic monomers in the water below the interface (L × Z−). (Note that the
definition of ∆i(S) actually corresponds to a bond model.) The parameter λ plays the
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role of the inverse temperature, whereas h expresses the asymmetry between the affinities
of the monomer species with the solvents.
The Hamiltonian is (S, ω, h) → (−S,−ω,−h) symmetric. In view of this, we shall

henceforth take
I = {(λ, h): λ > 0, h ≥ 0} (1.3)

as our parameter space.

1.2. The free energy and a phase transition. The singly-infinite quenched i.i.d.
random model with Hamiltonian (1.1) and with a symmetric disorder distribution was
recently analyzed in detail by Bolthausen and den Hollander [BodH]. For the reader’s
convenience we describe some of the results obtained in that paper.
The localization/delocalization phase transition is established by estimating the free

energy

φ(λ, h) = lim
n→∞

1
|Λn| logE

(
eH

ω,λ,h
Λn

)
, (1.4)

where Λn = {1, . . . , n} and where E stands for the expectation w.r.t. SRW starting at 0.
The limit is shown to exists and to be ω-independent a.s. by the subadditive ergodic
theorem.
It was observed that φ(λ, h) ≥ λh, with the lower bound attained for delocalized

paths. Indeed, P (Si ≥ 0 ∀ 0 ≤ i ≤ n) ∼ C/
√
n (n→∞), and conditioned on this event

1
|Λn|H

ω,λ,h
Λn =

1
|Λn|λ

∑
i∈Λn
(ωi + h) = λh(1 + o(1)) ω-a.s. (1.5)

For this reason, it is natural to work with the excess free energy

ψ(λ, h) = φ(λ, h)− λh (1.6)

and to put forward the following concept of a phase transition:

Definition 1. [BodH] The polymer is said to be

(a) localized if ψ > 0,
(b) delocalized if ψ = 0.

As indicated by (1.5), (b) is justified by noting that delocalized paths yield no con-
tribution to ψ. Conversely, (a) is justified by noting that only those excursions that
move below the interface can give a positive contribution to ψ. Nonetheless, Definition 1
makes no claims as to the actual path behavior. The present paper shows that, in fact,
a bit of work is needed to obtain a path statement from (a) and (b).
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Let us define

L = {ψ > 0} ∩ I (1.7)

D = {ψ = 0} ∩ I (1.8)

as the sets of parameters for which the model is localized, respectively, delocalized in the
sense of Definition 1. Neither of these sets is trivial, as shown by the following theorem.

Theorem 1. [BodH] There is a continuous non-decreasing function hc: (0,∞) → (0, 1)
such that

L = {(λ, h) ∈ I: 0 ≤ h < hc(λ)}. (1.9)

Moreover,

lim
λ→∞

hc(λ) = 1 and lim
λ↓0

hc(λ)
λ
= Kc, (1.10)

where 0 < Kc <∞ is a number related to a Brownian version of the model.

Theorem 1 asserts that L and D are separated by a phase transition line λ → hc(λ)
(which extends over all temperatures). Although it is relatively easy to establish the
existence and uniqueness of hc(λ) (essentially via the convexity of φ) and to evaluate
the limit λ→∞ (through an appropriate lower bound on the expectation in (1.4)), the
scaling law for λ ↓ 0 is a rather involved problem. The intuitive reason why a Brownian
constant should appear for λ ↓ 0 is that for high temperatures the polymer excursions
are large. Therefore, from a coarse-grained point of view, both the excursions and the
disorder inside the excursions may be approximated by their Brownian counterparts.
However, the details of this approximation are quite delicate.

1.3. Earlier path results. As already alluded to, Theorem 1 characterizes the phase
transition in terms of the free energy rather than the path. One would like to prove that,
indeed, L corresponds to a localized path and (the interior of) D to a delocalized path.
Moreover, one would like to learn more about the path characteristics, e.g., the length
and the height of a typical excursion. Progress in this direction has been made by Sinai
(1993) [Si], who proved pathwise localization in the symmetric case h = 0 for all λ > 0.
Sinai introduces a (Gibbsian) probability distribution Qω,λ,0

n in the volume Λn =
{1, . . . , n}, defined by

dQω,λ,0
n

dPn
(S) =

eH
ω,λ,0
Λn

(S)

Zω,λ,0
Λn

, (1.11)

where the reference measure Pn is the projection onto Λn of the SRW-measure P . His
result reads:
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Theorem 2. [Si] Let h = 0 and λ > 0. Then there exist a deterministic number
ζ = ζ(λ) > 0 and two random variables n(ω) ∈ N, m(ω) ∈ N such that for almost all ω

sup
0≤i≤n

Qω,λ,0
n (|Si| > s) ≤ e−ζs (n ≥ n(ω), s ≥ m(ω)). (1.12)

Theorem 2 states that the path measure is exponentially tight . This result has been
extended by Albeverio and Zhou (1996) [AZ], who show that the length of the longest
excursion in Λn is of order logn and so is the height of the highest excursion.

1.4. Path results in the present paper—outline. The goal of the present paper is
to give a complete description of the path for all (λ, h) ∈ L. We in fact adopt a more
comprehensive attitude by discussing the entire Gibbsian structure associated with the
Hamiltonian (1.1). (Theorems 1 and 2 are in this respect statements about the Gibbs
measures generated by the free boundary condition.)
We begin by singling out a class of ‘regular’ Gibbs measures (Section 2). For this,

measurability and moderate growth of the boundary condition are the key concepts.
Within this class we establish, for all (λ, h) ∈ L, uniqueness of the Gibbs measure,
exponential tightness of the path in the vertical direction, and ergodicity in the horizontal
direction (Sections 3 and 5). The proof requires three preparatory lemmas, leading up
to positivity of the lower density of intersections with the interface, which is the key
ingredient in the proof (Section 4). The paper is concluded by showing that for (λ, h) ∈ D
the path is delocalized in a weak sense, namely, it spends a zero fraction of its time in
any finite layer around the interface (Section 6).
The main results of the present paper are Theorem 3 (Section 3) and Theorem 4

(Section 6).

1.5. Literature remarks. The annealed model (i.e., the partition sum is averaged
over ω) treated by Sinai and Spohn (1996) [SS] is exactly solvable when the ωi’s are
i.i.d. or interact via an Ising Hamiltonian. It turns out that the annealed heteropolymer
is delocalized even in the presence of an interface. To get localization, an additional
binding potential at the interface has to be superimposed.
The quenched model (i.e., ω is kept frozen) is mathematically much harder. The

periodic case (e.g., ω represents some periodic constraint within the polymer) has been
successfully dealt with by using a transfer-matrix approach [GIN]. In that paper, the
underlying random walk is three-dimensional, undirected and with Gaussian steps, while
the interface is a two-dimensional plane. It turns out that the phase transition curve
diverges at some finite value of λ. This may be attributed to the flexibility of the
Gaussian random walk to keep its monomers in their preferred solvent (by making large
steps when necessary).
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Prior to [Si] and [BodH], the random quenched problem (e.g., ω i.i.d.) had been
analyzed by Garel et al. [GHLO] using the replica method. The latter study draws a
conclusion qualitatively similar to that of Theorem 1.
The free-energy localization concept has proved to be useful also in the study of higher-

dimensional generalizations of the present model [BG]. The latter authors consider a d-
dimensional Gaussian surface, pinned at the interface outside a finite box and weighted by
the same type of Hamiltonian as in (1.1). A localization/delocalization phase transition
in the sense of Definition 1 is found, but the properties of the phase transition line are
not yet fully understood and are possibly different from the ones in Theorem 1.
Whittington [W1,W2] and Orlandini at al. [OTW] consider the model where the

heteropolymer is confined to a half-space above the interface and has an attractive inter-
action at the interface. Both for periodic and random quenched disorder they establish
the existence of a localization/delocalization phase transition.

2. PRELIMINARIES

2.1. Gibbsian structure. Let (ωi)i∈L be an i.i.d. sequence of ±1-valued random
variables defined on a probability space (Ω,B,P). Here Ω = {−1, 1}L, B is the σ-algebra
generated by the cylinder sets, and P is the i.i.d. measure with P(ωi = +1) = P(ωi =
−1) = 1/2. Expectation w.r.t. P will be denoted by E.
Let

Σ =

{ {
S = (Si)i∈N: S0 = 0, |Si − Si−1| = ±1 ∀i ∈ N

}{
S = (Si)i∈Z: S0 ∈ 2Z, |Si − Si−1| = ±1 ∀i ∈ Z

} ∪ {S ≡ ±∞} (2.1)

be the space of SRW-paths for the singly-infinite (L = N) and the doubly-infinite (L = Z)
case, respectively.
Let F be the σ-algebra generated by the cylinder sets. For Λ ⊂ L, let FΛ be the

projection of F onto Λ, and let T = ∩Λ∈F (L)FΛc be the tail σ-field (remember that
F (L) denotes the set of all finite connected subsets of L). We use P(Σ,F) to denote the
space of all probability measures on (Σ,F). Note that P(Σ,F) is compact in the weak
topology for both the singly-infinite and the doubly-infinite case. (This is why we added
±∞ in (2.1) for the doubly-infinite case. In Section 5 we shall see that when (λ, h) ∈ L
the Gibbs measures assign zero probability to {S ≡ ±∞}.) Let P,E denote probability
and expectation under SRW.
We define Gibbs measures by means of the Gibbsian specification (for details see

Chapter 1 of Georgii [Ge])

γω,λ,h
Λ

(
S|S̃) = eH

ω,λ,h
Λ (S)

Zω,λ,h
Λ (S̃)

P (SΛ|S̃Λc)1{SΛc=S̃Λc} (Λ ∈ F (L)). (2.2)
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This specification is a probability measure on infinite paths S = SΛ ∨ S̃Λc ∈ Σ (with
SΛ = (Si)i∈Λ and S̃Λc = (S̃i)i∈Λc), absolutely continuous w.r.t. the conditional measure
P (SΛ|S̃Λc) corresponding to the SRW-bridge, and a measurable function of the boundary
condition S̃ ∈ Σ. The partition function Zω,λ,h

Λ (S̃) is the normalizing constant (which
actually only depends on S̃∂Λ = (S̃i)i∈∂Λ, with ∂Λ being the outer boundary of Λ). It is
easy to verify that the specifications (γω,λ,h

Λ )Λ∈F (L) form a consistent family.
Given ω ∈ Ω and (λ, h) ∈ I, the Gibbs measures are defined as follows:

Gλ,hω =
{
µ ∈ P(Σ,F): µ = µγω,λ,h

Λ ∀Λ ∈ F (L)
}
, (2.3)

i.e., γω,λ,h
Λ is the conditional expectation of µ in Λ given the boundary condition in Λc. By

compactness, any weak (subsequential) limit of γω,λ,h
Λ (S̃) as Λ→ L, with a fixed bound-

ary condition S̃, leads to a Gibbs measure (because the specifications are consistent).
Hence Gλ,hω (= ∅.
2.2. Regular measures. As is typical for Gibbs measures with unbounded single-
component state spaces, an extreme boundary condition may overrule the effect of the
interaction itself. In our setting, for the singly-infinite case and for any (λ, h) ∈ I,
there is a whole class of Gibbs measures (of at least countably-infinite cardinality) for
which delocalized behavior is enforced when S̃i grows linearly with i. Similarly for the
doubly-infinite case.
One can analyze this situation by looking at the lower free energy φS̃ corresponding

to S̃, defined by

φS̃(λ, h) = lim infn→∞
1
|Λn|E

(
logZω,λ,h

Λn (S̃)
)

(2.4)

ψS̃(λ, h) = φS̃(λ, h)− λh. (2.5)

Lemma 1. Consider the singly-infinite case. Let limi→∞ S̃i/i = 0. Then ψS̃(λ, h) ≥
ψ(λ, h). Similarly for the doubly-infinite case.

Proof. To find a lower bound on φS̃(λ, h), we pick Λ2n and restrict the summation in
Zω,λ,h
Λ2n

(S̃) to paths that end by hitting the interface and subsequently moving at maximal
speed. More precisely, if cn = S̃2n/2n > 0, then the path moves from height 0 at position
2n(1− cn) to height 2ncn at position 2n. This gives

Zω,λ,h
Λ2n

(S̃) ≥ Zω,λ,h
Λ2n(1−cn)

(0) exp
[
λ

2n∑
i=2n(1−cn)+1

(ωi + h)
](2n(1− cn)

n(1− cn)

)
(

2n
n(1− cn)

) , (2.6)
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where Zω,λ,h
Λ2m

(0) denotes the partition sum with boundary condition S̃2m = 0 (m ∈
N). The binomial factors come from the fact that the path must match the boundary
condition (recall that the partition sum is defined w.r.t. the SRW-bridge). Now, it was
shown in [BodH] that the ratio of Zω,λ,h

Λ2n
(0) and the partition function with free boundary

condition, which was used to define φ(λ, h), is of linear order in n. Therefore the claim
follows after taking logarithms, dividing by 2n, letting n → ∞, using that cn → 0, and
using the relation between φ and ψ in (1.6). The case cn < 0 and the doubly-infinite
case are completely analogous. �

Lemma 1 shows that any sublinear boundary condition cannot destroy localization
in the sense of Definition 1. Thus, a natural distinction between sublinear and linear
boundary conditions arises. This leads us to the following definition.

Definition 2. Given (λ, h) ∈ I, the regular Gibbs measures are those µ ∈ Gλ,hω for
which limi→±∞ Si/i = 0 µ-a.s. The set of regular Gibbs measures is denoted by GR,λ,h

ω .

The theory of Gibbs measures guarantees that all regular measures lie in the closed
convex hull of the weak limits generated by sublinear boundary conditions.

2.3. Measurable Gibbsian sections. As we noted earlier, Gλ,hω (= ∅ for all ω by
compactness. However, although µω ∈ Gλ,hω can be arranged into a measure-valued
function of ω, it is not a priori clear that this can be done in a measurable way, be-
cause of possible non-uniqueness of the Gibbs measure. Formally, if we put GR,λ,h =⋃

ω∈Ω{(ω, µ): µ ∈ GR,λ,h
ω }, then the question is whether or not there are measurable sec-

tions (ω, µω)ω∈Ω ∈ GR,λ,h. We shall answer this question affirmatively when (λ, h) ∈ L.
Measurability will be important later on because we shall want to integrate over ω.
Define

ĜR,λ,h =

{
µ(·): Ω →P(Σ,F) -

〈µω ∈ GR,λ,h
ω ∀ω ∈ Ω

µ(·)(A) B-measurable ∀A ∈ F

}
(2.8)

to be the set of regular measurable Gibbsian sections. Observe that µ ∈ ĜR,λ,h implies
that µ, when regarded as a measure-valued function on Ω, is measurable w.r.t. the Borel
σ-algebra associated with the weak topology on P(Σ,F).
Lemma 2. Let (λ, h) ∈ L. Then
(a) ĜR,λ,h is non-empty both for the singly-infinite and the doubly-infinite case.
(b) For the doubly-infinite case there is a µ(·): Ω → P(Σ,F) such that µ(·)(A) is B-
measurable for all A ∈ F and

(1) µω(|S0| <∞) = 1
(2) µω is regular Gibbsian, i.e., µω ∈ GR,λ,h

ω

(3) µσω(σA) = µω(A) for all A ∈ F
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hold for P-almost all ω. Here σ denotes the left-shift by two (!) lattice sites, acting on
path and disorder.

The proof of Lemma 2 is given in Section 5 and requires a large deviation estimate on
the partition function appearing in (2.2), which is derived in Lemma 3 (Section 4). The
point here is to rule out that mass escapes to infinity under the doubly-infinite measure
µω (i.e., {S ≡ ±∞} has non-zero probability). This is in fact likely to happen when
(λ, h) ∈ D, but here we are only considering (λ, h) ∈ L.

3. UNIQUENESS AND POSITIVE DENSITY IN THE LOCALIZATION REGIME

It is intuitively clear that ψ > 0 implies recurrence, i.e., the path hits the interface in-
finitely often. Namely, for any regular boundary condition S̃ we have Zω,λ,h

Λ (S̃)e−λh|Λ| =
e|Λ|ψS̃(λ,h)+o(|Λ|) → ∞ as Λ → L, which implies that the set {S ∈ Σ: Si > 0 ∀i ≥ n}
has zero probability for all n (recall (1.1) and (2.1)). Below we shall in fact prove more,
namely, that all regular Gibbs measures are positively recurrent , i.e., the path visits every
height with a certain positive frequency.
For a ∈ Z, let

>−a (S) = lim infΛ→L

2
|Λ|

∑
i∈Λ
1{Si=a}, (3.1)

where the factor 2 takes care of the parity of SRW. We shall say that (ω, µω)ω∈Ω ∈ ĜR,λ,h

is localized if Eµω(>−0 > 0) = 1, i.e., if µω(>−0 > 0) = 1 for P-almost all ω, by Fubini’s
theorem. Now we are ready to state the main theorem of our paper:

Theorem 3. Let (λ, h) ∈ L. Then
(a) ĜR,λ,h is a singleton both for the singly-infinite and the doubly-infinite case.
(b) The unique doubly-infinite Gibbsian section (ω, µω)ω∈Ω is localized and is jointly
translation invariant (i.e., µσω(σA) = µω(A) for P-almost all ω and all A ∈ F).
(c) The unique singly-infinite Gibbsian section (ω, νω)ω∈Ω is localized and is asymptoti-
cally equal to (ω, µω)ω∈Ω:

lim
n→∞ supA∈F

∣∣νω(σnA)− µω(σnA)
∣∣ = 0 for P-almost all ω. (3.2)

(d) Both Gibbsian sections have a.s. constant densities, i.e., for P-almost all ω and all
A ∈ F

lim
Λ→L

1
|Λ|

∑
i∈Λ
1σiA(S) = Eµω(A) for µω-almost all S ∈ Σ, (3.3)

and similarly for νω.
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(e) Both Gibbsian sections are exponentially tight: for any s ∈ Z and ε > 0 there exists
a random number n0(s, ε, ω) such that

νω(Sn = s) ≤ O(1)e−(ζs−ε)|2s| (n ≥ n0(s, ε, ω)), (3.4)

with ζs = ψ(λ, h) when s > 0 and ζs = ψ(λ, h) + λh when s < 0.

Assertions (a) and (b) establish uniqueness within the class of regular Gibbsian sec-
tions (in L). The measures νω resp. µω should be understood as describing the behavior
of the polymer near the endpoint, respectively, away from the endpoints. Assertion (c)
claims that these two blend into each other at infinity. Assertion (d) corresponds to er-
godicity along the polymer. (Note that the probabilities µω(σiA) typically vary a great
deal with i according to the local disorder.) Assertion (e) provides an extension of Sinai’s
result cited in Theorem 2, with explicit bounds on the decay rate.

4. THREE PREPARATORY LEMMAS

In order to prove Lemma 2 and Theorem 3, we first have to state a couple of tech-
nical lemmas that establish exponential growth of the partition function (Lemma 3),
exponential tightness of the interarrival times to the interface (Lemma 4), and—most
importantly—a.s. strict positivity of the lower density of intersections with the interface
under both µω and νω (Lemma 5). To avoid confusion, we emphasize that the proof of
Lemma 2 requires only the result of Lemma 3, hence there is no problem with measur-
ability in Lemmas 4 and 5. Throughout the sequel we assume (λ, h) ∈ L and suppress
these parameters from the notation.

4.1. Large deviations for the partition sum. The assertion of Lemma 3 is a large
deviation estimate for the partition sum that will be needed later on, in particular, in
conjunction with a Borel-Cantelli argument.

Lemma 3. Let Zω
2n = Zω

Λ2n
(0) be the partition function for the boundary condition

S̃0 = S̃2n = 0. Then for each ε ∈ (0, ψ) there is a δε > 0 such that

P

( 1
2n
logZω

2n < ψ + λh− ε
)
≤ O(1)e−δε2n (n→∞). (4.1)

Proof. Given ε > 0, there is an m large enough such that

1
2m

E(logZω
2m) ≥ ψ + λh− ε/2. (4.2)
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This follows from the fact that a sublinear boundary condition does not lower the free
energy (see Lemma 1). Pick such an m and put k = 2n/m3. Then, by restricting the
path to return to 0 at positions 2m, 4m, . . . , 2km (≤ 2n), we obtain

Zω
2n ≥

(2m
m

)k(2(n−km)
n−km

)(2n
n

) [ k−1∏
j=0

Zσjmω
2m

]
Zσkmω
2n−2km. (4.3)

Here the binomial factor reflects the fact that the partition sum is defined w.r.t. the
SRW-bridge. After taking logarithms and dividing by 2n we get

P

( 1
2n
logZω

2n < ψ + λh− ε
)
≤ P

(1
k

k−1∑
j=0

1
2m
logZσjmω

2m < ψ + λh− 3ε/4
)
, (4.4)

where we have assumed n so large that the factors outside the square brackets in (4.3)
give rise to a correction less than ε/4. Now, (1/2m) logZσjmω

2m (j = 0, . . . , k − 1) are
i.i.d. bounded random variables. Therefore a standard large deviation estimate gives
that the r.h.s. of (4.4) is bounded by O(1)e−δ′

ε2k for some δ′ε > 0. From this the claim
easily follows by choosing δε = δ′ε/m (we neglect the additional correction coming from
rounding off 2n/m3, which is absorbed into the O(1)-term). �

4.2. Tightness of interarrival times. Let us introduce the notion of arrival times,
defined as the positions where the path hits the interface, i.e.,

. . . < N−1 < N0 ≤ 0 < N1 < N2 < . . . , (4.5)

are specified by S2Nk
= 0 (k ∈ Z) and S2r (= 0 if r (∈ (Nk). Let ξk = Nk+1 −Nk (k ∈ Z)

be the interarrival times. (Both sequences end when no further arrivals occur.) Note
that only the even sites are counted in the excursions.

Lemma 4. If µω is a measurable Gibbsian section corresponding to the disorder ω,
then there is a κ > 0 such that for any i ∈ Z, L ∈ Z, K ∈ N and any mi+j ∈ N

(j = 0, . . . ,K − 1)

E

[
µω

(
ξi+j = mi+j ∀j = 0, . . . ,K − 1

∣∣Ni = L
)] ≤ O(1)K−1∏

j=0

e−κmi+j . (4.6)

Proof. Fix i, L,K. The event

A = {ξi+j = mi+j ∀j = 0, . . . ,K − 1}, (4.7)
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if conditioned on {Ni = L}, means that S2kj = 0 for kj = L +
∑j−1

l=0 mi+l and S2r (= 0
for kj < r < kj+1 (j = 0, . . . ,K − 1). Since µω is Gibbsian, we can apply conditioning
to write (recall (1.1))

µω(A|Ni = L) =
[K−1∏

j=0

1 + e−2λ(ΩIj+h|Ij |)

2Zω
Ij
e−λ(ΩIj+h|Ij |) PIj

]
× µω(S2kj+1 = 0 ∀j = 0, . . . ,K − 1|Ni = L), (4.8)

where Ij = (2kj , 2kj+1] ∩ Z, ΩIj =
∑

l∈Ij
ωl, and PIj is the probability that SRW

conditioned on S2kj = 0 = S2kj+1 never touches the interface in between. By neglecting
the last factor we obtain

µω(A|Ni = L) ≤
K−1∏
j=0

1 + e−2λ(ΩIj+h|Ij |)

2Zω
Ij
e−λ(ΩIj+h|Ij |) PIj . (4.9)

Pick ε > 0. By Lemma 3, there exists a δε > 0 such that

P

(
Zω

Ije
−λh|Ij | < e(ψ−ε)|Ij |

)
≤ O(1)e−δε|Ij | for all j. (4.10)

Moreover, a standard large deviation estimate gives that there exists a δ′ε > 0 such that

P
(|ΩIj | >

ε

λ
|Ij |

) ≤ O(1)e−δ′
ε|Ij | for all j. (4.11)

Hence, by using (4.11) to estimate the numerator of the fractions in (4.9), and (4.10) to
estimate the denominator on the complement of the event in (4.11), we get

E
[
µω(A|Ni = L)

] ≤ O(1)K−1∏
j=0

[
e−δε|Ij | + e−δ′

ε|Ij | + e−(ψ−2ε)|Ij |
]
, (4.12)

where we also used that each factor in the r.h.s. of (4.9) is ≤ 1. The desired estimate (4.6)
is now obtained by setting κ = 2 supε>0min{δε, δ′ε, ψ − 2ε}. Since ψ > 0, we obviously
have κ > 0. �

4.3. Positive lower density of intersections. Now comes the most important
lemma, which establishes a.s. positivity of >−0 (recall (3.1)). As explained in Section 5,
this result will make accessible certain coupling techniques that will be used to prove
Theorem 3.
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Lemma 5. There is a >̂ > 0 such that for any measurable Gibbsian section (ω, µω)ω∈Ω ∈
ĜR,λ,h: µω(>−0 ≥ >̂) = 1 for P-almost all ω.

Proof. Let us concentrate on the doubly-infinite case. (The singly-infinite case can be
handled analogously.) Let

An;k =
{ n∑

j=−n

1{S2j=0} ≤ k
}
. (4.13)

Let −2(n + n−) label the last arrival before −2n and 2(n + n+) the first arrival after
2n. Since Lemma 4 provides an estimate for interarrival times in a row, we have for
0 ≤ k ≤ n

Eµω(An;k) ≤ O(1)
[ k∑
l=0

(
2n+ 1

l

)] ∞∑
n+,n−=1

e−κ(2n+n−+n++1)

≤ O(n)
(
2n+ 1

k

)
e−κn, (4.14)

where the binomial factor accounts for all possible positions of the k arrivals within
[−2n, 2n].
Pick 0 < >̂ < 1/2 and pick k = k(n) = 2(2n + 1)>̂3. Then, using Stirling’s formula,

we obtain
Eµω(An;k(n)) ≤ O(n)

[
e−κ/2>̂−5̂(1− >̂)−(1−5̂)]2n. (4.15)

So if >̂ satisfies >̂ log >̂ + (1− >̂) log(1− >̂) + κ/2 > 0, then the r.h.s. is summable on n,
and hence

Eµω(An;k(n) i.o.) = 0 (4.16)

by the Borel-Cantelli lemma. Consequently,

n∑
j=−n

1{S2j=0} > 2(2n+ 1)>̂3 (4.17)

eventually under Eµω, and hence under µω for P-almost all ω. Therefore the claim follows
(recall (3.1)). �

5. PROOFS

5.1. Proof of Lemma 2. Fix (λ, h) ∈ L and suppress these parameters from the
notation. We shall consider the doubly-infinite case and construct a measure-valued
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function ω → µω with the desired properties. The existence proof in the singly-infinite
case is analogous.
We start the construction by defining a finite-volume jointly translation-invariant

Gibbs measure on SRW-paths and disorder configurations, and then identify a thermo-
dynamic limit thereof. The construction guarantees that the limit fulfils the requirements
stated in Lemma 2(b). Lemma 4 will be used to show that no mass escapes to infinity.
Consider a finite string Λ ⊂ Z, with |Λ| even and Λ 4 0. Let γ̃ω

Λ(SΛ) be the specifica-
tion in Λ defined by

γ̃ω
Λ(SΛ) =

1
2|Λ|

eH
ω,λ,h
Λ (SΛ)

Z̃ω,λ,h
Λ

1{∃(2i)∈Λ:S2i=0}1{Smax Λ−Smin Λ=±1}. (5.1)

Note that here we force the path to intersect the interface somewhere and that we impose
periodic boundary conditions. Clearly, γ̃σω

Λ (σA) = γ̃ω
Λ(A) for any A ∈ FΛ (where σ acts

cyclically).
Pick a sequence (Λ2n) of such intervals with |Λ2n| = 2n. Now define µ(n)B (A) by

µ
(n)
B (A) =

∫
Ω

P(dω)1B(ω)γ̃ω
Λ2n
(A) (A ∈ FΛ2n , B ∈ BΛ2n). (5.2)

By compactness, we have µ
(nk)
B (A) → µB(A) along a subsequence (nk) for all A ∈

∪nFΛ2n , all B ∈ ∪nBΛ2n , and for some µB(A). Since µB(A) is σ-additive on ∪nBΛ2n ×
∪nFΛ2n , it has a unique extension µ̄(·)(·) to B×F by the Caratheodory theorem. Before
we extract µω from µ̄Ω, we first verify that µ̄Ω assigns zero probability to {S ≡ ±∞},
which is Lemma 2(b)(1). This will follow if µ̄Ω

(|S0| ≥ a
)→ 0 for a→∞ (i.e., the path

cannot escape to infinity). Indeed, since γ̃ω
Λ is Gibbsian we may estimate

µ
(nk)
Ω

(|S0| ≥ 2a
) ≤ E γ̃ω

Λ2nk
(N0 ≤ −a, N1 ≥ a)

≤ O(1)
∞∑

i1,i2=a

e−κ(i1+i2+1) → 0 (a→∞) (5.3)

uniformly in nk, with the aid of (4.6). Now µB(A) ≤ P(B) implies µ̄B(A) ≤ P(B), so by
the Radon-Nikodym theorem there exists a unique µω such that

µ̄B(A) =
∫
Ω

P(dω)1B(ω)µω(A) (A ∈ F). (5.4)

Clearly, by (5.3), µω(|S0| <∞) = 1 for P-almost all ω, so Lemma 2(b)(1) is established.
The uniqueness of the representation in (5.4) implies that µω is a σ-additive probability

measure and that µω ∈ GR,λ,h
ω for P-almost all ω. To prove the latter property, which is
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Lemma 2(b)(2), pick Λ ⊂ ∆ ∈ F (Z), D ∈ F , ω̃ ∈ Ω, take B = {ω ∈ Ω: ω|∆ = ω̃|∆}, and
subtract (5.2) with A = D from (5.2) with A replaced by the function γω̃

Λ(D| · ) (i.e., the
specification defined in (2.2)), to get∫

Ω
P(dω)1{ω∈Ω:ω|∆=ω̃|∆}

[
µω(D)− Eµωγ

ω̃
Λ(D| · )

]
= 0, (5.5)

where Eµω stands for expectation w.r.t. µω. Here we have been able to use Gibbsianness
of γ̃ω

Λ2n
(with ∆ ⊂ Λ2n) even under integration over ω, because ω is equal to ω̃ inside Λ.

Now proceed by letting ∆ → Z to show that µω̃(D) = Eµω̃γ
ω̃
Λ(D| · ) for P-almost all ω̃.

Hence, µω is a Gibbs measure for the Hamiltonian in (1.1). It follows from (5.3) and
a straightforward Borel-Cantelli argument that µ̄Ω is regular and, consequently, µω is
regular P-almost surely, which completes the proof of Lemma 2(b)(2).
Finally, Lemma 2(b)(3) follows from the periodicity of the specification γ̃ω

Λ(SΛ), which
is trivially jointly translation-invariant. �

5.2. Proof of Theorem 3. The proof will come in four steps. Step 1, which is the
most technical, shows that for two arbitrary Gibbsian sections corresponding to the same
medium the paths intersect infinitely often. Via a coupling argument in Step 2 this will
prove items (a–c) of Theorem 3. Items (d) and (e) are established in Steps 3 and 4,
respectively.

STEP 1. Let (ω, µω)ω∈Ω ∈ ĜR,λ,h be the measurable Gibbsian section whose exis-
tence was established in Lemma 2. Let (ω, νω)ω∈Ω ∈ ĜR,λ,h, either singly-infinite or
doubly-infinite. In order to make coupling possible, we have to show that paths intersect
infinitely often under a joint measure. The result of Lemma 5 allows us to choose the
product measure.
Label the paths under µω by 1, the paths under νω by 2. Let

C∞ = {(S1, S2): S1
n = S2

n i.o.} (5.6)

be the set of pairs of paths that intersect infinitely often. We shall show that (µω ×
νω)(C∞) = 1 for P-almost all ω. The proof goes as follows.
As was shown in Lemma 5, both measures have a strictly positive lower density of

intersections with the interface. Hence the function fM = 1{N1−N0≥M}, i.e., the indicator
of the event that 0 belongs to an excursion larger than M (recall (4.5)), is well defined
on a set of full measure. Since fM ∈ L1(Σ,F ,Eµω), we have by the ergodic theorem
(recall that Eµω is σ-invariant) that there exists an f̄M such that

lim
n→∞

1
2n+ 1

n∑
j=−n

σjfM = f̄M Eµω-a.s., (5.7)
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where σ acts on Σ, and EEµω (f̄M ) = EEµω (fM ). Moreover, σf̄M = f̄M . Hence, µω(f̄M >

a) is constant P-a.s. (by ergodicity w.r.t. the disorder) and

µω(f̄M > a) = Eµω(f̄M > a) ≤ EEµω (f̄M )
a

=
EEµω (fM )

a
. (5.8)

The r.h.s. can be further estimated with the help of Lemma 4, namely,

EEµω (fM ) ≤ O(1)
∞∑

n=M

n e−κn = O(M)e−κM (M →∞), (5.9)

where we use that Eµω(fM = 1) is bounded by the sum over n ≥M of the l.h.s. of (4.6)
with i = 0, K = 1, and L running from −n + 1 to 0. Therefore, combining (5.8) and
(5.9), we have

µω(f̄M > a) ≤ O(M)
a

e−κM for P-almost all ω. (5.10)

Now, on {f̄M < b} the fraction of sites of 2Z covered by excursions of length ≥M is
less than b. Hence, on {f̄M < >̂/2} × Σ at least half of the arrivals of S2 occur within
the S1-excursions of length < M (recall that >̂ is a lower bound for >−0 defined in (3.1)).
If the two paths (S1, S2) are to avoid each other, then the first has to stay either above
or below the other during all of these (infinitely many) excursions.
To show that the probability of the latter event is zero we introduce some definitions.

Let

p(n, ω) =
γΛ2n(Si > 0∀1 ≤ i < 2n|0)
γΛ2n(Si (= 0∀1 ≤ i < 2n|0) (5.11)

and put pM = maxn<M maxω∈Ωmax
{
p(n, ω), 1− p(n, ω)

}
. An easy computation shows

that pM = (1+e−2λ(1+h)(M−1))−1 < 1. This is the least price to pay (when conditioning
upon the arrivals) to avoid that the path S1 be swapped to −S1 during an excursion of
length < M .
Next, define the remotest intersection time as

τ =

{
max{k: S1

2k = S2
2k or S

1
−2k = S2

−2k} (S1, S2) (∈ C∞

∞ (S1, S2) ∈ C∞.
(5.12)

Also define Nk,M (n) = #{i: k ≤ i ≤ n + k, S2
2i = 0, fM (σ

iS1) = 0} and AM = {f̄M <

>̂/2} × Σ. On AM we have

lim inf
n→∞

Nk,M (n)
n

≥ >̂/2 > 0 Eνω-a.s. (5.13)
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as follows from Lemma 5 and the reasoning below (5.10). Therefore we get

(µω × νω)
(
AM ∩ [C∞]c

) ≤ ∞∑
k=1

[
2(µω × νω)

({
lim

n→∞ p
Nk,M (n)
M 1AM

}
1{τ=k}

)]
= 0, (5.14)

Here we decompose according to the values of τ , condition upon the arrivals of both S1

and S2 in [τ, τ +n], then bound by pM the interarrival probabilities of S1 for excursions
of length < M containing at least one arrival of S2, and bound by 1 otherwise, and
finally use that 1AM

p
Nk,M (n)
M ≤ en

�̂
4 log pM for n large enough, as follows from (5.13).

The factor 2 reflects whether S1 stays above S2 from τ onwards or vice versa. Note that
there is no problem with 1AM

in the conditioning, because AM is a tail event.
The conclusion of (5.14) is that (µω × νω)

(
AM ∩ [C∞]c

)
= 0 for all M . On the other

hand,

µω

( ∞⋃
M=1

{
f̄M < >̂/2

})
= 1 (5.15)

by the Borel-Cantelli lemma and (5.10). Hence, combining (5.14) and (5.15), we find that
(µω×νω)

(
[C∞]c

)
= 0, i.e., the paths S1 and S2 intersect infinitely often (µω×νω)-almost

surely.

STEP 2. We show by a coupling inequality that any two measures µω and νω have to
agree on the tail σ-field T . Besides other things, this implies uniqueness. The proof is
done for νω singly-infinite, the doubly-infinite case requiring only formal alterations.
Let k ∈ N and A ∈ FΛc

k
(A should be thought of as approximating a tail event).

Define

τ = inf{n ≥ 0: S1
n = S2

n}. (5.16)

Note that τ < ∞. Let Eω denote the expectation w.r.t. the product measure µω × νω.
Then we can write∣∣µω(A)− νω(A)

∣∣ = ∣∣Eω(A× Σ)− Eω(Σ×A)
∣∣

≤ ∣∣Eω(1{τ>k}1A×Σ)− Eω(1{τ>k}1Σ×A)
∣∣

≤ Eω(1{τ>k}),

(5.17)

where we use that Eω(1{τ≤k}1A×Σ) = Eω(1{τ≤k}1Σ×A) because µω and νω have the
same conditional probabilities. Hence

sup
A∈FΛc

k

∣∣µω(A)− νω(A)
∣∣ ≤ Eω(1{τ>k}). (5.18)
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By Step 1 the r.h.s. tends to 0 as k → ∞. Consequently, µω and νω agree on the tail
σ-field T . In particular,

lim
k→∞

|νω(σkA)− µω(σkA)| = 0 for P-almost all ω. (5.19)

STEP 3. The a.s. convergence of ergodic averages under νω can be proved through a
comparison with the a.s. convergence under Eµω, which is translation invariant. Namely,
given a set A ∈ F , let

A> =
{
lim sup
n→∞

1
n

n−1∑
k=0

1σkA > Eµω(A)
}
. (5.20)

Clearly, A> is a tail event, and Eµω(A>) = 0 by the translation invariance of Eµω. But
this implies Eνω(A>) = 0, since Eνω coincides with Eµω on T . So

lim sup
n→∞

1
n

n−1∑
k=0

1σkA ≤ Eµω(A) νω-a.s. for P-almost all ω. (5.21)

The same argument works for the limes inferior, so the limit in (3.3) is established.

STEP 4. The last property to prove is that µω and νω are exponentially tight. Since
we know by (5.19) that |νω(σnA)−µω(σnA)| → 0 as n→∞, it suffices to study the tail
of µω. To that end, pick s ∈ Z, s > 0. We have from Gibbsianness

µω(S0 = 2s) =
∞∑

n+,n−=s

Pn+,n−(S0 = 2s)

Zω
In+,n−

e
−λ(ΩIn+,n− +h|In+,n− |)µω(S−2n−= S2n+= 0), (5.22)

where In+,n− = (−2n−, 2n+] ∩ Z, and Pn+,n−(S0 = 2s) is the probability that SRW,
conditioned on hitting the interface at −2n− and 2n+, climbes to height 2s at 0 without
ever touching the interface in between. By using Lemma 3 (and using the Borel-Cantelli
lemma to get rid of E as in (5.10)), we have for any ε > 0(

Zω
In+,n−

e−λh|In+,n− |)−1 ≤ O(1)e−|In+,n− |(ψ−ε), (5.23)

so the r.h.s. of (5.22) is P-a.s. absolutely summable and of order e−4s(ψ−ε) as s → ∞
(note that e−λΩI = o(eε|I|) for each ε > 0 as |I| → ∞). After letting ε ↓ 0 we obtain
that the tail property in Theorem 3 is proved for s > 0, with ζs = ψ. For s ∈ Z, s < 0
there is an additional factor

exp
[
−2λ

∑
l∈In−,n+

(ωl + h)
]

(5.24)

in the numerator of each summand. This raises ζs by λh. �
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6. ZERO DENSITY IN THE DELOCALIZATION REGIME

In this section we consider the singly-infinite case and present an argument due to
G. Giacomin (private communication) showing that in the interior of the delocalization
regime the path is delocalized in the following sense:

Theorem 4. Let (λ, h) ∈ int(D) and let νω ∈ GR,λ,h
ω be an arbitrary singly-infinite

regular Gibbs measure. Then for P-almost all ω

lim
n→∞

1
n

n∑
i=1

1{Si=a} = 0 for all a ∈ Z, (6.1)

in probability w.r.t. νω.

Remark. Note that Theorem 4 makes a claim about all regular Gibbs measures under
a typical disorder. Since we do not have Lemma 2 for (λ, h) ∈ D, the notion of a
measurable Gibbsian section is not available.

Proof. Fix a ∈ 2Z (without loss of generality). For k, l ∈ N, define

Aa
k,l =

{ l∑
i=0

1{S2i=a} ≥ k + 1
}
. (6.2)

We shall show that for any boundary condition S̃ and any ε > 0 the event Aa
$εn%,n has a

probability decaying to zero under the finite-volume specification γω
Λ2n
( · |S̃) in the limit

as n→∞. The key ingredient is the well-known entropy inequality
γω
Λ2n
(Aa

$εn%,n|S̃) ≤
log 2 +Hω

2n

log
(
1/P2n(Aa

$εn%,n|S̃)
) , (6.3)

where P2n( · |S̃) is the SRW-bridge probability measure between 0 and S̃2n, and

Hω
2n = H

(
γω
Λ2n
( · |S̃)∣∣P2n( · |S̃)

)
(6.4)

denotes the relative entropy of the probability measure γω
Λ2n
( · |S̃) w.r.t. P2n( · |S̃).

We first note that the specific relative entropy Hω
2n/2n vanishes in the thermodynamic

limit:
lim

n→∞
Hω

2n

2n
= −φ(λ, h) + λ

∂φ

∂λ
(λ, h) = 0 for P-almost all ω. (6.5)

Indeed, by (1.1) and (2.2)

Hω
2n =

∑
SΛ2n

γω
Λ2n
(SΛ2n |S̃) log

γω
Λ2n
(SΛ2n |S̃)

P2n(SΛ2n |S̃)

= − logZω
Λ2n
(S̃) +

1
Zω
Λ2n
(S̃)

∑
SΛ2n

Hω,λ,h
Λ2n

(SΛ2n∨S̃Λc
2n
)eH

ω,λ,h
Λ2n

(SΛ2n∨S̃Λc
2n

)
P2n(SΛ2n |S̃)

= − logZω
Λ2n
(S̃) + λ

∂

∂λ
logZω

Λ2n
(S̃). (6.6)
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Hence, the first equality in (6.5) follows after letting n→∞ and interchanging the limit
with ∂/∂λ (which is allowed because of the convexity and regularity of φ in int(D)),
while the second equality in (6.5) holds because φ(λ, h) = λh on D. Thus, after we show
that

lim sup
n→∞

1
n
logP2n(Aa

$εn%,n|S̃) < 0 for all ε > 0, (6.7)

it will follow from (6.3) and (6.5) that limn→∞ γω
Λ2n
(Aa

$εn%,n|S̃) = 0. Conditioning then
implies the same for any (regular) Gibbs measure νω, because (6.5) and (6.6) carry over.
Pick νω and define τ1 (τ2) to be the leftmost (rightmost) site i with 0 ≤ i ≤ 2n such

that Si = a. If τ1 or τ2 =∞, then (6.1) is trivially satisfied, so we can suppose without
loss of generality that τ1, τ2 <∞. Then

P2n(Aa
$εn%,n|S̃) =

∑
0≤l1≤l2≤n

P2n(τ1 = 2l1, τ2 = 2l2|S̃)P2(l2−l1)(A
0
$εn%,l2−l1

|0), (6.8)

where the last factor can be further estimated by the corresponding number for the free
SRW, namely,

P2(l2−l1)(A
0
$εn%,l2−l1

|0) ≤
P
(
A0
$εn%,l2−l1

∩ {S2(l2−l1) = 0}
)

P (S2(l2−l1) = 0)
≤ O(√n)P (A0

$εn%,n), (6.9)

where we used that l2 − l1 ≤ n and P (S2n = 0) ∼ C/
√
n. Thus

P2n(Aa
$εn%,n|S̃) ≤ O(

√
n)P (A0

$εn%,n), (6.10)

so we need only consider the case a = 0.
Next, similarily as in the proof of Theorem 3, let us define the interarrival time ξi as

the duration between the i-th and the (i+1)-st intersection with the interface. Then we
may write

A0
$εn%,n =

{ $εn%∑
i=1

ξi ≤ n
}
. (6.11)

Now, under P the ξi are i.i.d. with distribution function satisfying∑
l=1

P (ξ1 = l)zl = 1−
√
1− z2 for all 0 ≤ z < 1. (6.12)

By the exponential Chebyshev inequality we have

P
($εn%∑

i=1

ξi ≤ n
)
≤ z−n(1−

√
1− z2)$εn% for all z ∈ (0, 1). (6.13)
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The r.h.s. attains its minimum at z such that z2 = (1 − 2ε′n)(1 − ε′n)
−2 with ε′n =

2εn3/n ≤ ε. Consequently, using (6.10) and (6.13) we get the bound

lim sup
n→∞

1
2n
logP2n(Aa

$εn%,n|S̃) ≤ (1− ε) log(1− ε)− 1
2
(1− 2ε) log(1− 2ε) (6.14)

when ε is small enough. The r.h.s. is ∼ −ε2 as ε ↓ 0. Hence (6.7) holds for all ε > 0 and
the proof of (6.1) is complete. �
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Abstract. We consider a generalization of the standard Potts model in which there are
q = r + s states with an interaction that distinguishes the two subspecies. We develop a
graphical representation (of the FK-type) for the system and show that this representation
may be incorporated directly into reflection positivity arguments. Using the combinations
of these techniques, we establish detailed properties of the phase diagram including the
existence of sharp triple points. Whenever relevant, the phases are characterized by the
percolation properties of the underlying representation.
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1. INTRODUCTION

In this paper we consider a variant of the Potts model. As usual, the spins σ can take
on one of q values in a set Q, but here the set Q splits into disjoint subsets R and S

containing, respectively, r and s elements, i.e., Q = R ∪ S, q = r + s. The Hamiltonian
is given by the expression:

H(σ) = −J
∑
〈x,y〉

δσxσy − κ
∑
〈x,y〉
(δRσxδ

R
σy + δSσxδ

S
σy )− h

∑
x

(δSσx − δRσx), (1.1)

with κ, J > 0, h ∈ R, and the symbol 〈x, y〉 denoting a nearest-neighbor pair on Zd.
Here δσσ′ = 1 if σ = σ′ and zero otherwise, δRσ is the indicator of the event σ ∈ R (and
similarly for δSσ ), implying that δRσ δRσ′ + δSσ δ

S
σ′ vanishes unless σ and σ′ belong to the

same family. Notice that the second term causes a repulsion for the neighboring pairs
〈x, y〉 with σx ∈ S and σy ∈ R. The magnetic field h acts on the entire set R or S; hence
as h → ∞(−∞) we recover the usual s (r) state Potts model. Throughout, it will be
assumed that r  s 1.
It is plausible to expect that the Potts part of the interaction will govern the sym-

metry breaking within the families R and S. Thence, for β large and h increasing, the
system will undergo a first-order transition between a regime dominated by the R set
with r ordered states and a regime dominated by the S set with s ordered states. On the
other hand, for h large and positive, the system will undergo an order-disorder transition
reminiscent of the s-state Potts model as β varies, and similarly an r-state Potts transi-
tion for h large negative. Thus, as h increases, a turnover from R-dominated disordered
state to S-dominated disordered state can be expected at higher temperatures, with a
complete symmetry maintained within each group (R or S) in both states. This latter
change may or may not be signaled by a phase transition, however, certainly not for
β : 1. For r and s large, we prove that such a transition indeed occurs at intermediate
temperatures.
In the symmetric case, i.e., for r = s, both of these ‘R→ S’ transitions occur at h = 0,

which pretty much completes the picture. An interesting feature of the asymmetric
case is that it makes conceivable, for r > s, a direct transition from R-disordered to
S-ordered phase. Indeed, for r  s, we establish this fact along with the existence
of two (sharp) triple points suggested by the presence of such a phase boundary; i.e.,
essentially the entire phase diagram depicted in Figure 1 is established. As the insert
shows, in the symmetric case, these triple points degenerate to a single ‘quadruple’ point
with 4 coexisting phases representing altogether q + 2 different equilibrium states. In
fact, a generalization of the symmetric case has already been discussed in [LMR], for Q
decomposing into q1 different families with each containing q2 elements (i.e., q = q1q2),
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but that only for h = 0. Different aspects (e.g., quasilocality) of the latter—so called
‘fuzzy Potts’—model have been addressed in [MVdV].

OS

OR

DS

DR

(T⊗, h⊗)

(T), h))

T

h

?

Fig. 1. Phase diagram for the model (1.1). Here J, κ > 0 are fixed, r  
s  1, and T is the temperature. The dashed line indicates the percolation
thresholds of the ‘weak’ bonds and the dotted line marks the area where
Gibbs uniqueness follows from the high-temperature expansion. Insert shows
the symmetric case r = s 1. The question mark prompts that the suggested
behavior at the end-point of the transition line is hypothetical.

In order to facilitate our analysis, we have developed a graphical representation that
is a natural generalization of the random-cluster model for the Potts system. Thus there
are ‘strong’ and ‘weak’ bonds of both the R and S type. For example, a weak R-bond
insists that both end-points are in the R-set while a strong R-bond induces a matching
pair of spin states of R-type. This graphical representation enjoys an FKG monotonicity
that is useful for various portions of our analysis. In particular, all of the phases can
be described in terms of the percolation of the corresponding bonds. However, one can
only go so far with graphical representations; estimates for the probabilities of contours
are also needed. In this regard, reflection positivity (RP) methods combined with the
chessboard estimate provide a rather effective service.
Somewhat to our surprise, we find that the graphical representations can be incorpo-

rated directly into the RP machinery. (A priori , one might imagine having to use RP on
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the spin system and processing this into a statement about the graphical representation.)
This appears to be a promising technique—especially useful in higher dimensions—that
is apparently generalizable. Thus, all in all, a rather seamless derivation is permitted.
Unfortunately, there are certain limitations to this combination of RP and graphical
representations. In particular, we can prove RP only for values of the parameters in the
graphical representation that correspond to genuine spin-systems, i.e., integer values of
r and s. In fact, this may represent a genuine ‘limitation’: It was recently shown by
one of us [B] that the usual random-cluster model with non-integer q is not RP in the
desired sense. Here is our main result:

Main Theorem. Consider the system as described by the Hamiltonian (1.1) with κ, J >

0. Then for r, s and r/s large enough, there is a β̄ <∞ and an ε small such that

(I) there are four closed and connected regions OR, OS, DR, and DS covering the set
J = {(β, h); β ≥ β̄, h ∈ [−∞,∞]}, where the following translation-invariant states exist

(i) r ‘ordered’ states 〈 · 〉jOR , j = 1, . . . , r, in OR,
(ii) s ‘ordered’ states 〈 · 〉kOS , k = r + 1, . . . , r + s, in OS,
(iii) a single ‘disordered’ state 〈 · 〉DS in DS,
(iv) a single ‘disordered’ state 〈 · 〉DR in DR.

These states are characterized by the relations

〈δσxj δσxσy 〉jOR ≥ 1− ε, 〈δSσxδSσy (1− δσxσy )〉DS ≥ 1− ε,

〈δσxkδσxσy 〉kOS ≥ 1− ε, 〈δRσxδRσy (1− δσxσy )〉DR ≥ 1− ε,

valid for any pair x, y of neighboring sites, any 1 ≤ j ≤ r and any r + 1 ≤ k ≤ r + s.
(II) The intersections (OR∪OS)∩ (DR∪DS) = COD and (OR∪DR)∩ (OS ∪DR) = CRS

constitute two continuous non-selfintersecting curves COD CRS, where the order/disorder
and the R/S states coexist, respectively. The curve COD admits a parametrization by βh,
whereas CRS is parametrizable by β. On the complement of these curves, the inequalities〈

δσxσyδ
R
σy

〉 ≥ 1− ε,
〈
δSσxδ

S
σy (1− δσxσy )

〉 ≥ 1− ε,〈
δσxσyδ

S
σy

〉 ≥ 1− ε,
〈
δRσxδ

R
σy (1− δσxσy )

〉 ≥ 1− ε,

hold for every translation-invariant Gibbs state in the respective region and any pair x

and y of nearest-neighbor sites.
(III) There are exactly two triple points, where OS+OR+DR and OS+DS+DR meet,

respectively. These triple points are connected by a single line of coexistence between s-
order and r-disorder.

(IV) In the high-temperature region (i.e., for βκ, βJ : 1) the conditions of complete
analyticity are met. In particular, the set of all Gibbs measures is a singleton in this
region.
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(V) The phases OS and OR can alternatively be characterized by spontaneous mag-
netization and/or percolation. In DS and DR, there is percolation of the corresponding
disordered bonds.

The organization of the remainder of this paper is as follows. In Section 2 we intro-
duce the graphical representation, establish some of its useful properties, and relate the
percolation characterization of the respective phases to the non-vanishing of an order
parameter. Section 3 is devoted to the proof of the Main Theorem. In this section,
Lemma III.3 is of special interest for the asymetric case, because it directly rules out
quadruple coexistence (whenever r  s). For reader’s convenience, the computations
based on chessboard estimates are performed here only in the two-dimensional case. We
relegate the full (and somewhat clumsy) arguments to the Appendix.

2. THE GRAPHICAL REPRESENTATION

In this section we develop a graphical representation of the model and establish its
various useful properties. To simplify our derivations, we will restrict ourselves to free
(or periodic) boundary conditions in these preliminary discussions and defer the detailed
analysis of boundary-condition issues to a later subsection.
Let us start with the identity

eβJδσσ′+βκ(δSσ δS
σ′+δRσ δR

σ′ )=1+ (eβκ − 1)(δSσ δSσ′ + δRσ δRσ′) + eβκ(eβJ− 1)(δSσσ′ + δRσσ′), (2.1)

where δRσσ′ (δSσσ′) indicates that both spins coincide and belong to R (S). The five terms
on the r.h.s. give rise to five different species of bonds—vacant, s-disorded, r-disorded,
s-ordered, and r-ordered, with the prefactors representing the a priori weights of the
corresponding bonds. For notational simplicity, we will introduce a paralel notation in
terms of colors: the five types of bonds above are called vacant, light-blue, light-red,
dark-blue, and dark-red, in the order of their appearance.
We may label the five species by α ∈ I = {v, sd, rd, so, ro} and define w(α) to be the

corresponding coefficient in the identity (2.1). Thus, w(v) = 1, w(rd) = w(sd) = eβκ−1,
and w(ro) = w(so) = eβκ(eβJ − 1). Let Λ denote a graph with sites SΛ and bonds BΛ.
Let ΩΛ = IBΛ denote the set of bond configurations in Λ. As will become clear, not all
ΩΛ will be used; configurations in which blue and red bonds share an endpoint need not
be considered. With the above notations, e−βHΛ may be written as

e−βHΛ(σ) =
∑

ω∈ΩΛ

D(ω)
∏
b∈BΛ

w(ωb)χb(ω,σ)
∏
x∈SΛ

eβh(δ
S
σx
−δRσx ), (2.2)

where χb(ω,σ) is one of the functions 1, δSσxδ
S
σy , δ

R
σxδ

R
σy , δ

S
σxσy , δ

R
σxσy , according to the

label ωb of the bond b = 〈x, y〉, andD(ω) is the indicator that ω fulfils the aforementioned
restriction.
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For each such ω, we must now perform the trace (sum over spin configurations) to
arrive at the weights, W (β,h)

s,r;Λ (ω), for the graphical representation. The result is not
particularly difficult; but only after the introduction of some additional notation. For
each ω, let ΛR(ω) denote the red portion of the graph: those bonds that are R-ordered
or R-disordered, and all sites that are endpoints of such bonds. Let NR(ω) denote the
number of R-sites in ΛR(ω). Some of the bonds in ΛR(ω) are R-ordered bonds. These
divide ΛR(ω) into ‘R-connected’ components; let CR(ω) denote the number of such
components. Similar notation applies to the blue portion of the configuration. Finally,
let N∅(ω) ≡ |SΛ| − [NR(ω) + NS(ω)] denote the number of sites that do not fall into
either category.
It is not hard to see that

W
(β,h)
s,r;Λ (ω) =

[ ∏
b∈BΛ

w(ωb)
]
(seβh + re−βh)N∅(ω)eβhNS(ω)e−βhNR(ω)sCS(ω)rCR(ω). (2.3)

Indeed, each unmatched site just contributes the factor seβh+re−βh, each S-site a factor
eβh, and similarly for the R-sites. Finally, the ordered bonds dictate which fraction of
the sNS (or rNR) spin states are actually allowed on each connected component, resulting
thus in the factors sCS(ω) (and rCR(ω)).

FKG monotonicity.
From the perspective of ‘S above R’ (or blue above red), there is a natural ordering

for the bond variables so # sd # v # rd # ro, which induces a partial ordering on the
configurations. We show that the graphical representation is monotone with respect to
this ordering.

Proposition II.1. Let ν( · ) = ν
(β,h)
s,r;Λ ( · ) denote the random-cluster measure on a finite

graph Λ, defined according to the weights (2.3). Then ν is strong FKG w.r.t. the ordering
so # sd # v # rd # ro.

Proof. We must verify the FKG lattice condition. To facilitate matters, let us exchange
‘components for loops’. Indeed, if BR(ω) is the number of dark-red bonds and KR(ω) is
the number of independent loops formed by them, we may write

CR(ω) = KR(ω)−BR(ω) +NR(ω). (2.4)

Thus, the weights may be written as

W
(β,h)
s,r;Λ (ω) =

[ ∏
b∈BΛ

w′(ωb)
]
(seβh + re−βh)|SΛ|

×
[ seβh

seβh + re−βh

]NS(ω)[ re−βh

seβh + re−βh

]NR(ω)
s?S(ω)r?R(ω). (2.5)
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Here w′(ωb) are changed a priori factors whose value will not play any role in the
following.
As is well known, the verification of the FKG lattice condition may be done inductively

by comparing configurations that disagree on at most two places. Thus, let b1, b2 ∈ BΛ,
let θ denote a bond configuration in BΛ \ {b1, b2} and let η1, η2, ζ1, and ζ2 denote
bond variables on b1 and b2 with η1 # ζ1 and η2 # ζ2. We use (θ, η1, η2) to denote
the configuration equal to η1 (η2) on b1 (b2) and θ elsewhere on BΛ, and similarly for
(θ, ζ1, ζ2) etc. We must show

W
(β,h)
s,r;Λ (θ, η1, η2)W

(β,h)
s,r;Λ (θ, ζ1, ζ2) ≥W

(β,h)
s,r;Λ (θ, ζ1, η2)W

(β,h)
s,r;Λ (θ, η1, ζ2) (2.6)

It is clear that the a priori factors (i.e., the bond weights w′) cancel exactly. Further, it
is observed that D(ω1),D(ω2) = 1 imply D(ω1 ∨ ω2),D(ω1 ∧ ω2) = 1, where ω1 ∨ ω2

denotes the maximum and ω1 ∧ ω2 the minimum of the two configurations. Thus, we
may omit any discussing of constraints.
We now claim that NS(θ, η1, η2) + NS(θ, ζ1, ζ2) ≤ NS(θ, ζ1, η2) + NS(θ, η1, ζ2). Let

S(ω) ⊂ SΛ denote the set of sites that touch at least one blue bond (i.e., the site set
of ΛS(ω)). It is not hard to see that S(θ, η1, η2) = S(θ, ζ1, η2) ∪ S(θ, η1, ζ2). Indeed,
S(θ, η1, η2) ⊃ S(θ, ζ1, η2) (because the former contains more S-bonds), and similarly
with S(θ, η1, ζ2). So S(θ, η1, η2) contains the union of both. Now suppose that x ∈
S(θ, η1, η2). If this is caused by an S-bond in θ, then x ∈ S(θ, ζ1, η2) and x ∈ S(θ, η1, ζ2).
If not, then x is either the endpoint of one (or both) of η1 or η2—say η1, in which case
x belongs to S(θ, η1, ζ2)—or the end-point of ξ1 or ξ2, and then it also pertains to both
sets. On the other hand, we only claim that S(θ, ζ1, ζ2) ⊂ S(θ, ζ1, η2)∩S(θ, η1, ζ2) (with
the inclusion sometimes being strict). This is clear since S(θ, ζ1, ζ2) ⊂ S(θ, ζ1, η2) and
S(θ, ζ1, ζ2) ⊂ S(θ, η1, ζ2). Hence we have

NS(θ, η1, η2) +NS(θ, ζ1, ζ2) =
∣∣S(θ,η1, η2)∣∣+ ∣∣S(θ, ζ1, ζ2)∣∣

≤ ∣∣S(θ, ζ1, η2) ∪ S(θ, η1, ζ2)
∣∣+ ∣∣S(θ, ζ1, η2) ∩ S(θ, η1, ζ2)

∣∣
=
∣∣S(θ, ζ1, η2)∣∣+ ∣∣S(θ, η1, ζ2)∣∣ = NS(θ, ζ1, η2) +NS(θ, η1, ζ2),

(2.7)
with the third line by inclusion-exclusion.
Thus we are down to showing the necessary inequalities among the loop counting

functions. However, most of these are actually equalities; the only exception is when
η1, η2, ζ1, and ζ2 are all bonds of the same family in which case the desired inequality
reduces to the usual argument for the random-cluster model. �

As an immediate consequence we obtain a domination comparison:
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Corollary. If h(1) > h(2), then

ν
(β,h(1))
s,r;Λ ( · ) ≥

FKG
ν
(β,h(2))
s,r;Λ ( · ).

Proof. It suffices to show that W (β,h(1))
s,r;Λ (ω)/W (β,h(2))

s,r;Λ (ω) is an increasing function (as-
suming that both quantities are nonzero). Using formula (2.5) and defining

e−αS(h) ≡ seβh

seβh + re−βh
and e−αR(h) ≡ re−βh

seβh + re−βh
, (2.8)

we have

W
(β,h(1))
s,r;Λ (ω)

W
(β,h(2))
s,r;Λ (ω)

= ΦΛ
(
h(1), h(2)

)[e−αR(h(1))

e−αR(h(2))

]NR(ω) [
e−αS(h(1))

e−αS(h(2))

]NS(ω)

, (2.9)

where ΦΛ
(
h(1), h(2)

)
is a number independent of ω (note that the modified weights w′

are independent of the external field). It is thus sufficient to establish that e−αR(h) is
monotone decreasing and e−αS(h) is monotone increasing as functions of h. This is easily
checked. �

Remark. It is noted that the measures are perfectly well defined for non-integer r and
s and that the above monotonicities hold for all r and s with r, s ≥ 1. However, in
this paper, we will need to make explicit use of the underlying spin-system; hence, we
will not discuss these more general cases. Finally, we remark that all of the results of
this subsection hold for an arbitrary (finite) graph with arbitrary fields hi and arbitrary
(non-negative) couplings Jx,y and κx,y. In particular, FKG dominations are established
under the condition that h(1)x ≥ h

(2)
x for all x.

Reflection positivity.
We begin with some preliminary notations. Let TL denote a d-dimensional (lattice)

torus, assumed for convenience to have an even number L of sites in all directions, and
let P denote the intersection of TL with a hyperplane orthogonal to one of the coordinate
directions. (Thus P consists of two disconnected ‘planes of sites’.) The set P divides TL
into left (T LL ) and right (T RL ) halves—both halves defined to include P .
Let ω ∈ ΩΛL denote bond configurations (such as the ones described above) on TL

and let FL (FR) be the set of functions of bond configurations restricted to T LL (T RL ).
Finally, let ϑP be the reflection operator that maps bond configuration on the left to
configurations on the right and vice versa (i.e., ωL ↔ ϑPωL). For f ∈ FR, define
ϑP f ∈ FL by [ϑP f ](ωR) = f(ϑPωL). Let P( · ) denote a probability measure on bond
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configurations and E the expectation with respect to this measure. Then P is said to be
reflection positive if for every g, f ∈ FR one has

E(f ϑPg) = E(g ϑPf) (2.10)

and
E(f ϑPf) ≥ 0. (2.11)

Proposition II.2. Let T denote the d-dimensional torus and let ν( · ) ≡ ν
(β,h)
s,r;T ( · )

denote the random-cluster measures as defined by the weights (2.3). Then ν is reflection
positive with respect to reflections through all planes P containing sites.

Proof. The proof follows from the reflection positivity of a certain joint measure on
bond-site configurations—the Edwards-Sokal measure—that contains the random-cluster
measure and the Gibbs measure of the considered spin system as marginals. This measure
is essentially defined by the r.h.s. of (2.2). Namely, let us write

W
(β,h)
ES,s,r;T (ω,σ) =

[
D(ω)

∏
b∈BT

χb(ω,σ)
] ∏
b∈BT

w(ωb)
∏

x∈ST

eβh(δ
S
σx
−δRσx )

≡D(ω,σ)
∏

b∈BT

w(ωb)
∏

x∈ST

eβh(δ
S
σx
−δRσx ).

(2.12)

The weights W β,h
ES,s,r;T define the Edwards-Sokal measure ν

(β,h)
ES,s,r;T abbreviated hereafter

as νES. In the above language, equations (2.2) and (2.3) read

e−βHT (σ) =
∑
ω

W
(β,h)
ES,s,r;T (ω,σ), (2.13a)

and
W

(β,h)
ES,s,r;T (ω) =

∑
σ

W
(β,h)
ES,s,r;T (ω,σ), (2.13b)

which verifies the preceding claim concerning the marginals. Our proof amounts to
showing that the full ES-measure is reflection positive; here, of course, with respect to
reflection operators acting on the larger space of bond-spin configurations and functions
thereof. (Notwithstanding, we will make no notational distinctions.) Thus, let f denote
a function that is determined by the bond-spin configurations on the ‘right’ and consider
EES(fϑP f), where EES( · ) denotes expectation with respect to the measure νES. Let
(ωP ,σP ) denote a bond-spin configuration in the plane P ; that is to say a spin value on
each x ∈ P and a bond value on each 〈x, y〉 with x, y ∈ P . We may write

EES(fϑP f) =
∑

(ωP ,σP )

νES(ωP ,σP )EES(fϑP f |ωP ,σP ). (2.14)
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The conclusion now follows from the observation that the restrictions of the conditional
measures νES( · |ωP ,σP ) to the left and right half of the torus are independent and
identical under reflections. Indeed, the ‘identical under reflections’ property is an obvious
consequence of the underlying symmetry of the model. Independence is established as
follows:
Let us write (ω,σ) = (ωP ,σP ;ωR,σR;ωL,σL) corresponding to the configurations

in P , R, and L, respectively. Let DP (ωP ,σP ) denote the analogue of the function
D(ω,σ), defined in (2.14), that here checks the consistency of the configuration only in
P . Further, let DR

(
ωR,σR|ωP ,σP

)
be the function that indicates consistency only for

the right half of the configuration given (ωP ,σP ) and similarly forDL
(
ωL,σL|ωP ,σP

)
.

It is not hard to check that

D
(
ω,σ

)
=DP

(
ωP ,σP

)
DR

(
ωR,σR|ωP ,σP

)
DL

(
ωL,σL|ωP ,σP

)
(2.15)

for every (ω,σ). By checking the terms in (2.6), we easily see that the weights factorize,
which is equivalent to independence. Thus we have

EES(f ϑPf) =
∑

(ωP ,σP )

νES(ωP ,σP )
[
EES(f |ωP ,σP )

]2 (2.16)

which is manifestly non-negative. Similarly one establishes

EES(f ϑPg) = EES(g ϑPf) (2.17)

and the proof is complete. �

The use of RP for establishing the existence of discontinuous transitions is based on
two standard Lemmas [FL,KS]. Here ‘behavioral pattern’ refers to a particular set of
configurations (typically on a box). Let TL denote a torus of size L and let 〈 · 〉L ≡
〈 · 〉(β,h)s,r;TL be a state on the configurations in BTL .

Lemma II.3. Let {c?} be a collection (possibly overlapping) cubes of size one, and
consider a behavioral pattern b? associated with each cube c?. Let χb�(c?) indicate the
occurence of b? on c?. If 〈 · 〉L is reflection positive and L is even, then〈∏

?

χb�(c?)
〉
L
≤
∏
?

(〈
χb�(TL)

〉
L

) 1
|Ld| .

where χb�(TL) enforces the pattern b? to all even translates of c? and its mirror image
to all odd translates of c?.
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Lemma II.4. Let a and b denote two distinct patterns on a cube c ∈ TL. Let H be
a Hamiltonian that depends on the parameter α that varies in the range [αa, αb], and
let 〈 · 〉L,α denote the Gibbs state on TL induced by the Hamiltonian H at the parameter

value α. Let A ∈ ( 12 , 1] and B ∈ [0, 14 ] be such that B ≤
[
1
2 −

√
1
2 − A

2

]2
, and let εa, εb

∈ (0, 12 ). Suppose that for all α ∈ [αa, αb], all c, c̃ ∈ TL, and all L large enough

(0) χa(c)χb(c) = 0,
(i) 〈χa(c) + χb(c)〉L,α ≥ A,
(ii) 〈χa(c)χb(c̃)〉L,α ≤ B,

and
(iiia) 〈χa(c)〉L,αa > 1− εa

(iiib) 〈χb(c)〉L,αb > 1− εb.

Then there is an αc ∈ [αa, αb] and two distinct translation invariant Gibbs states 〈 · 〉aαc

and 〈 · 〉bαc
such that

〈χa(c)〉aαc
≥ 1− ε̄ and 〈χb(c)〉bαc

≥ 1− ε̄,

where ε̄ = ε̄(A,B) is such that ε̄→ 0 as A→ 1 and B → 0.
Boundary conditions.
As already stated, graphical representation (2.3) will be our major tool of study of

the Gibbs phases associated with the Hamiltonian (1.1). However, we first have to take
properly into account the effect of boundary conditions. In particular, we have to clarify
to what extent one can generalize the FKG domination arguments from the previous
subsections. There are two ways that a random-cluster measure can be associated with
a boundary condition. These lead eventually to two classes of random-cluster measures:
S-measures and G-measures, with the former defined by prescribing a spin boundary
condition, whereas the latter is defined by prescribing a graphical boundary condition.
Given a finite set Λ ⊂ Zd, let ∂Λ be its boundary, i.e., the set of sites in Zd whose

distance from Λ equals one. To implement the first possibility, we take a spin configu-
ration σ̃ and define the Edwards-Sokal measure on σ’s in Λ ∪ ∂Λ and ω’s on the bonds
thereof, however, with the spins at ∂Λ fixed to σ̃. Let νΛ,σ̃ denote the ω-marginal of this
measure. Of particular interest are the limits of these measures as Λ ↗ Zd: we denote
by S the set of all possible accumulation points, closed under convex combinations and
closed in the weak topology on probability measures. We call these S-measures (they
were called equilibrium random-cluster measures in [ACCN]).
Our major object of interest is the original spin system (1.1). Even though all prop-

erties of the graphical marginals are derived starting from the spin system, not all in-
formation is retained by the marginals. This may actually cast doubts whether the
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representation (i.e., the S-measures) is still capable of capturing the important features
of the spin system, e.g., the non-uniqueness of Gibbs states. This is (partially) answered
in the following.

Lemma II.5. The existence of two distinct S-measures µ1 and µ2 implies the existence
of two distinct Gibbs measures ν1 and ν2 for the Hamiltonian (1.1). Moreover, if µ1 and
µ2 can be obtained for (expanding) sequences {Λ(1)n }, {Λ(2)n }, and boundary conditions
σ1, σ2, respectively, then ν1 and ν2 can be generated by ({Λ(1)n },σ1) and ({Λ(2)n },σ2),
respectively, as (possibly subsequential) limits of finite-volume states.

Proof. See Appendix.

Let SA be the translation invariant measures in S. Note that any accumulation point
µ of the torus states is an SA-measure. Namely, if we go to a subsequence for which also
the distribution functions for the spins at the exterior boundary of any finite volume
converge, we see that the expectation of any cylinder function of bonds in the set A

can be written as the combination of (S-class) states in any Λ encompassing A, where
the spin boundary condition is now the subject of average. Moreover, the expectaion is
independent of Λ and thus only the tail of the boundary condition matters, but in that
case the average runs over infinite-volume S-class measures, so µ is indeed an S-measure.
The translation invariance of µ is trivial.
To implement the other possibility, i.e., to define boundary conditions directly in the

graphical representation, one may explicitly consider a ‘graphical’ boundary configura-
tion ω̃, modify appropriately the weights in (2.3) for clusters that stick out of the finite
volume so that a consistent family of measures is recovered, and then study the DLR
measures associated therewith. While the techniques based on the DLR condition are
well developed in the spin language (see, e.g., [Ge]), for the random-cluster measures the
theory is still rather ‘weak in the knees’, mainly for the lack of quasilocality (see [vEFS]
Section 4.5.3 for a concrete problem of the latter kind, whose solution was given in [Gr]
and [PVdV]). Therefore, we refrain from discussing it in its full generality.10 On the
other hand, we would like to have some way of incorporating explicit ‘graphical’ bound-
ary conditions into our considerations, because only then the full power of FKG-ordering
can be employed. To this end, we will consider a restricted class of boundary conditions.
Let ∂B(Λ) to denote the (exterior) bond-boundary of Λ, i.e., the set of bonds with

one end in ∂Λ and the other in Λ. A boundary condition (i.e., a ‘graphical’ configuration
on ∂B(Λ)) for the random-cluster problem is said to be of the G-class11 if

10See [Gr] and [BC] for statements employing the DLR structure of the random-cluster measures. An
alternative is to rely on DLR structure of Edwards-Sokal states—this is the approach used in [BBCK].

11A related notion in [BC] is the wiring diagram.
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∂Λ is divided into disjoint components CB
1 , . . . , CB

k ;C
R
1 , . . . , CR

? and C
f
1 , . . . , C

f
t .

Each of the components CR
1 , . . . , CR

? act as a single site but always in a red
state and similarly CB

1 , . . . , CB
k act as single blue sites and, finally, the com-

ponents Cf
1 , . . . , C

f
t act as ‘free’ sites with some a priori weights for red or

blue.

Given a boundary condition from G-class, the weight (2.3) is modified to the effect that
CS(ω) and CR(ω) are now counting the connected components including the boundary
components. The infinite-volume states generated by a G-boundary condition from thus
modified finite-volume measures will be denoted (with a slight abuse of notation) also
by G.
It is clear from the definition of the G measures that they can all be generated by

convex combinations of measures with a spin boundary condition. Hence, G ⊂ S. On
the other hand, whereas constant red (blue) boundary condition gives rise to red- (blue-
)wired G-states ν(β,h)Λ,red-w (ν

(β,h)
Λ,blue-w) (the ‘wiring’ refers to connecting all boundary sites by

bonds of the respective dark color to an auxiliary site), other spin boundary conditions
do not necessarily yield a measure in the G-class. Indeed, if in the spin system one
sets half of the boundary spins to one of the red-type spin-states and the other half to
another type of red-state, the resulting random-cluster measure is the red-wired measure
conditioned on having no dark-red connection between the two halves. The conditioning
here is crucial and one cannot specify this measure using only G-boundary conditions.
The fact that G does not embody all Gibbs measures of interest is an unpleasant

problem for techniques based on graphical representations. These difficulties (which have
been encountered in other systems, c.f. [C]) can, to some extent, be circumvented but
only after a certain amount of work. For our purposes, the key practical implication here
is the lack of FKG (or at least of its proof) outside the G-class. (In the G-class, wherein
each of the boundary conditions can be simulated on an extended graph, FKG follows
from the observation that the FKG lattice condition is in power even after conditioning
on a set of bonds taking a definite value.)
We close this section with the statement of two lemmas that concern ordering and

uniqueness of the S-measures. In addition to the æsthetic appeal, the following will be
crucial in our subsequent analysis of the phase diagram. Both proofs are, for brevity of
exposition, relegated to the Appendix. Note that the limits

ν
(β,h)
blue-w = limΛ↗Zd

ν
(β,h)
Λ,blue-w and ν

(β,h)
red-w = limΛ↗Zd

ν
(β,h)
Λ,red-w (2.18)

exist by FKG and are measures both of G and SA-class.
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Lemma II.6. Consider the system defined by the Hamiltonian (1.1) with β fixed and
h varying in (−∞,+∞). Then for Lebesgue-a.e. h, both the sets of G-measures and
SA-measures are singletons (and then necessarily G = SA).

Lemma II.7. Let ν(β,h) be either a G-measure or an SA-measure. Then

ν
(β,h)
blue-w( · ) ≥

FKG
ν(β,h)( · ) ≥

FKG
ν
(β,h)
red-w( · ),

Moreover, for h(1) > h(2), any SA-measure at h(1) FKG dominates every SA-measure at
h(2), and similarly for G.

Percolation and magnetization.
The phases that we will study are all characterized by ‘percolation’ of one sort or

another. A priori , there are five distinct situations: Percolation of dark-blue bonds,
percolation of blue bonds without percolation of dark-blue bonds, similarly for the reds,
and no percolation at all. However, some caution is needed: the partially ordered phases
(here defined by the intermediate sort of percolations) certainly do not represent genuine
thermodynamic phases, except perhaps when they coexist. For this reason, it is mainly
the dark-bond percolation that plays the role of an order parameter.
Given β and h, let ΠB

∞(β, h) (Π
R
∞(β, h)) be the probabilities that dark-blue (dark-red)

bonds percolate under the measures ν(β,h)blue-w (ν
(β,h)
red-w, respectively). It is an easy corollary

to Lemma II.7 that ΠB
∞ is actually the maximal probability at which dark-blue bonds can

percolate under any G∪ SA-measure, and similarly for ΠR
∞. As is standard, Π

B
∞ and Π

R
∞

are easily related to the spin order parameters, namely, to the blue and red magnetization.
Here the red magnetization is defined by adding a symmetry breaking term of the type
−hR

∑
x[δσxj − (1/r)δRσx ] (with j ∈ R) to the Hamiltonian and calculating the derivative

of the free energy evaluated at hR = 0+. Similarly for the blue magnetization.

Proposition II.8. Consider the system on Zd described by the Hamiltonian (1.1) and
let MR(β, h) and MB(β, h) denote the red and blue spontaneous magnetizations. Then

MR(β, h) =
r − 1
r
ΠR
∞(β, h)

and
MB(β, h) =

s− 1
s
ΠB
∞(β, h).

Proof. As follows from convexity of the free energy in the parameter hR, the red mag-
netization can alternatively be defined by optimizing δσ0j − (1/r)δRσ0

over all possi-
ble translation-invariant Gibbs states (for an argument proving an analogous assertion
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see the proof of Lemma II.7 in the Appendix). Given β and h, all Gibbs states are
parametrized by the spin boundary conditions. Fixing the boundary condition to σ̃, it
is straightforward to establish that the expected value of δσ0j − (1/r)δRσ0

under the Potts
measure exactly equals (1− 1

r )-times the probability under the corresponding graphical
marginal that x is connected by a path of dark-red bonds to an j component of σ̃, i.e.,

〈
δσ0r1 − (1/r)δRσ0

〉σ̃

Λ =
(
1− 1

r

)
ν
(β,h)
σ̃,Λ

({ 0 −→
dark-red

∂Λj(σ̃)}
)
. (2.19)

Here ∂Λj(σ̃) = {y ∈ ∂Λ: σ̃y = j}, 〈 · 〉σ̃Λ is the spin state in Λ with boundary condition
σ̃ and ν

(β,h)
σ̃,Λ is the corresponding S-measure.

The r.h.s. of (2.19) is dominated by the expectation of the local event that there is
a dark-red path running from 0 outside a fixed volume ∆ ⊂ Λ. By taking expectation
of both sides w.r.t. a translation invariant spin Gibbs measure and by taking the limit
Λ↗ Zd (possibly along a subsequence), we recover an SA-measure on the r.h.s. which is
FKG dominated by the red-wired measure from Lemma II.7. Since { 0 −→

dark-red
∆c} is an

increasing event, the limit ∆↗ Zd then shows that

〈
δσ0r1 − (1/r)δRσ0

〉 ≤ (
1− 1

r

)
ΠR
∞(β, h), (2.20)

for any translation invariant spin Gibbs state 〈 · 〉. However, this inequality is clearly
saturated for the state 〈 · 〉j generated by a constant configuration σ̃ ≡ j, which is
translation invariant. Hence, MR(β, h) = r−1

r Π
R
∞(β, h) as we were to prove. The case

of blue magnetization is completely analogous. �

3. THE PROOF OF THE MAIN THEOREM

Preliminaries.
The proof of the Main Theorem hinges on RP techniques as applied to graphical

representations. In order to apply Lemma II.3 and II.4, we first need some definitions.
We will consider various behavioral patterns which are either good or bad . The good

behavioral patterns will be denoted by OR, OS , DR, DS ; these are defined by the
property that every bond in a unit cube is of the corresponding type: r-ordered, s-
ordered, r-disordered and s-disordered, respectively. Any other configuration on a cube
is deemed to be bad. We recall that two bonds of differing color cannot share a vertex
and hence the presence of two colors on a cube necessitates the intervention of a vacant
bond. As a consequence, badness can occur for only one of two reasons, the occurrence
of a vacant bond or a pair of adjacent bonds, one ordered, the other disordered, that are
both of the same color. (In the latter case, we call such pairs mismatched .)
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The good patterns are expected to dominate typical configurations in the low and
intermediate temperature regimes. However, as required by Lemma II.4(ii), simultaneous
occurrence of different good patterns should be (sufficiently) improbable. The proof of
the latter invokes the observation that a ‘barrier’ of bad cubes necessarily separates
any pair of different good cubes. Let us aggregate bad cubes that are joined through
at least one edge into connected components that are called, traditionally, contours.
Item (ii) of Lemma II.4 then boils down to showing that the probability that a contour
‘encircles’ the origin is small. It is this step where the chessboard estimates (Lemma II.3)
provide an effective service. In particular, all we need to show is that the estimate on
the probability of the various contour elements is small—the rest is easily reduced to a
counting argument which is identical to the one for the Ising contours.
As seen on the right hand side of the display in Lemma II.3, the relevant objects are

the partition functions constrained so that the stated pattern repeats periodically. Of
fundamental importance in the present analysis are the partition functions associated
with the (purported) favored patterns. These will be denoted by ZOR , ZOS , ZDR , and
ZDS , respectively (the dependence on the scale of the torus will always be understood
from the context and will be supressed notationally). These objects are readily computed:

ZOR = [e
−βhedβκ(eβJ − 1)d]Ldr (3.1i)

ZOS = [e
βhedβκ(eβJ − 1)d]Lds (3.1ii)

ZDR = [re
−βh(eβκ − 1)d]Ld (3.1iii)

and
ZDS = [se

βh(eβκ − 1)d]Ld . (3.1iv)

Of further interest, there is the ‘vacant’ partition function given by

Zv = [re−βh + seβh]L
d

. (3.1v)

The subject of our next lemma is that for all β sufficiently large (and for r and s

large) the probability of any bad cube is small. Even though the general proof is not
too involved, we relegate it to the Appendix. Here we provide the proof for d = 2 that
is particularly simple due to the employment of the diagonal torus which reduces the
problem to estimating a single-bond events.

Lemma III.1. Let δ > 0. Then there exist r̄ = r̄(d, δ), s̄ = s̄(d, δ), and β̄ = β̄(κ, d, δ)
so that for any κ > 0, r ≥ r̄, s ≥ s̄, and β ≥ β̄ such that the probability of a bad cube is
less than δ. Namely, limL→∞〈χOR + χOS + χDR + χDS 〉L > 1− δ.

Proof (d = 2). By the discussion in the second paragraph of the present section, it is only
necessary to show that the probability of a vacant bond or a mismatched pair is small.
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Let us start with a vacant bond. We use standard reflection positivity arguments for the
case of two-dimensional diagonal torus (see [S] for a full discussion or [CM, Lemma 4.3]
for a proof along these lines complete with pictures). Let 〈i, j〉 denote any bond in TL
(the diagonal torus of size L). Reflecting the bond n+1 times where 2n = L2 we obtain
the estimate for the vacant bond:

〈
D(ω〈i,j〉 = v)

〉
L
≤
(Zv

Z
) 1

2L2

=
(seβh + re−βh)

1
2

Z 1
2L2

. (3.2)

An estimate for Z is provided by the r and/or s disordered partition functions, Z ≥
ZDR + ZDS . Since [(se

h + re−h)L
2
]/[(seh)L

2
+ (re−h)L

2
] ≤ 2L2

, we have

〈
D(ω〈i,j〉 = v)

〉
L
≤

√
2

eβκ − 1 . (3.3)

Next we consider the mismatched pairs. Focusing attention, say, on the s-type, let
〈i, j〉 and 〈i, j′〉 denote an adjacent pair of bonds. We will consider the event {ω〈i,j〉 =
sd, ω〈i,j′〉 = so}. If we agree to use only ZDS and ZOS in the lower bound of the partition
function, a moments thought shows that the calculation is identical to the s-state Potts
model. Thus we get

lim
L→∞

〈
D(ω〈i,j〉 = sd, ω〈i,j′〉 = so)

〉
L
≤ s−

1
4 . (3.4)

The argument is similar for the r-mismatched pairs. �

A second ingredient needed to set Lemma II.4 in motion is the bound (ii).

Lemma III.2. There exists a function ε(d, δ), such that ε(d, δ) → 0 as δ → 0, and a
constant δ̄(d) such that for any two distinct patterns P1,P2 ∈ {OR, OS , DR, DS} one
has 〈

χP1(c)χP2(c̃)
〉
L
≤ ε(d, δ)

whenever 0 < δ < δ̄, κ > 0, r ≥ r̄, s ≥ s̄, and β ≥ β̄ (with r̄, s̄, and β̄ as in Lemma III.1).

Proof. As already noted before, by going along any connected path from c to c̃, one
eventually bumps into a bad cube. Hence, on torus of size L, if the two patterns are
to occur simultaneously, the cubes c and c̃ have to be separated by a contour consisting
of bad cubes (that either surrounds one of the cubes or winds around the torus). The
probability of such a contour is directly estimated by chessboard estimates: for a contour
composed of |γ| bad cubes we get the bound δ|γ|.
To get an explicit expression of the function ε(d, δ), it is actually convenient to consider

just the surface of the above union of bad cubes, which is an Ising contour attached to
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the faces of the bad cubes in γ. Since there are at most 2d plaquettes per each cube
in γ, each plaquette carries at most the weight δ

1
2d . By employing the recent Lebowitz-

Mazel [LM] estimate on the number of Ising contours (which is asymptotically optimal
as d→∞), we arrive at the expression

ε(d, δ) =
(
2 + o(C(d)δ

1
2d )

)
δ2d +

(
1 + o(C(d)δ

1
2d )

) 1
2
d(d− 1)LdδL

d−1
. (3.5)

Here C(d) = exp
(
O( log d

d )
)
is the connectivity constant for the Ising contours.

Indeed, by Corollary 1.2 of [LM], the contribution to 〈χP1(c)χP2(c̃)〉L corresponding
to a contour surrounding either c or c̃ is dominated by the lowest-order term, provided
C(d)δ

1
2d : 1. Hence, one gets 2δ2d, where the ‘2’ accounts for the uncertainty whether

the contour runs around c or c̃. The case of a contour wrapped around the torus is
fairly analogous; one only needs to observe that the Lebowitz-Mazel counting argument
requires the contours neither to be closed nor to be encircling a given point—it is only
required that the contour contains a given plaquette. Hence, also in this case the lowest-
order term dominates, yielding 1

2d(d−1)LdδL
d−1
, where the prefactor counts the possible

positions of the plaquette. �

Proof of (I) and (II).
We will start by setting the parameters. It will be assumed that κ and J are fixed and

strictly positive, whereas r and s are to be adjusted such that the technical ingredients
(i.e., Lemmas III.1 and III.2) are in power. The quantity δ will be our generic ‘small
parameter’, i.e., a number chosen small enough so that Lemma II.4 yields, in conjuction
with Lemmas III.1 and III.2, the needed bound. In particular, δ : C(d)−2d must be
assumed.
For a fixed δ, let the numbers r ≥ s be such that r ≥ r̄(d, δ) and s ≥ s̄(d, δ),

respectively, and the assumptions

(1) β̄(κ, d, δ): 1
Jd log s

(2) ε̄(1− δ, 3δ2d)max{1, κ
J } : 1

hold (with β̄(κ, d, δ) from Lemma III.1 and ε̄(1− δ, 3δ2d) from Lemma II.4).

Remark. Since we are clearly about to use Lemma II.4 in the context of graphical rep-
resentations, the reader may have doubts whether this result is really applicable, when
the Gibbsianness (i.e., the property defined by stipulating the DLR condition) of the
limiting states is questionable. But this is only due to the wording of the statement of
Lemma II.4—as the proof shows, actually the existence of two distinct limiting states is
established, obtained by conditioning from torus states. In particular, the states emerg-
ing from Lemma II.4 are of the SA-class, because they are limits of the torus states
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conditioned on densities of the respective patterns having large enough value. Since any
finite volume can be omitted while evaluating the latter densities, the same argument we
used to prove that torus states are SA-class applies also to these conditional measures.
The proof now comes in two stages.

(1) R–S transition. Let χR = χDR + χOR be the indicator for a red cube and similarly
for χS . Since β ≥ β̄, we have by Lemma III.1 that 〈χR + χS〉β,hL is close to one for any
h. Clearly, as h → ∞, the mean value 〈χR〉β,hL is supressed and as h → −∞, the mean
value 〈χS〉β,hL vanishes—both of these uniformly in L. The conditions of Lemma II.4 are
met; for each β ≥ β̄, there is an hβ with |hβ | <∞ at which R and S-type phases coexist:
there exist two SA-states 〈 · 〉β,hβR and 〈 · 〉β,hβS satisfying

〈χR〉β,hβR ≥ 1− ε′ (3.6r)

and
〈χS〉β,hβS ≥ 1− ε′. (3.6s)

with ε′ = ε̄(1− δ, 3δ2d).
Although the conditions of Lemma II.4 do not rule out the existence, for a given β, of

several such points (i.e., ‘reentrance’), the FKG monotonicity (as proved in Lemma II.7)
resoundingly does. Indeed, any SA-state at parameters (β, h) with h > hβ will FKG
dominate the state 〈 · 〉β,hβS and similarly for h < hβ .
We now claim that the function hβ is continuous. Indeed let β∗ > β̄ and consider

a sequence {βk} with βk → β∗. Crude estimates show that the |hβk | are uniformly
bounded so let −∞ < h∗ < ∞ denote an accumulation point of {hβk}. Now at the
points (βk, hβk), we have the S-state where the inequality (3.6s) holds. It follows by a
compactness argument that there exists an SA-state at (β∗, h∗), where the same inequality
holds. Thus h∗ ≥ hβ∗ . Using the same argument with the r’s, we conclude that h∗ ≤ hβ∗

and continuity is established. The curve given by the function hβ will constitute our CRS .

(2) Order-disorder transition. The situation with the order-disorder transition is similar;
the disadvantage is that we do not have an FKG monotonicity as the temperature varies.
This is remedied by convexity arguments, based on the fact that β couples almost directly
to the relevant observables.
It will be useful to consider the events bO and bD that a given bond is ordered/disordered

respectively: bO = bOS ∪ bOR and similarly for bD. As above, we may also define the
indicators χO and χD for events on cubes. However we claim that for β ≥ β̄ the
quantities 〈χO〉β,hL and 〈χbO 〉β,hL are essentially interchangable. Indeed, first 〈χO〉β,hL ≤
〈χbO 〉β,hL . On the other hand, writing 〈χO〉β,hL = 〈χbO 〉β,hL 〈χO| bO〉β,hL and using FKG
and Lemma III.2 we get 〈χO〉β,hL ≥ 〈χbO 〉β,hL (1− δ).
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For this portion of the proof, we will keep h̃ = βh fixed and allow β to vary in [β̄,∞).
It follows by inspection of (3.1i–v) that, provided the assumption (1) above holds, the
variables χbO and χbD satisfy the conditions of Lemma II.4 and thus there is a βh̃ at

which two SA-states 〈 · 〉βh̃,h̃/βh̃D and 〈 · 〉βh̃,h̃/βh̃O coexist satisfying 〈χbO 〉βh̃,h̃/βh̃O ≥ 1 − ε′

and 〈χbD 〉βh̃,h̃/βh̃D ≥ 1− ε′.

Consider the ‘bond densities’ ρO(β, h) and ρD(β, h) representing the thermodynamic
density of bonds of the two types. These objects are well defined in most states—
certainly in translation invariant states where they equal to the expectations of bO and
bD—but their value may depend on the state. To account notationally for such a case,
we will indicate different states by a superscript, e.g., ρ∗O(β, h). However, the densities
for different states are not completely uncorrelated: an examination of the weights in
(2.1) shows that the quantity

Q(β, h) =
(
κ+ J

eβJ

eβJ − 1
)

ρO(β, h) + κ
eβκ

eβκ − 1ρD(β, h)
≡ AO(β)ρO(β, h) +AD(β)ρD

(3.7)

has the property that if β1 > β2, then for any translation-invariant states ∗ and #,

Q∗(β1, h̃/β1) ≥ Q#(β2, h̃/β2). (3.8)

This follows because Q represents the derivative of the free energy with respect to β with
h̃ = βh held fixed. Note that ∗,# ∈ S is not required.
In what follows, the treatment is slightly simplified by assuming that κ ≤ J ; we will

proceed under this assumption and, at the end, discuss briefly the complementary case.
Let β > βh̃ with h̃ = βh and let ∗ denote the translation-invariant state at (β, h) designed
to minimize ρO. Then

AO(β)ρ∗O(β) +AD(β)ρ∗D(β) ≥ QO(βh̃) ≥ AO(βh̃)(1− ε′) (3.9)

where the suppressed h’s in all arguments are evaluated at h = h̃/βh̃. Since both AO
and AD decrease with β we may replace on the left side β by βh̃:

[AO(βh̃)−AD(βh̃)]ρ
∗
O(β) +AD(βh̃) ≥ AO(βh̃)(1− ε′), (3.10)

where we have further used that ρ∗O(β) + ρ∗D(β) ≤ 1. If J ≥ κ then all the quantities
(eβJ−1)−1, (eβκ−1)−1 are uniformly small by the condition that all inverse temperatures
are larger than β̄. Since AO(β)−AD(β) = J(1− e−βJ)−1−κ(eβκ− 1)−1 ≈ J , we arrive
at ρ∗O(β) ≥ 1− ε with ε ≈ ε′[J + κ]/J .
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The argument for β < βh̃ is similar but requires the additional ingredient that for
β > β̄, vacant bonds are rare in any SA-state. (Of course we already know this for the
limit of any torus state.) We will be content to prove this statement away from the
coexistence line CRS . Consider the point (β, h̃/β) with β < h̃/hβ (i.e., ‘above’ CRS).
Now, at the point (β, hβ) the S-state has a blue bond density in excess of 1− ε′. Since
the (blue-disordered∪blue-disordered)-bond event is clearly increasing, this probability
is larger in any SA-state at (β, h̃/β), by the assumption upon β. Thus the vacant bond
density is less than ε′. A similar argument using in turn red-bond density shows that
vacant bonds are uniformly rare in all SA-states at (β, h̃/β) with β > h̃/hβ (i.e., ‘below’
CRS).
Now consider β < βh̃ and assume that (β, h̃/β) /∈ CRS . Let # denote the state at

(β, h̃/β) designed to maximize ρO within the SA-class. We have

ε′AO(βh̃) +AD(βh̃) ≥ QD(βh̃) ≥ AO(β)ρ#O(β) +AD(β)ρ#D(β)
=
(AO(β)−AD(β))ρ#O(β) + (ρ#O(β) + ρ#D(β)

)AD(β) (3.11)

where we have again supressed the h dependence in our arguments. Using the fact that
the density of vacants is always less than ε′, we have ρ#O(β) + ρ#D(β) ≥ 1− ε′ and thus

ε′
(AO(βh̃) +AD(β)

)
+AD(βh̃)−AD(β) ≥

(AO(β)−AD(β))ρ#O(β). (3.12)

Notice that AD(βh̃)−AD(β) is negative (and anyway small). We obtain ρ#O(β) ≤ ε, with
ε ≈ ε′(J + 2κ)/J .
If κ/J > 1 the argument is pretty much the same only we cannot immediately discard

terms like e−βJ on the grounds that β > β̄. Two ingredients are required: First, the δ

parameter must be made small enough (i.e., s must be large enough) so that when the ε′

term emerges from the Lemma II.4, the quantity ε′κ/J is still small. Second, the value
of β̄ must be trimmed so that it can be stipulated that for β > β̄ the quantity (eβJ − 1)
is not small, say larger than unity. Under these conditions, the proof follows mutatis
mutandis.

The proof of the continuity of βh̃ is the same as for hβ ; thus we have our curve COD.
These two curves define our four regions: OS , OR, DR and DS . In the interior of these
regions, the characterizations corresponding to the bounds in (II) of the Main Theorem
are clearly satisfied. Namely, if β < βh̃ and h > hβ , then just about all of the bonds
are disordered and blue in any SA-state. This means that in all translation invariant
Gibbs spin states, each of them being paired with a translation-invariant S-state in an
Edwards-Sokal measure, satisfy 〈δσxσyδSσx〉 ≥ 1− ε. The proof of the other inequalities is
similar. The existence of r and s separate magnetized states in their respective ordered
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regions is obvious: All of these emerge from the torus states. (These will be discussed
further below in the Proof of (IV) and (V).). �

Proof of (III).
On the basis of crude estimates, both functions h̃ → βh̃ and β → hβ are bounded

away from the boundary of J , hence, it is clear that they must coincide at least at one
point. When r = s, both COD and CRS enjoy the flip symmetry h → −h, which entails
that CRS lies on h = 0 and is intersected by COD at exactly one (quadruple-coexistence)
point—this establishes the phase diagram in the symmetric case. Insofar we have yet not
made use of the condition r/s 1. It is this condition that forces non-trivial coincidence
of the curves, and, consequently, the two triple points. The existence of triple points is
a consequence of the following claim.

Lemma III.3. Suppose that r  s and consider the quantities 〈χOR〉L, 〈χOS 〉L,
〈χDR〉L and 〈χDS 〉L. Then for all β and h, at least one of these objects is small.
In particular, let ΘL denote the chessboard estimate for min{〈χOS 〉L, . . . , 〈χDS 〉L}:

ΘL =
[
min{ZOR ,ZOS ,ZDR ,ZDS}
ZOR + ZOS + ZDR + ZDS

] 1
Ld

.

Then there is L0 = L0(r/s) such that

ΘL ≤ 2
√

s

r

for all L ≥ L0.

Proof. We first invite the reader to reexamine the weights for ZOS , . . . ,ZDS in (3.1). If
h ≤ 0, then ZDS/ZDR ≤ (s/r)L

d

and we are done. If h > 0, we may have seβh ≥ re−βh.
But then ZOR/ZOS = r(e−2βh)L

d

/s ≤ (s/r)Ld−1 and we are again done, provided L is
large enough. Thus suppose re−βh > seβh. We have

ΘLd

L ≤
[ZORZDS ]

1
2

ZOS + ZDR
=

r
1
2 ([ABs]

1
2 )L

d

s[Aeβh]Ld + [Bre−βh]Ld

=
(s

r

) 1
2 (L

d−1) ([ABr]
1
2 )L

d

s
1
2 [Aeβh]Ld + s−

1
2 [Bre−βh]Ld

, (3.13)

where we have abbreviated A = [eβκ(eβJ − 1)]d and B = [eβκ − 1]d. By noting that the
ratio of the partition sums at the extreme right is less than a half, the proof is over once
L is large enough. �
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For the duration of this portion of the proof, it is more convenient to use the parametriza-
tion by β and h̃, where h̃ = βh. The argument comes again in two steps.

(1) Lower triple point. In the region β  1 the curve CRS separates OR from OS phases
and in the region h̃ : −1, the curve COD separates OR from DR. Let us follow the
curves from these extreme ranges of parameters until they first touch. This point will be
denoted by A ≡ (β), h̃)). At A, we have coexistence of OR, OS and DR phases. Note,
as is thus clear by Lemma III.3, that in a neighborhood of A, the chessboard estimate for
〈χDS 〉L is small. (In fact, chessboard estimates are continuous in all parameters. The
existence of nearby regions of states of the other types forces the small one to be DS by
Lemma III.3) We will successively establish three claims:

(A) The ‘unused’ portions of CRS and COD lie in the quadrant Q = {h̃ > h̃), β < β)}.
(B) In this quadrant, in a neighborhood of A, the two curves coincide.
(C) The point A is the unique triple point where OR, OS and DR coexist.

Let us start on (A). Consider the line segment {h̃ = h̃), β̄ ≤ β < β)}. This is
a line where only disordered states can exist because one exists at A and hence for
all higher temperatures with the same value of h). Similarly, consider the line segment
{β = β), h̃ > h̃)}. Here only OS states can exist by FKG-domination from the previous
subsection (note that h > h)/β) on this segment). Consequently, the unused parts of
both COD and CRS must avoid these segments. Since COD is parametrizable by h̃ and CRS

by β, these parts have to lie inside the quadrant defined by these segments.
We now claim that in this quadrant, in a neighborhood of A, the curve COD cannot

rise above CRS . Indeed, let

Q+ =
{
(β, h̃) ∈ Q: h̃ > βhβ

}
. (3.14)

By definition, everything in Q+ is S-type. If COD has a point inside Q+ then in a
neighborhood of this point, there is a region of (exclusive) DS states. Here we have
invoked the continuity of h̃ → βh̃, i.e., the function that determines COD, and the fact
that Q+ is an open set. However, if we are sufficiently close to A, continuity of the
chessboard estimate forbids at least the torus state from being a DS state. By exactly
the same argument as the rareness of vacant bonds in any SA-state was established in the
paragraph right after (3.9), this implies that the probability of DS patterns is uniformly
low near A in Q+. Hence, COD stays below CRS in the vicinity of A in Q.
Finally we will show that in Q, the curve COD is never below CRS . This will finish off

(B) and prove (C) as well; however this time the result is global. Indeed, setting

Q− =
{
(β, h̃) ∈ Q: h̃ < βhβ

}
, (3.15)
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let us suppose there is a point of COD in Q−. It follows that there is a whole open region
of OR-states in Q. By FKG, this implies that all SA-states below this region are OR and
hence ordered. On the other hand, the lower boundary of the quadrant has already been
determined to consist exclusively of disordered SA-states. Thus the two curves coincide
for a while and, when they eventually split, they must do so in such a way that COD does
not dip below CRS ever more. In other words, the OR states are gone for good.

(2) Upper triple point. The argument for the other triple point is similar but hindered
by the absence of FKG-monotonicity. As the previous discussion was to rule out the
‘bubbles’ below CRS , now the key point will be to deal with the ‘bubbles’ that can appear
above CRS .
Following the curves from the high-temperature/high-field side, let ⊗ = (β⊗, h̃⊗)

denote the first point that these curves coincide. The quadrant below and to the left of
this point will be denoted by K, i.e., K = {(β, h̃): β > β⊗, h̃ < h̃⊗}. Again, ‘beyond’
the point ⊗, both curves are locked into the quadrant. Indeed, {β > β⊗, h̃ = h̃⊗} is
a line that consists exclusively of ordered states and {β = β⊗, h̃ < h̃⊗} is a line that
consists exclusively of R-states. (As a matter of fact, DR-states.) We already know that
COD lies above or on CRS all the way down to A. We must rule out the possibility that it
lies strictly above. Explicitly, we will rule out the existence of DS-states in K. To that
end, we note that K can be reparametrized as

K =
{
(β, h̃): β = β⊗ + α, h = h̃⊗ − α∆, 0 < α ≤ ∞, ∆ > 0

}
. (3.16)

The argument we will use is similar to the one in (3.7–11), which is just the case ∆ = 0.
Let ηR denote the density of R-sites. As differentiating of the free energy with respect

to α (with ∆ fixed) reveals, in any translation-invariant state at (β, h̃) =
(
β⊗+α, h̃⊗−

α∆
)
, the quantity AO(β)ρO + AD(β)ρD + 2∆ηR must be larger than its value in any

translation-invariant state at (β⊗, h̃⊗). Let ∆, α be fixed and let O denote any such state.
By comparison to the OS-state at ⊗ we have

AO(β)ρAO +AD(β)ρAD + 2∆ηA
R ≥ AO(β⊗)(1− ε′) (3.17i)

and similarly, by comparison with the DR state at ⊗,

AO(β)ρAO +AD(β)ρAD + 2∆ηA
R ≥ AD(β⊗)(1− ε′) + 2∆(1− ε′) (3.17ii)

This easily finishes the proof. Namely, let 2∆ ≤ AO(β⊗) − AD(β⊗). Then by the
same arguments as in (3.8–9) we get[AO(β⊗)−AD(β⊗)](ρAO + ηA

R) +AD(β⊗) ≥ AO(β⊗)(1− ε′). (3.18i)
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However, this entails that the bigger of the quantities ρAO, η
A
R is close to a half, which

rules out that O is any DS state. If 2∆ > AO(β⊗) − AD(β⊗), then (assuming without
loss of generality ηA

R ≤ 1− ε′) we are led to

[AO(β⊗)−AD(β⊗)]ρAO + ε′AD(β⊗) ≥
[AO(β⊗)−AD(β⊗)](1− ε′ − ηA

R), (3.18ii)

which again cannot be satisfied if both ρAO and ηA
R are small.

Since ∆ was arbitrary, there is no alternative to the scenario that the curves coincide
down to A, where the ‘new’ OR states enter the play. But this proves that there are
just two triple points and that they are indeed connected by a single line of OS + DR

coexistence. �

Proof of (IV) and (V).

Item (IV) is a standard high temperature result that is particularly easy to justify
in the graphical representation. Consider any infinite-volume spin Gibbs measure ν and
its (arbitrary) Edwards-Sokal coupling νES. Then we claim that under the ω marginal
of νES (and β small), most of the configuration is actually in the vacant state. Namely,
if two neighboring sites are of the same spin-type but not the same spin-state, then the
only other possibility is a disordered bond-state, whose relative weigth is then 1− e−βκ.
Similarly, if two neighboring sites are in the same state, the relative weight of an ordered
bond is 1− e−βJ and of a disordered bond is e−βJ(1− e−βκ).
Let us call non-vacant bonds ‘open’ and the vacant ones ‘closed’. Since the bond

states are independent under the measure νES( · |σ), the ‘open/closed’ marginal of
νES( · |σ) is FKG-dominated by the ordinary bond percolation on Zd with parame-
ter p = 1 − e−β(J+κ), where J, κ > 0 is used to bound the other possibilities. Let now
p < pc(d), where pc(d) marks the onset of bond percolation on Zd. Then a classical
result [MMS][AB] yields that the size of the maximal cluster intersecting a fixed finite
volume Λ has an exponentially small tail, with a Λ-independent rate (if we are content to
restrict p and, consequently, β only to extremely small values, then this follows already
from a Peierls argument). The FKG domination says the same applies to the graphical
marginal of νES( · |σ) for ν-a.s. σ.
It is not difficult to observe that this actually implies the exponential decay of all

truncated correlations with a uniform decay rate, because disconnected regions act in-
dependently of each other. Namely, let (Ai)Ni=1 be disjoint finite sets of sites, ψi be
cylindric function in Ai, let χ = χ(A1, . . . , AN ) indicate that all Ai’s are connected and
let K(A1, . . . , AN ) denote the minimal number of bonds needed for this connection. Let
〈 · 〉Λ be any state in Λ ⊃ ∪iAi with some fixed boundary condition. Then the logarithmic
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generating function

HΛ(z1, . . . , zN ) = log

[ 〈
e
∑N

i=1 ziψi
〉
Λ〈

e
∑N

i=1 ziψi |{χ = 0}〉Λ
]

(3.19)

of the functions fi (note that the denominator plays no role for truncated correlators
involving all functions fi) exists for any zi ∈ C such that |zi| is small enough, and it
satisfies the inequality∣∣HΛ(z1, . . . , zN )

∣∣ ≤ C

( N∏
i=1

e2|zi| ‖ψi‖
)
e−δ?(A1,...,AN ), (3.20)

as is verified by splitting the numerator in (3.18) depending whether χ = 0 or 1 and
then using that log(1 − x) ≤ x−1

0 log(1 − x0)x for 0 ≤ x ≤ x0 < 1 and that 〈χ〉Λ ≤
O(1)e−δ?(A1,...,AN ), where δ is the rate of the connectivity function in the percolation
model above. Note that C is finite and independent of Λ whenever maxi{|zi| ‖ψi‖} is
small enough. The multidimensional Cauchy theorem then implies that condition IIc
stating that the truncated correlator∣∣〈ψk1

1 ; . . . ;ψ
kN
N 〉Λ

∣∣ ≤ k1! . . . kN ! C̃k1+···+kN e−δ?(A1,...,AN ), (3.20)

and consequently all the other conditions in [DS] (or, alternatively, the condition in
[vdBM]) for complete analyticity are satisfied.
In order to prove item (V), note that in the interior of OR, OS , DR and DS there is

percolation of the appropriate type. Indeed, in any SA-state, we know that the probability
of the dominant type of bond is close to one in any SA-state and on the torus, we know
that the probability of contours is rare. Thence the event that two bonds at the opposite
ends of the torus are connected by a path of relevant bonds is close to one uniformly in
the size of the torus. Thus, in any torus state, percolation of the appropriate bond-type
is inevitable.
We will finish by showing that, for the interior points, in every SA-state there is no

percolation of any of the sub-dominant types. First note that, throughout the interior
of the regions, one can produce SA-states where no other than the relevant bonds perco-
late. Namely, in the torus states, the probability that the non-appropriate bonds form a
contour running around the torus tends to 0 in the thermodynamic limit, hence, condi-
tioning on the complement event yields an SA-state in this limit, assigning a uniformly
positive probability to the event that any two sites are connected by the relevant bonds.
With this in the hand, percolation of non-relevant bonds can be immediately ruled out
inside the O-regions, using FKG domination from Lemma II.7, because ‘non-appropriate
percolation’ is a monotone event in this case. In the D-regions, one first rules on the
percolation of O-bonds of the respective color (again by FKG) and then the percolation
of the bonds of the complementary color. �
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4. APPENDIX

Proof of Lemma II.5.
The measures µ1 and µ2 are distinct, hence they are distinguished by the expectation

of a local function g. Since both have been obtained essentially as limits of finite-volume
states, it is enough to show that the expectation of the bond configuration function g

under the corresponding Edwards-Sokal measure can be expressed as an expectation,
under the same measure, of a local function f depending only on spin configuration σ.
The compactness of the space of all measures (in the weak-∗ topology) then proves the
existence of the two desired distinct spin-states in the respective sets of cluster points.
The function g can be rewritten as g( · ) =∑

ω g(ω)δ{ω}( · ). Thus, relying also on the
inclusion-exclusion principle, without loss of generality it suffices to construct the func-
tion f only for g that indicates a fixed configuration ω̄ on a finite set of bonds Σ, with no
vacant bonds. Then, Σ decomposes into the disjoint union of the sets ΣOR , ΣDR , ΣOS ,
and ΣDS of those bonds where ω̄ is dark-red, light-red, dark-blue, and light-blue, respec-
tively. Now, the corresponding fω̄ will be the product fω̄(σ) =

∏
b=〈x,y〉∈Σ fω̄b(σx, σy),

where

fω̄b(σx, σy) =



eβJ−1
eβJ

δSσxσy b = 〈x, y〉 ∈ ΣOS

eβJ−1
eβJ

δRσxσy b = 〈x, y〉 ∈ ΣOR

eβκ−1
eβκ

(
1− eβJ−1

eβJ
δSσxσy

)
δSσxδ

S
σy b = 〈x, y〉 ∈ ΣDR

eβκ−1
eβκ

(
1− eβJ−1

eβJ
δRσxσy

)
δRσxδ

R
σy b = 〈x, y〉 ∈ ΣDS

(A.1)

Observe that for every b ∈ Σ we have (note that ω̄b (= v)

fω̄b(σx, σy)
∑
ωb

w(ωb)χb(ωb, σx, σy) = w(ω̄b)χb(ω̄b, σx, σy) (A.2)

(see (2.2) to recall the meaning of w’s and χ’s), where in the arguments of χ we have
retained only the relevant terms. By noting that the external-field terms have not been
tampered with at all during this operation we can easily convince ourselves that∑

ω,σ

fω̄(σ)W
β,h
ES,s,r;Λ(ω,σ) =

∑
ω,σ

δω̄(ω)W
β,h
ES,s,r;Λ(ω,σ), (A.3)

where W β,h
ES,s,r;Λ is the corresponding Edwards-Sokal weight in Λ (see (2.14)), with the

dependence on the boundary condition σ̃ being only implicit. Namely, fix a configuration
σ and carry out the summation over ωΣ on the l.h.s. Then (A.2) asserts that this is
replacable by putting the indicator δ{ω̄}, independently of σ to have been chosen. The
equality then follows by summing over the rest of the variables. �
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Proof of Lemmas II.6 and II.7.
We first prove Lemma II.6 for any G-measure. The claim for SA-measures will be

then an easy corollary of the FKG domination in Lemma II.7. At several points in the
forthcoming derivation, we will have occasion to use the Strassen theorem [S]—or more
precisely the corollary to Strassen’s theorem. This result may be stated as follows:

Theorem A.1. Let X1, . . . XN denote a collection of real-valued random variables (for
simplicity each assumed to take on only a finite number of values) and let µ1 and µ2

denote measures on the configurations of these variables. Suppose that a priori µ1 ≥
FKG

µ2. Then if for each i, the distributions of Xi are identical it follows that µ1 = µ2.

Proof. See, e.g. [L] page 75.

Given a spin configuration σ, let ξ denote its red/blue marginal, i.e., ξx = R if σx ∈ R

and ξx = B if σx ∈ B. We start with a somewhat weaker version of Lemma II.6.

Lemma A.2. Let µ̃
(β,h),∗
r,s,Λ ( · ) denote the ξ-marginal of the Edwards-Sokal measure with

a G boundary condition. Then for Lebesgue-a.e. h, there is a unique infinite-volume
measure for this marginal.

Proof. We first claim that µ̃(β,h),∗s,r;Λ ( · ) is FKG w.r.t. the order R ≺ B. Indeed, first let us
observe that cylinder functions of these site variables may be evaluated via conditional
expectations given a bond configuration ω. In particular, each site that is the endpoint
of a blue bond is blue, similarly for the reds, and vacant sites are independently red or
blue with probability re−βh/(seβh+re−βh) and seβh/(seβh+re−βh), respectively. Thus,
if A is an increasing event determined by the site variables we may write

µ̃
(β,h),∗
s,r;Λ (A) =

∑
ω

ν
(β,h)
s,r;Λ (ω)A(ω). (A.4)

Here A(ω) = EES(IA|ω), with IA being the indicator function, and ν
(β,h)
s,r;Λ is the random-

cluster measure in Λ (with the boundary-condition dependence being only implicit).
It is not hard to see that A(ω) is an increasing function. Furthermore, if A and B are

both increasing events, it is easy to see that

EES(IAIB|ω) ≥ EES(IA|ω)EES(IB|ω) ≡ A(ω)B(ω). (A.5)

Indeed the only randomness in the above conditional expectations come from the ‘vacant’
sites which are independently assigned their colours; thus we use the FKG property for
Bernoulli measures. Hence we have

µ̃
(β,h),∗
s,r;Λ (A ∩B) ≥

∑
ω

ν
(β,h)
s,r;Λ (ω)A(ω)B(ω) ≥ µ̃

(β,h),∗
s,r;Λ (A)µ̃

(β,h),∗
s,r;Λ (B) (A.6)
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where the last step follows from the FKG property of ν(β,h)s,r;Λ ( · ) and the identity in (A.6).
It is also evident that the G-type boundary conditions, the measure µ̃

(β,h),∗
s,r;Λ ( · ) enjoy

the same FKG hierarchy as the corresponding ν
(β,h)
s,r;Λ ( · ), e.g., the blue-wired is highest,

red-wired is lowest, etc.
We now claim that for a.e. h, there is a single limiting µ̃ measure in the G-class.

Indeed, the free energy has a.e. a continuous derivative w.r.t. h and at the points of
continuity, the fraction of blue sites (which is coupled to h in the Hamiltonian) exists
and is independent of the state. Moreover, in both the red-wired and blue-wired states
(which are both translation invariant) this fraction is exactly the probability of a blue at
any fixed site. Hence, by the corollary to Strassen’s theorem, these are the same state.
Since all G-states lie in between these extremes, there is just one such state. �

Corollary. Let µ̃
(β,h),†
s,r;Λ ( · ) denote the marginal of the random-cluster measure that

counts only whether each bond is red, blue or vacant. Then for Lebesgue-a.e. h, the
limiting red- and blue-wired measures coincide.

Proof. Let x and y denote a neighboring pair of sites. Since by Lemma A.2 the limiting
ξ-marginals µ̃(β,h),∗r,s,blue-w( · ) and µ̃(β,h),∗r,s,red-w( · ) agree, it follows that the probability that both
x and y are blue is the same in both systems. Let us denote this probability by gbx,y
and further let bB and bR denote the probabilities that the bond 〈x, y〉 is blue in the
blue-wired and red-wired measures, and similarly vB and vR for the probabilities that
the bonds is vacant. Finally, let λb

v,B denote the conditional probability, in the limiting
blue-wired measure that both endpoints of the bond 〈x, y〉 are blue given that this bond
is vacant. Let λb

v,R be the similar quantity for the red-wired boundary condition.
Since the underlying random-cluster measures are strong FKG, it is observed that

λb
v,B ≥ λb

v,R (A.7)

It is also observed that λb
v,R < 1. Clearly

bB + vBλb
v,B = gbx,ybR + vRλb

v,R, (A.8)

i.e.,

0 = (bB − bR)(1− λb
v,R) + vB(λb

v,B − λb
v,R) + ([bB + vB ]− [bR + vR])λb

v,R. (A.9)

But a priori each term on the right hand side is non-negative so it follows that all three
are zero. In particular, bB = bR (implying that the blue-bond densities are equal) and
thus also vB = vR. Using the corollary to Strassen’s theorem, the desired conclusion is
obtained. �
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Proof of Lemma II.6—G-measures. Let x and y denote a neighboring pair of sites and
let αB

x,y denote the conditional probability in the blue-wired measure that the sites x and
y are connected in the complement of the bond 〈x, y〉 given that both the sites x and y

are blue. Let αR
x,y denote the corresponding probability in the red-wired measure. Now

given that x and y are both blue, the only possibilities for the bond 〈x, y〉 is vacant, light
blue or dark blue.
When these sites are externally connected by dark-blue bonds, the ratio of these

probabilities is 1 : eβκ−1 : eβκ(eβJ−1). For notational clarity, let us temporarily denote
these quantities by 1 : C : D. On the other hand, if the two sites are disconnected, the
ratios read 1 : C : s−1D. Now in the red- and blue-wired states, we have determined
that the probability of a blue bond is the same and the probability a neighboring pair
of blue sites is the same. The ratio of these probabilities is equal which gives us

αB
x,y

C +D

1 + C +D
+ (1− αB

x,y)
C + s−1D

1 + C + s−1D

= αR
x,y

C +D

1 + C +D
+ (1− αR

x,y)
C + s−1D

1 + C + s−1D

(A.10)

The above is only possible if αB
x,y = αR

x,y and from this it follows that the dark-blue bond
density is the same in both measures. Thence, all bond densities are the same and, again
using the corollary to the Strassen theorem the measures coincide �

As a simple Corollary, we obtain a domination bound for the extreme G-measures:

Corollary. For any h(1) > h(2),

ν
(β,h(1))
red-w ( · ) ≥

FKG
ν
(β,h(2))
blue-w ( · ).

Proof. Let g be a monotone increasing cylinder function. Let

h̄ = inf
{
h: ν(β,h)blue-w(g) > ν

(β,h(1))
red-w (g)

}
(A.11)

and suppose h̄ < h(1). Since both h → ν
(β,h)
blue-w and h → ν

(β,h)
red-w are increasing, this

makes inevitable that ν
(β,h)
blue-w(g) > ν

(β,h)
red-w(g) for all h ∈ (h̄, h(1)). However, this is in

contradiction with ν
(β,h)
blue-w = ν

(β,h)
red-w for Lebesgue almost all h, hence h̄ ≥ h(1) (in fact,

the equality holds). Since g was arbitrary, the proof is over. �

Proof of Lemma II.7. Let β, h be fixed and let us suppress them from the notation.
For G-measures the claim is a trivial corollary of Proposition II.1 and Corollary above,
thus we shall concentrate on SA-masures. We shall show that νΛ,blue-w(g) ≥ ν(g) for any
increasing cylinder function g and any SA-measure ν.
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Let thus g be a cylinder function with support on finite set A of bonds. Consider
its ‘spread’ over Λ, i.e., gΛ =

∑
x: τx(A)⊂BΛ

g ◦ τx, with τx denoting the ‘shift by x’.
Let now 〈 · 〉αΛ,σ̃ denote the ω-marginal of the Edwards-Sokal measure with the weight
(2.12) (considering the volume Λ with the boundary condition σ̃ instead of the torus
T ) modified by the factor eαgΛ(ω). The respective normalizing constant Zα

Λ,σ̃ of this
measure is then also α-dependent and is logarithmically convex in α. Observing that
F (α) = limΛ↑Zd

1
|Λ| logZ

α
Λ,σ̃ does not depend on the boundary condition and that it is a

convex function in α, we can employ the standard convexity argument to infer that

〈 gΛ

|Λ|
〉0
Λ,σ̃1

− εΛ ≤ dFdα+

∣∣∣
α1

≤ dF
dα−

∣∣∣
α2

≤
〈 gΛ

|Λ|
〉α

Λ,σ̃2

+ εΛ (A.12)

for any α > α2 > α1 > 0 and any two spin boundary conditions σ̃1, σ̃2. Here εΛ =
O
( |∂Λ|
|Λ|

)
uniformly in the boundary condition.

For the interpretation of the l.h.s. it is important that any S-measure ν is the ω-
marginal of some Edwards-Sokal measure whose σ marginal is a (conventional) Gibbs
measure. By using the fact that every local cylinder function g of bonds can be, under
expectation w.r.t. the Edwards-Sokal measure interchanged into a spin function f , as
follows from the proof of Lemma II.5, we can view the l.h.s. of (A.12) as a spin Gibbs
specification. By averaging over a translation-invariant spin Gibbs measure we arrive at
〈 fΛ
|Λ| 〉 = 〈f〉 = ν(g), where we denoted by fΛ the ‘spread’ of f .
It remains to work out the r.h.s. of (A.12) into the desired form. Let us consider an

auxiliary measure 〈 · 〉αΛ,∗,blue-w, derived from νΛ,blue-w by modifying the a priori weights
(see (2.1)) in the following manner: dark-red, light-red, light-blue, dark-blue will pick up
additional factors e−2αvar(g), e−αvar(g), eαvar(g), e2αvar(g), respectively, where the variance
var(g) of the function g is defined as

var(g) = sup
b

sup
ω,ω̃:ωb′=ω̃b′

∀ b′ �=b

∣∣ g(ω)− g(ω̃)
∣∣. (A.13)

By observing the proof of Proposition II.1, it is easily checked that 〈 · 〉αΛ,∗,blue-w satisfies
the FKG lattice condition and, for α ≥ 0, a similar argument we used in (2.9) proves
that it actually dominates the wired measure 〈 · 〉αΛ,blue-w.
Now we can use the fact that any constant blue boundary condition generates the

blue-wired measure, so by choosing σ2 in (A.12) to be such prior to averaging over the
state 〈 · 〉, we arrive at the inequality

ν(g)− 2εΛ ≤ 〈g〉αΛ,blue-w ≤ 〈g〉αΛ,∗,blue-w (A.14)
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for all α > 0 and all finite Λ. By passing to the limits α ↓ 0 and Λ ↗ Zd we get the
desired bound. Since g was arbitrary the upper bound in the display in Lemma II.7 is
proved. The lower bound is completely analogous.
The FKG-domination for the SA-measures is then the result of the following estimate

ν(β,h
(1))( · ) ≥

FKG
ν
(β,h(1))
red-w ( · ) ≥

FKG
ν
(β,h(2))
blue-w ( · ) ≥

FKG
ν(β,h

(2))( · ) (A.15)

for any h(1) > h(2), and any SA-measures ν(β,h
(1)) and ν(β,h

(2)). The middle inequality
follows by Corollary above. �

Proof of Lemma III.1—general case.
In dimensions d > 2, no diagonal torus is available. Hence we have to proceed by

brute force in deriving the chessboard estimate. In particular, since the events we shall
be studying (i.e., the various ways that a given cube is bad) do not, after dissemination,
result in the probability of a definite configuration, no direct use of the formulas (3.1i–v)
can be made for the numerator estimate (c.f. the proof of Lemma III.1 in the case of
d = 2).
The way we estimate the r.h.s. of the formula in Lemma II.3 in the case of d > 2

is by redistributing the weights of the graphical representation: we define new a priori
weights

w̃(so) = w(so)eβh/d w̃(ro) = w(ro)e−βh/d

w̃(sd) = w(sd)(seβh)1/d w̃(rd) = w(rd)(re−βh)1/d (A.16)

w̃( v ) = w(v)(seβh + re−βh)1/d.

The weights w̃ have one significant advantage over w. Namely, the weight W (see (2.3))
corresponding to constant configurations (which appear, standardly, in the denominator
estimate) is given exactly by taking the product of the respective w̃’s. For non-constant
configurations we obtain the following estimate.

Lemma A.3. Given a configuration ω, let C̃R(ω) and C̃S(ω) denote the number of
connected r- and s-ordered components containing at least one bond. Further, let PR(ω)
and PS(ω) denote the number of mismatched r- and s-pairs in ω. Then

W
(β,h)
s,r;Λ (ω) ≤ rC̃R(ω)sC̃S(ω)

[ ∏
b∈B(TL)

w̃(ω)
]
r−PR(ω)/2ds−PS(ω)/2d.

Proof. Since the a priori factors of W (i.e., the square bracket in (2.3)) are trivially
reproduced, we just have to show that neither the site-terms nor the terms counting the
connected components have decreased.
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To see the former observe that the vertex terms e±βh and seβh + re−βh can be split
equally over the neighboring bonds, giving rise to powers 1/d in (3.1), where for the
vacant bond adjacent to a non-vacant one we used seβh, re−βh ≤ seβh + re−βh. The
same holds for numbers s, r inherent to isolated vertices of the s- (r-)disorder (note that
the additional negative powers r−PR(ω)/2d and s−PR(ω)/2d partly compensate for the
mismatched pairs where neither s nor r are needed). Finally, the non-trivial connected
components are dominated by rC̃R(ω) and sC̃S(ω), respectively. �

Proof of Lemma III.1. As follows from the chessboard estimates (Lemma II.3), it suffices
to prove that a each particular bad pattern a (i.e., a ‘graphical’ configuration on a
cube c) has small probability. We use Za for the partition function constrained on the
disseminated pattern a, i.e., Za =

∑
ω W

(β,h)
s,r;T (ω)

[
χa(TL)

]
(ω).

It will be important to know, for counting the connecting components under the in-
dicator χa(TL), how many connected components are there within the pattern a itself.
Let us use C̃R(a) and C̃S(a) to denote the number of nontrivial (i.e., containing at least
one bond) r and s-ordered components of the configuration a on the cube c. It is an ele-
mentary observation that each such component gives rise to at most (L/2)d−1 connected
components in the disseminated configuration. Indeed, a single bond is disseminated just
into (L/2)d−1 parallel lines through the torus. Similarly, each mismatched pair yields in
total L2(L/2)d−2 = 4(L/2)d clones in the dissemination; there are L2 clones in the plane
containing the initial pair and the plane itself is replicated into (L/2)d−2 parallel planes.
Note that every bond is shared by a total of d2d−1 elementary cubes. Then, under

the condition that s ≤ r, Lemma A.3 implies

Za ≤ r[C̃R(a)+C̃S(a)](L/2)d−1
[∏
b∈c

w̃(ab)
]Ld/2d−1

s−
2
d [PS(a)+PR(a)](L/2)d , (A.17)

with PR(a) and PS(a) denoting the number of mismatched pairs in a. Since, trivially,
the full partition sum Z ≥∑

α∈I w̃(α)
dLd , by Lemma II.3 we get

〈χa(c) 〉L ≤
(Za

Z
) 1

|TL| ≤ r
1
L

[∏
b∈c

w̃(ab)
maxα∈I w̃(α)

] 1
2d−1

s−
1

d2d−1 [PS(a)+PR(a)], (A.18)

where we used that C̃R + C̃S ≤ 2d−1, with the r.h.s. corresponding to a ‘dimer’ covering
of the elementary cube. Now, the pattern a is bad and thus it contains either a vacant
bond or a mismatched pair. Since

w̃(v)
maxα w̃(α)

≤ 2
1
d

eβκ − 1 , (A.19)
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(compare (3.3)) the total probability that a bad pattern occurs is simply computed by
enumerating all possible arrangements of the pattern a. In this way we get the bound
bounded as

∑
a

bad pattern

〈χa(c) 〉L ≤ r
1
L

(
d2d

2

( 2
1
d

eβκ − 1
)− 1

2d−1
+ 2dd(d− 1) s− 1

d2d−1

)
(A.20)

once L is large enough. To count the possible configurations, we used that there are
d(d−1)2d−1 places to put a mismatched pair on the cube, and that each has two possible
colors. By setting the quantity on the r.h.s. equal to δ the proof is finished. �
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1. INTRODUCTION

Reflection positivity (RP) has long been known to set up a framework for establishing
discontinuous phase transitions in lattice systems [FSS][FL][FILS][KS][S][CKS]. As has
been shown recently, in the context of models allowing for a graphical representation, its
combination with the latter can substantially reduce the length of the proofs of phase
coexistence [BCK][CM]. In the two-dimensional q-state Potts model, this technique also
offers an easy way to establish that the transition occurs exactly at the self-dual point
[CM] and to improve the method-required bound on q (L. Chayes, private communica-
tion).
The graphical equivalent of the q-state Potts model is the random-cluster measure

(RCM) [FK]. If we refrain from discussing boundary conditions, RCM is a Bernoulli
bond-process modified by assigning the number q to each connected component. Since q
is not stipulated to be integer in this definition, RCM enables one to think of ‘extending’
the q-state Potts model to non-integer spin-numbers. Similarly, such ‘extensions’ turn
out to exist also for various alterations of the Potts model, see e.g. [BCK].
It would be plausible to expect that the above technology based on merging RP with

graphical representations encompasses also the continuous ‘extensions’ of the Potts mod-
els. Apparently, this is not the case, mainly for the lack of RP—the existing proofs go
through the Edwards-Sokal coupling [ES] back to the q-state Potts model and, con-
sequently, demand that q be integer. For continuous q, one has been left only with
speculations (e.g., about a mapping onto the six-vertex model (L. Chayes, private com-
munication)), so far, that might yield a direct proof of RP at least in some limited
domains of q.
In this paper we demonstrate that, in fact, RP does not hold in the random-cluster

measure when q is not integer. It should be emphasized that this does not disqualify
the order/disorder phase transition in RCM, since the latter is easily inferred from the
discrete case by monotonicity in q. The counterexample we construct involves functions
that are highly non-local. Therefore, neither the possibility that reflection positivity can
be recovered in infinite volume for, e.g., local functions is entirely ruled out.
The rest of the paper is organized as follows. In the next section we give a definition

of reflection positivity and state the main result (Theorem 1). The proof comes in the
third section. The main tool is a suitable representation derived in Proposition 2, that we
believe is of some own interest. In fact, its form suggest a closed link with the ‘convexity-
violation’ arguments of [GG], to which the failure of reflection positivity proved here
adds another ‘canonical’ example. In the proof, we are predominantly concerned with
RP w.r.t. hyperplanes containing sites. However, as is commented on in the end, the
case of reflection positivity w.r.t. hyperplanes intersecting bonds is fairly analogous.
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2. DEFINITIONS AND MAIN RESULT

Let TN be a lattice torus of linear size N , with N being an even integer. We use
B(TN ) to denote the set of bonds of TN . Let each bond b ∈ B(TN ) be assigned a variable
ωb taking on values 0 or 1. Let p ∈ [0, 1] and q > 0. Then the random-cluster measure
(RCM) on torus TN with parameters p and q is a probability measure on {0, 1}B(TN )

weighting the configuration ω = (ωb)b∈B(TN ) by the expression

Pp,q(ω) =
1

ZN
p|N1(ω)|(1− p)|N0(ω)|qC(ω). (1)

Here N1(ω) = {b : ωb = 1}, N0(ω) = B(TN ) � N1(ω), and C(ω) is the number of
all connected components that arise from TN after cutting all bonds from N0(ω) (thus,
C(ω) includes also the isolated sites). The partition function ZN provides the appropriate
normalization. The expectation w.r.t. Pp,q we denote by E.

Let P ⊂ TN be a hyperplane containing sites, orthogonal to one of the coordinate
directions (we think of P as composed of two antipodal components). We use the symbol
ϑP to denote the reflection w.r.t. P . The components of P divide TN into two connected
parts T LN and T RN , such that P = T LN ∩T RN and ϑPT LN = T RN . We use FL (FR) to denote
the set of observables (functions) depending only on ω|B(T L

N ) (ω|B(T R
N ), respectively),

where B(A) stands for the set of bonds whose both ends lie in A ⊂ TN .

Definition. Suppose a measure P̃ acting on ω be given, with the expectation Ẽ. We say
that P̃ is reflection-positive if for every f, g ∈ FL

Ẽ(fϑPg) = Ẽ(gϑPf), (2)

Ẽ(f ϑPf) ≥ 0. (3)

The condition (2) typically follows directly from the symmetry of P̃ w.r.t. the reflection
ϑP , so the difficult part to check is (3) (hence also the name). Now we can state our
result:

Theorem 1. Let q ≤ Nd−1 and p ∈ (0, 1). Then the random-cluster measure Pp,q on
TN is reflection-positive if and only if q is a positive integer.

Remark. The singular case of p = 0 or 1 leads to Pp,q supported on a single configuration.
It follows that P0,q and P1,q are reflection-positive for all q > 0.
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3. PROOF

Fix a hyperplane P ⊂ TN . The main idea of the proof is to classify the configurations
in B(T LN ) according to the partitions of P into connected sets induced thereby. In this
way a representation of the l.h.s. of (3) can be derived that bids an opportunity to choose
f so that reflection positivity of RCM is violated.

Let ωL ∨ωP be a configuration in B(T LN ). Then there is a one-to-one correspondence
between the partitions of P into sets whose elements are mutually connected via N1(ωL∨
ωP ), and the graphs G on P whose components are complete graphs. Namely, an edge
(i, j) ∈ G iff i and j are connected (i.e., absence of the edge means that the sites are
disconnected). We use χG to indicate configurations giving rise to G. Let

W̃L(ωL ∨ ωP ) =
1√
ZN

p|N1(ωL)|+|N1(ωP )|/2 (1− p)|N0(ωL)|+|N0(ωP )|/2 qCL(ωL), (4)

where CL(ωL) denotes the number of the connected components of ωL disconnected
from the set N1(ωP ). Then we have the following representation of (3):

Proposition 2. For each f ∈ FL, G, and ωP let fG(ωP ) =
∑

ωL [fχGW̃L](ωL ∨ ωP ).
Then

E(f ϑPf) =
∑
ωP

∑
G

q(q − 1) . . . (q − ι(G) + 1)
[ ∑
G′⊆G

fG′(ωP )
]2

, (5)

where ι(G) denotes the number of components of G.

Proof. We begin with q integer and then use analytic continuation. For integer q, one can
devise a coupling [ES] between RCM and the Potts model with q spins and e−βJ = 1−p.
Namely, the measure

PES(ω,σ) =
1

ZN
p|N1(ω)|(1− p)|N0(ω)| ∏

〈i,j〉∈N1(ω)

δσi,σj (6)

(where 〈 · , · 〉 denotes nearest-neighbor sites) has RCM of (1) as its ω-marginal, whereas
the σ-marginal is easily identified with the Potts model at the above inverse temperature.
If we set

WL(ωL ∨ ωP ,σL ∨ σP ) =
1√
ZN

p|N1(ωL)|(1− p)|N0(ωL)|
∏

〈i,j〉∈N1(ωL)

δσi,σj

× p|N1(ωP )|/2(1− p)|N0(ωP )|/2, (7)
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then the Edwards-Sokal measure allows us to represent E(f ϑPf) as follows

E(f ϑPf) =
∑

ωP ,σP

∆(ωP ,σP )
[∑

ωL

f(ωL ∨ ωP )
∑
σL

WL(ωL ∨ ωP ,σL ∨ σP )
]2

, (8)

where the function

∆(ωP ,σP ) =
∏

〈i,j〉∈N1(ωP )

δσi,σj (9)

guards that σP stays consistent with ωP .

Now we would like to get the above graphs into play. This is done by observing that
unity can be written as∏

(i,j)
i,j∈P

[
δσi,σj + (1− δσi,σj )

]
=
∑
G

∏
(i,j)∈G

δσi,σj
∏

(i,j) �∈G

(1− δσi,σj ). (10)

We insert this expression in (8), just before the square bracket. If ωP and σP are such
that the product of ∆- and δ-factors equals one, then two important consequences can be
drawn for the summations inside the brackets: first, the graph corresponding to ωL∨ωP

must be a subgraph of G (sites of P with different spins must not be connected). Second,
if also the latter holds, then the summation over σL yields a number independent of σP .
This number is easily identified with W̃L from (4).

With these findings, (8) can be rewritten as

E(f ϑPf) =
∑

ωP ,σP

∑
G

∆(ωP ,σP )
∏

(i,j)∈G

δσi,σj
∏

(i,j) �∈G

(1− δσi,σj )

×
[∑

ωL

f(ωL ∨ ωP )W̃L(ωL ∨ ωP )
∑

G′⊆G

χG′(ωL ∨ ωP )
]2

. (11)

Note that the very last sume gives exactly one whenever ωL ∨ ωP is consistent with
G. Now there is nothing to constrain the summation over σP any more (note that also
∆(ωP ,σP ) = 1 automatically for ωP , σP consistent with G), which gives us the desired
claim for all q integer.

For q non-integer, we use continuation in q. First observe that (5) is expressed purely
in terms of RCM. Then multiplying both sides by ZN , we recover an equality between
polynomials in q. Since (5) holds for all positive integers, we conclude that it holds for
all q real (in fact, even q complex, by continuity). �



86 Techniques of proofs of phase transitions

Proof of Theorem 1.

The integer case is a direct consequence of (5). For q non-integer, we describe a
counterexample. Let us choose ωP such that the set of its connected components C(ωP )
is large enough. Let us set

f = δωP

∑
G

aGχG, (12)

where δωP induces ωP on B(P ) and the sum restricts to suchG that bG =
∑

ωL [χGW̃L](ωL∨
ωP ) > 0. We gather the latter graphs in the set G. Note that G (= ∅, since the minimal
graph Ḡ, exhibiting only the connections within ωP , always belongs to G (as p (= 0, 1,
the configuration ωL∨ωP with N1(ωL) = ∅ gets always some non-zero weight from W̃L).
We shall show that the numbers aG can be chosen so that the system of |G| linear

equations ∑
G,G′∈G
G′⊆G

aG′bG′ = ∆Ḡ(G), (13)

where ∆Ḡ( · ) indicates Ḡ, are satisfied. For that let us introduce a linear order ≺ on G,
respecting inclusions (i.e., G ⊆ G′ implies G ≺ G′). Such a linear order always exists, as
can be easily proved by induction. In the basis labeled according to ≺, the l.h.s. of (13)
is clearly represented by the lower-triangular matrix BG,G′ = bG′1{G′⊆G}, with all the
diagonal entries non-vanishing. Consequently, BG,G′ is invertible and (13) can be solved
in favor of a non-trivial (aG)G∈G .
Now it remains to convince oneself that the formulas (12,13) imply that

E(f ϑPf) = q(q − 1) . . . (q − |C(ωP )|+ 1), (14)

which boils down to checking that only the term with G = Ḡ contributes to the sum over
G in (5). If we now choose ωP such that q + 2 > |C(ωP )| > q + 1, then the expression
(14) is blatantly negative, since only the last term (q − |C(ωP )| + 1) < 0. Hence, (3)
does not hold in general, unless q is integer. �

Remark. The proof we just gave deals with RP w.r.t. hyperplanes on sites. The argument
is readily adapted also to the case of hyperplanes intersecting bonds. Namely, in order
to derive (5) one has to mind only the following: first, ωP is the restriction of ω to the
bonds that intersect P , second, the connectedness issues handled above by χG concern
now the bonds from N1(ωP ), and third, it is the spins congruent with these bonds that
are responsible for the crucial prefactor in (5). Once the relation (5) is established, the
formulas (12-14) can be taken over almost literally to obtain the desired result.
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1. INTRODUCTION

In this paper we study the ferromagnetic (q+2)-state Potts model with each value of the
spin being affected by a separate external field. The (formal) Hamiltonian of the model is

H(σ) = −J
∑
〈x,y〉

δσx,σy −
q+2∑
m=1

∑
x

hmδσx,m. (1.1)

Here J is a positive coupling constant, (hm)
q+2
m=1 are real numbers standing for the external

fields, and 〈· , ·〉 denotes a nearest-neighbor pair on Zd.
The q-state Potts model is a system well known for the presence of an order/disorder tran-

sition established rigorously in [KS]. This transition is essentially entropy driven, marking the
coexistence of q low-energy ordered states and a high-entropy disordered state. Moreover,
the distinction between the ordered and disordered states is the sharper the larger the single-
spin space is. Unlike the Potts interaction, the second term in (1.1) gives rise to symmetry-
breaking within the family of q Potts spins, with the associated transitions driven thus by a pure
energy-effect. The reduction of symmetry effectively diminishes the size of the single-spin state
space; it is thus of interest to analyze how these transition mechanisms compete (or cooperate)
when the fields are switched on.
The second interesting aspect of the Potts system is that it allows for a reformulation in

terms of a graphical representation, the so-called Fortuin-Kasteleyn representation [FK]. This
representation provides a natural interpolation between the Potts, the Ising and the percolation
models, and it features a couple of very useful FKG properties (see [H] and [CM] for an overview
and related representations). Unfortunately, the nearest-neighbor interaction (1.1) translates
into long-range one in this representation—an effect that hinders the application of the standard
Gibbs formalism. Progress in this direction has been made (see [vEFS, Section 4.5.3], [BoC]
for a partial solution and [Gr], [PVdV] for a complete solution in the case of the free and wired
measures); nevertheless, the state of matters is still rather unsatisfactory.
The results we present in this paper can be split into two independent parts according to

which of the two aforementioned subjects of interest they appeal. First we demonstrate, how
an explicit control over the phase diagram can be obtained via the expansion techniques based
on Pirogov-Sinai theory ([PSa], [PSb], [Z], [BI]). In particular, we compute explicitly the phase
diagrams for the special cases when only h1 is non-zero (one-field case), h1 = h2 and the others
vanish (equal-field case), and finally the case when h1, h2 are arbitrary and the rest of the
fields are zero. Unlike the original spin-based expansions [BKL], [M] of the Potts model, our
expansion is based on a ‘colored’ random-cluster representation, going very much in the spirit
of the previous studies [LMS], [LMMRS], [BKM], and also [vEFK] where even some particular
form of an external field was considered. A detailed discussion of our results in this direction
is given in Section 2.
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The second part of our results addresses the general theory of Gibbs measures in systems
with a graphical representation. In particular, by elaborating the classical Gibbs theory in
the context of the Edwards-Sokal coupling measures [ES], we state and prove various structure
theorems on the corresponding sets of spin, Edwards-Sokal and ‘graphical’ Gibbs measures
(for a definition of the latter see [Gr]). Using the developed machinery, we also give a couple
of percolation characterizations addressing the issues of both phase coexistence and Gibbs
uniqueness. These are mainly generalizations of the corresponding results for the ‘pure’ q-state
Potts model to be found, e.g., in [ACCN].
The organization of this paper is as follows. In the next section, we state precisely our result

on the phase structure in the one-field, equal-field and two-field cases, and show the relevant
phase diagrams in all these cases. In Section 3, the concept of Edwards-Sokal Gibbs measures
is developed and the aforementioned structure theorems are stated. Section 4 gives detailed
proofs of the latter. In Section 5 contour expansion techniques are set up on the basis of the
‘colored’ graphical representation. In Section 6, the theorem on the phase structure is proved.

2. THE TWO-FIELD MODEL, RESULTS AND PHASE DIAGRAMS

Let σ = (σx)x∈Zd denote the configurations of the q + 2–state (ferromagnetic) Potts model
on the Zd lattice. Consider the Hamiltonian (1.1), with h3 = · · · = hq+2 = 0. The fields
h1 and h2 can take on arbitrary real values; the interesting particular cases are either when
one of them vanishes or when both are equal. We shall treat the latter cases in a unified
way: let us introduce two sets of spins Q and K, where |Q| = q + 1, |K| = 1 for the one-field
case and |Q| = q, |K| = 2 for the equal-field case. The phase diagrams are as depicted in
Fig. 1, with ordered phases—concentrated mostly on Q or K depending on the values of h1 and
h2—dominating low temperatures, and a disordered state at higher temperatures.

One-field case. If h1 ≤ 0 with all hi such that 2 ≤ i ≤ q + 2 set to zero, the phase diagram
looks very much like its standard-Potts counterpart. However, when h1 > 0, only two phases
appear in the phase diagram: the K-ordered and the disordered phase. As h1 increases, both
coexisting states are more and more dominated by a single spin, which eventually forces them
to become one. And, indeed, we establish, by means of the high-fugacity expansion, analyticity
of the free energy once h1 is large enough. The same thing follows for low enough β by the
standard high-temperature expansion. It turns out that only a bounded region is left outside
the scope of the perturbation methods—hence, there is no other way than that the coexistence
line terminates somewhere inside the shaded region as is depicted in Fig. 1.
In general, it is by no means clear how the points of coexistence are arranged inside the

shaded region. In particular, it is not a priori excluded that the line smears out into an open
set of points in the parameter plane. However, in d = 2, the result of [GKR] asserting that the
percolating cluster contains an infinite set of nested circles, can be used to establish that the
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Fig. 1. Phase diagram of the Potts model with one or two equal external fields
(i.e., h1 = h2 = h in the latter case). The shaded region denotes the range of
parameters, where the perturbative methods used in this paper fail to converge.
Notwithstanding, the transition lines in the second diagram and, for d = 2, also in
the first diagram, are everywhere well defined by percolation arguments.

Gibbs measure is unique everywhere off the percolation threshold of the corresponding bonds
in the graphical representation (see Theorem III.4(iv)). Consequently, if there is a coexistence
of distinct phases, it is locked onto the percolation line. Notably, this result holds for all q ≥ 1;
in particular, it can be regarded as an extension of [BaC]. Unfortunately, even for d = 2, the
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uniqueness of the end-point remains an open question.

Equal-field case. A similar order/disorder transition appears in the case when |K| = 2 and
the common value of the fields h1 = h2 = h > 0. Since the system effectivelly approaches the
Ising model as h1 = h2 → +∞, for which the transition in temperature is conjectured to be
of second order, a question arises whether also in this case the phase coexistence might end
before h =∞ is reached. Unfortunately, we are unable to draw any rigorous conclusion in this
case, and that not even in the case d = 2, where the above conjecture on the Ising transition is
proved rigorously [AB] (see [BL] for interesting conclusions if the contrary occurs in d > 2). In
fact, neither are we able to tell whether the existence of states of broken symmetry in K-family
on the percolation line implies also the order/disorder coexistence (the reverse implication is
true by a simple percolation characterization). Thus, even the possibility of having two critical
points (i.e., one for the termination of the order/disorder coexistence and the other for the
termination of the symmetry-breaking coexistence line) remains unresolved.

Two-field case. The case of both fields h1 and h2 taking non-degenerate values is also of
some own interest. Namely, the phase diagram for constant inverse temperature β undergoes
several interesting changes as β varies. Let βq

c denote the critical temperature of the q-state
Potts model. We know, e.g., from [ACCN], that βq

c is strictly increasing in q.

Fig. 2. Phase diagram (in external fields) at four different fixed temperatures. The
boundary values for the depicted generic behaviors are β = βq+2

c , βq+1
c , and βq

c .

There are four temperature regions yielding four different phase diagrams as shown in Fig. 2.
Starting from low temperatures, β > βq+2

c , only the ordered states (i.e., the 1-ordered, 2-ordered
and q-ordered states, depending on the values of the fields) appear in the phase diagram,
occupying exactly the same regions as at infinite β. Once β decreases below the value βq+2

c ,
a ‘triangle’ of the disordered phase begins to grow in the center of the diagram (see Fig. 3
for an explicit computation of the phase diagram in this parameter range as drawn by Maple
using the Pirogov-Sinai expansion), whose ‘hypothenuse’ increases in lenght as β decreases.
At βq+1

c , this triangle becomes infinite (the disordered phase then occupies an unbounded
region), nevertheless, the q-ordered phases keep lingering at the lower-left corner of the phase
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h2
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disordered
phase

q-ordered
phases

phase-1

phase-2

Fig. 3. The most interesting section of constant β through the phase diagram of the
Potts model with two fields, as computed using the Pirogov-Sinai theory. For βq+2

c <

β < βq+1
c , the disordered phase occupies a bounded region in the (h1, h2)–plane.

diagram. By futher decreasing β, also these recede towards h1, h2 = −∞ to disappear, at βq
c ,

for good from the phase diagram. Finally, for very small β (not shown in Fig. 2) there is only
one phase. Here is a concise account of our main results:

Theorem II.1. Consider the q + 2-state Potts model with interaction (1.1) with h2 = · · · =
hq+2 = 0. Let q  1.

(1) If h2 = 0, then there is an h̄ > 0 such that the set R = {(β, h1): h1 ≤ h̄} decomposes
into three closed (non-disjoint) regions: Q-ordered, K-ordered and disordered region (see Fig. 1),
wherein the following translation-invariant states exist: q + 1 distinct ordered states 〈 · 〉lQ (l =
2, 3, . . . , q+2), a 1-ordered state 〈 · 〉I , and a disordered state 〈 · 〉D, respectively. The latter are
characterized by the estimates

〈δσxσyδσx,l〉lQ ≥ 1− ε (l = 2, 3, . . . , q + 2)

〈δσxσyδσx,1〉I ≥ 1− ε (2.1)

〈1− δσxσy 〉D ≥ 1− ε,

valid for any pair x and y of nearest neighbors and an ε = ε(q) such that ε(q)→ 0 as q →∞.
Moreover, in R, the phases as well as the coexistence lines can be characterized by percolation
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of the corresponding bonds in the graphical representation. If, furthermore, d = 2, then the
coexistence points of the K-ordered and the disordered phases lie on (a finite segment of) the
percolation threshold for the K-ordered bonds. In {(β, h): h1 > 0}, the thermodynamic phase is
unique outside this curve.

(2) If h1 = h2 = h, then the parameter space S = {(β, h): 0 ≤ β ≤ ∞, −∞ ≤ h ≤ ∞}
splits, as before, into the regions where q distinct Q-ordered states, two K-ordered and a single
disordered translation-invariant states exist. These are again characterized by relations (2.1).
The coexistence curves are of first-order except possibly inside the shaded region as depicted in
Fig. 1, in the vicinity of the point (β, h) = (β2

c ,+∞). In both (1) and (2), the Gibbs measure
is unique inside the region where the ordered bonds (in the graphical representation) do not
percolate.

(3) If h1, h2 are general, subject to the condition h1, h2 ≤ h̄ for some h̄ small positive, and
if β is large enough, then the phase diagram for constant β looks as depicted in Fig.2̃. Here
the transition lines are obtained by equating the (metastable) free energies computed from the
Pirogov-Sinai expansion.

3. EDWARDS-SOKAL AND RANDOM-CLUSTER REPRESENTATIONS

In this section we define the concept of Gibbs measures for joint probability spaces of spin
and bond variables. The main results come as Theorems III.1–5, whose proofs are relegated to
the next section.
We consider the (q + 2)-state Potts model in a general field. The Hamiltonian in Λ is given

by the formula

H(σΛ) = −J
∑

〈x,y〉∈B0(Λ)

δσx,σy −
∑
x∈Λ

q+2∑
m=1

hmδσx,m. (3.1)

Here, Λ is a finite subset of Zd, B0(Λ) is the set of all bonds b = 〈x, y〉 of nearest neighbors
with both endpoints in Λ, and (hm)

q+2
m=1 ∈ Rq+2 is a collection of arbitrary fields.

In order to derive the Edwards-Sokal (ES) and random-cluster (RC) representation, we
introduce a shorthand

h(σx) =
q+2∑
m=1

hmδσx,m, (3.2)

and rewrite the Gibbs factor,

e−βH(σΛ) =
∏

〈x,y〉∈B0(Λ)

eβJδσx,σy
∏
x∈Λ

eβh(σx), (3.3)

by expanding each term eβJδσx,σy as 1 + (eβ − 1)δσx,σy . By introducing bond configurations
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ηB0(Λ) = {ηb}b∈B0(Λ) with ηb ∈ {0, 1}, we can get the Gibbs factor (3.3) as the sum

e−βH(σΛ) =
∑

ηB0(Λ)

∏
〈x,y〉∈B0(Λ)
η〈x,y〉=1

(eβJ − 1)δσx,σy
∏
x∈Λ

eβh(σx). (3.4)

In this manner one obtains the finite volume Gibbs measure of the Potts model as the spin
marginal of a measure on both spin and bond configurations—the Edwards-Sokal measure. The
bond configuration marginal is then the random-cluster measure.
So far we have neglected boundary conditions. Instead of modifying the preceding argument,

we rather directly introduce the notion of infinite-volume Gibbs measures on the joint space of
spin and bond variables. To define the Gibbs ES states, let us introduce for any (not necessarily
related) pair of finite sets Λ ⊂ Zd, B ⊂ B(Zd), and any fixed configurations σΛc , η Bc outside of
them (of course, only the values on the boundary matter), the measure µESΛ,B( · | σΛc ,η Bc) by

µESΛ,B(σΛ,ηB|σΛc ,η Bc) =
W (σΛ,ηB |σΛc ,η Bc)∑

σ̄Λ,η̄B
W (σ̄Λ, η̄B |σΛc ,η Bc)

, (3.5)

where the convention µESΛ,B(σΛ,ηB|σΛc ,η Bc) = 0 is assumed for the case that the sum in the
denominator vanishes, and where

W (σΛ,ηB |σΛc ,η Bc) =
∏

〈x,y〉∈B∪B(Λ)
η〈x,y〉=1

(eβJ − 1)δσx,σy
∏
x∈Λ

eβh(σx) (3.6)

with B(Λ) denoting the set of all bonds with at least one endpoint in Λ. The dependence on
parameters J and {hm} will be explicitly marked out only when a reference to them is needed.
Our first theorem concerns the relation between the ES and spin Gibbs measures. Let GES

be the set of all infinite volume Gibbs ES states defined by imposing the DLR equations with
specification (3.5). Namely, ν ∈ GES iff

ν(f) =
∫

ν(dσ,dη)µESΛ,B(f |σΛc ,η Bc) (3.7)

for all pairs of finite sets Λ and B and any cylinder function f depending only on σΛ and
ηB. Note that the fact that the underlying ‘set of sites’ contains both, the set Zd and the set
B(Zd) ≡ B0(Zd), does not prevent the abstract theory of Gibbs states in the version that allows
for ‘hard-core interactions’ (c.f. [Ru], [Ge]) from being applied. The important condition,
quasilocality of the specification {µESΛ,B}, is clearly satisfied.
Let Gspin denote the set of all spin Gibbs states, defined by means of the DLR condition

and the Hamiltonian (2.1), appropriately modified for incorporating the boundary condition.
Let Π denote the mapping that assigns the spin marginal to any infinite volume ES measure.
It is not a priori obvious that the spin marginal of any infinite-volume Gibbs ES state is an
infinite-volume Gibbs spin state. However, it turns out that even a little more is true.
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Theorem III.1. The mapping Π is a linear isomorphism between simplices GES and Gspin.
When restricted to translation invariant measures, Π is an isomorphism between the simplex of
all translation invariant Gibbs ES states and the simplex of all translation invariant Gibbs spin
states. In particular, |GES| = 1 iff |Gspin| = 1.
Remark. The last statement is false for the correspondence between ES Gibbs states and their
random-cluster marginals. For instance, for d = 2 it is known that there are exactly two
extremal Ising Gibbs states at low temperatures [A,Hi] and, therefore, two extremal ES Gibbs
states, while the corresponding random-cluster marginals are identical.
Observing that the state µESΛ,B(Λ)( · |σΛc ,ηB(Λ)c) does not depend on ηB(Λ)c , we introduce the

measure
µESΛ,m( · ) = µESΛ,B(Λ)( · |σm

Λc ,ηB(Λ)c), (3.8)

where σm is the constant configuration, σm
x = m for all x ∈ Zd, with m ∈ {1, . . . , q + 2}. In

a similar way, the measure µESΛ,B0(Λ)( · |σΛc ,ηB0(Λ)c) does not depend on σΛc , provided that the
η-boundary condition is chosen as ηB0(Λ)c = η0

B0(Λ)c , where η0 denotes the configuration with
η0b = 0 for all b ∈ B(Zd). In this case we introduce the measure

µESΛ,free( · ) = µESΛ,B0(Λ)( · | σΛc ,η0
B0(Λ)c). (3.9)

The η-marginals of the measures µESΛ,free( · ) and µESΛ,m are the random-cluster measures µRCΛ,free( · )
and µRCΛ,m with free and m-wired boundary conditions, respectively. A particular role will be
played by the RC measures withm-wired boundary conditions such that hm = hmax := maxi hi.
Note that the measures µRCΛ,m are identical for all values m such that hm = hmax; we will use
µRCΛ,maxwir to denote any of them.

In order to state the next result, we introduce a partial order ≺ on {0, 1}B(Zd) by setting
η ≺ η′ whenever ηb ≤ η′b for every b ∈ B(Zd). Recall the following definition:

Definition. Let Ω be a measurable space endowed with a partial order ≺. Then the measure
µ on Ω is said to be FKG if µ(FG) ≥ µ(F )µ(G) for all measurable functions F,G : Ω → R

that are increasing with respect to ≺. Moreover, if Ω is of the form Ω = ×
b∈B
Ωb, then µ is said to

be strong FKG if µ( · |A) is FKG for all cylinder events of the form A = {η: ηb = αb ∀b ∈ B̃},
where B̃ ⊂ B is finite and αb ∈ Ωb for all b ∈ B̃.

Let us use B1(η) = {b ∈ B(Zd): ηb = 1} to denote the set of 1-bonds of the configuration η

and N∞(η) to denote the number of infinite components of B1(η).

Theorem III.2. Let β ≥ 0, J ≥ 0, and hm ∈ R, m = 1, . . . , q + 2. Let q0 denote the degree
of the degeneracy of hmax, i.e., q0 = #{m: hm = hmax}.

(i) For each finite Λ ⊂ Zd the measures µRCΛ,free and µRCΛ,maxwir are strong FKG.
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(ii) For each quasilocal function f , the limits

µRCmaxwir(f) = lim
Λ↗Zd

µRCΛ,maxwir(f) (3.10)

and
µRCfree(f) = lim

Λ↗Zd
µRCΛ,free(f) (3.11)

exist and are translation invariant.
(iii) Let ν ∈ GES be arbitrary and let µ denote its η-marginal. Then

µ( · ) ≤
FKG

µRCmaxwir( · ). (3.12)

If, in addition, either q0 = 1 or µ(N∞ ≤ 1) = 1, then

µ( · ) ≥
FKG

µRCfree( · ). (3.13)

(iv) Let J1 < J2 and let µRC,J1
maxwir denote the wired state at J = J1 and let µRC,J2

free denote the
free state at J = J2. Then

µRC,J1
maxwir( · ) ≤

FKG
µRC,J2
free ( · ). (3.14)

Remark. The requirement that hm = hmax is, in fact, crucial for the validity of (i) because µRCΛ,m
is not strong FKG unless hm = hmax. In fact, for β large enough a contour argument shows
that µRCΛ,m with hm < hmax is not even FKG. Also note that (3.14) can be extended via (3.12)
and (3.13) to any pair of RC measures at J = J1 resp. J = J2, provided the one at J2 has at
most one infinite cluster.
By using the general theorem on the uniqueness of the infinite cluster [BK], the conclusion

about the existence of the limiting RC measures can be strengthened to their ES preimages:

Theorem III.3. Let β ≥ 0 and hm ∈ R, m = 1, . . . , q + 2. Let q0 = #{m: hm = hmax}.
If m is such that hm = hmax, then the weak limits

µESm = lim
Λ↗Zd

µESΛ,m (3.15)

and
µESfree = lim

Λ↗Zd
µESΛ,free (3.16)

exist and are translation invariant.

We say that the ES (or RC) Gibbs measure ν exhibits percolation if ν(N∞ > 0) > 0. Let
GES∅ = {ν ∈ GES: ν(N∞ = 0) = 1} be the set of ES Gibbs measures not exhibiting percolation.
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Since ‘absence of percolation’ is a tail event, the standard extremal decomposition properties
of Gibbs states apply to GES∅ . In particular, GES∅ is a Choquet simplex.
Denote by µRC,J

maxwir the wired state corresponding to the coupling constant J . Given (hm)
q+2
m=1

and β, the function J → µRC,J
maxwir(0 ↔ ∞) is monotone increasing and right continuous in J ,

where {0↔∞} is the event that the origin belongs to the set of sites of some infinite cluster.
The value Jc = inf{J : µRC,J

maxwir(0 ↔ ∞) > 0} marks the edge of the region where there is
percolation.

Theorem III.4. Let β ≥ 0 and hm ∈ R, m = 1, . . . , q + 2. Let q0 = #{m: hm = hmax}.
(i) |GES∅ | ≤ 1.
(ii) If there is no percolation in the RC measure µRCmaxwir, then there is a unique ES Gibbs

state, i.e., µESmaxwir ∈ GES∅ ⇒ |GES| = 1.
(iii) If q0 ≥ 2, then there is a unique ES Gibbs state if and only if there is no percolation in

the RC measure µRCmaxwir.
(iv) Let d = 2 and let q0 = 1. Then J (= Jc implies |GES| = 1.
Up to now, we avoided using the notion of RC Gibbs measures, since the corresponding

finite volume states with fixed boundary conditions are not quasi-local as functions of boundary
conditions (see [vEFS,Gr,PVdV,BoC]). Instead, we used the ES Gibbs measures, whose finite
volume specifications are local, and introduced RC measures only as their marginals. This
approach significantly simplifies our proofs. Bearing in mind that the non-quasilocality of RC
specifications prevents the straightforward application of the general theory of Gibbs states, we
close this section with a theorem relating RC marginals of ES Gibbs meaasures to RC Gibbs
states as introduced in [vEFS,Gr,PVdV,BoC].
We start with some notation: as in (3.5) we define for any finite set of bonds B and any

configuration η Bc, the measure

µRCB (ηB|η Bc) =
WRC

B
(ηB | η Bc)∑

η̄B
WRC

B
(η̄B | η Bc)

(3.17)

with

WRC
B (ηB | η Bc) = (eβJ − 1)|B1(ηB)|

∏
C(η):V(C(η))∩V(B) �=∅

q+2∑
m=1

e−β(hmax−hm)|V(C(η))|. (3.18)

Here the product runs over all connected components C(η) of the set B1(η) whose associated
set of sites V(C(η)) intersects the vertices of B. Interpreting e−∞ = 0, any infinite cluster C(η)
intersecting B contributes just the factor q0. As usual, one then introduces the set of Gibbs
states GRC as the set of measures µ on {0, 1}B(Zd) that satisfy the DLR equation

µ(f) =
∫

µ(dη)µRCB (f |η Bc) (3.19)
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for any finite B and any cylinder function f with support in B. As already observed in [BoC],
this notion of RC Gibbs states does not accomodate all ‘naturaly-arising’ limiting states. When
reformulated in terms of the ES measures, not every RC marginal of an ES Gibbs measure is
a RC Gibbs state. To mention a concrete example, consider the ES Gibbs state corresponding
to the standard Dobrushin state with a stable interface between two ordered phases.
The first two claims of the following theorem generalize the statements proven previously

[Gr,PVdV,BoC] only for the case h1 = .... = hq+2 = 0 (on the other hand, however, these
authors consider the RC model defined for any (i.e., also noninteger) values of q).

Theorem III.5. Let β ≥ 0 and hm ∈ R, m = 1, . . . , q+2. Let q0 = #{m: hm = hmax}. Then
(i) µRCmaxwir, µ

RC
free ∈ GRC

(ii) If µ ∈ GRC, then µRCfree ≤
FKG

µ ≤
FKG

µRCmaxwir.

(iii) Let µ be the random-cluster marginal of some ν ∈ GES with the additional assumption
that µ(N∞ > 1) = 0 whenever q0 > 1. Then µ ∈ GRC.

(iv) Let µ ∈ GRC with µ(N∞ > 1) = 0. Then there is some ν ∈ GES such that µ is the
random cluster marginal of ν.

The results of Theorem III.4(i) and (iv) read in the context of RC Gibbs measures as follows.

Corollary.
(i) If µRCmaxwir(N∞ = 0) = 1, then |GRC| = 1.
(ii) If d = 2 and q0 = 1, then J (= Jc implies |GRC| = 1.

4. PROOFS OF THEOREMS III.1–5

Theorems III.1–5 are proved in five successive subsections.

4.1. Relation between ES and spin Gibbs measures.

Proof of Theorem III.1. Let µspin
Λ ( · |σΛc) denote the Gibbs measure on spins in Λ with boundary

condition σΛc . The proof is based on the crucial observations that, for the special choice
B = B(Λ),

(A) µESΛ,B(Λ)( · |σΛc ,ηB(Λ)c) does not depend on ηB(Λ)c .
(B) The spin marginal of µESΛ,B(Λ)( · |σΛc ,ηB(Λ)c) is precisely µspin

Λ ( · |σΛc).

Let now ν ∈ GES, Λ ⊂ Zd be finite, and let f be a function depending only on the spin
configuration in Λ. Then, by (3.7), (A), (B), and the definition of marginals, we have

(Πν)(f) = ν(f) =
∫

ν(dσ,dη)µESΛ,B(Λ)(f |σΛc ,ηB(Λ)c) =

=
∫

ν(dσ,dη)µspin
Λ (f |σΛc) =

∫
(Πν)(dσ)µspin

Λ (f |σΛc), (4.1)
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proving that Πν ∈ Gspin. Hence, indeed, Π is a map from GES to Gspin.
To prove that Π is an isomorphism, let us first establish its surjectivity. We begin by

noting that the set {(Λ,B(Λ))} is cofinal in the set of all pairs {(Λ,B)}, ordered by inclusion.
(Namely, for any (Λ,B) there exist Λ̄ such that Λ ⊂ Λ̄ and B ⊂ B(Λ̄).) Then it is easy to
see that the validity of (3.7) for the pairs (Λ,B(Λ)) imply its validity for general (Λ,B) (see
[Ge, Remark 1.24]). Let now µ ∈ Gspin and consider the following ES measure

νΛ( · ) =
∫

µ(dσ)µESΛ,B(Λ)( · |σΛc ,ηB(Λ)c) (4.2)

on the set of on configurations in
(
Λ,B(Λ)

)
. Here the configuration ηB(Λ)c is added only for the

formal completeness since by (A) its value does not matter for νΛ. By taking into account the
consistency of the finite-volume ES measures {µESΛ,B}, the measures νΛ( · ) satisfy the restricted
DLR equations

νΛ(f) =
∫

νΛ(dσ,dη)µESΛ̃,B̃(f |σΛ̃c ,η
B̃c) (4.3)

for any Λ̃ ⊂ Λ, B̃ ⊂ B(Λ), and any Λ̃, B̃-cylinder function f . Moreover, let Λ1 ⊃ Λ2 ⊃ Λ̃ be two
sets. Then for any such function f (as before) we have

νΛ1(f) =
∫

µ(dσ)µESΛ1,B(Λ1)(f |σΛc
1
,ηB(Λ1)c)

=
∫

µ(dσ)µESΛ1,B(Λ1)

(
µESΛ2,B(Λ2)(f | · )

∣∣σΛc
1
,ηB(Λ1)c

)
=
∫

µ(dσ)µspin
Λ1

(
µESΛ2,B(Λ2)(f | · )

∣∣σΛc
1

)
=
∫

µ(dσ)µESΛ2,B(Λ2)(f |σΛc
2
,ηB(Λ2)c) = νΛ2(f).

(4.4)

Here the first equality sign is due to (4.2), the second one is a result of Gibbsianness of µESΛ1,B(Λ1),
the third one is established by applying (A) to µESΛ2,B(Λ2)(f | · ) and subsequently (B) to the
expectation w.r.t. µESΛ1,B(Λ1), and, finally, the fourth equality follows by the Gibbsianness of µ.
Consequently, as Λ ↗ Zd, νΛ(f) is eventually a constant for any cylinder function f . In
particular, the weak limit ν = limΛ↗Zd νΛ exists and, by (3.19), it satisfies (3.7), i.e., ν ∈ GES.
Finally, Πν = µ, since for any Λ-cylinder function f of spins

(Πν)(f) = ν(f) =
∫

µ(dσ)µESΛ,B(Λ)(f |σΛc ,ηB(Λ)c) =
∫

µ(dσ)µspin
Λ (f |σΛc) = µ(f), (4.5)

proving that Π is surjective.
In order to see that Π is also injective, we notice that if ν̃ ∈ GES is such that Πν̃ = µ, then

ν̃(f) = ν̃
(
µESΛ,B(Λ)(f | · )) = (Πν̃)(µESΛ,B(Λ)(f | · )) = µ

(
µESΛ,B(Λ)(f | · )) (4.6)
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for any (Λ,B(Λ))-cylinder function f . Here the first equation is the DLR equation for ν̃, the
second equation follows from (A), and the third equation is the assumption Πν̃ = µ. Now, the
r.h.s.’s of (4.6) and (4.2) coincide, so ν̃ = ν, with ν defined by taking the limit Λ↗ Zd of νΛ in
(4.2). In particular, all measures ν̃ satisfying Πν̃ = µ are equal, yielding thus injectivity of Π.
The part of the claim concerning translation invariant measures is proved in the same way,

because both constructions (4.1) and (4.2) preserve translation invariance. �

4.2. FKG properties of the random-cluster measures.
Before beginning the proof of Theorem III.2, let us observe that the measure µRCΛ,free can be

explicitly written by normalizing the weights

WRC
Λ,free(η) = (e

βJ − 1)|η|
∏
C(η)

Θfree
(
C(η)

)
, (4.7)

for any η ∈ {0, 1}B0(Λ). Here |η| is the number of bonds in the set {b ∈ B0(Λ): ηb = 1}, the
product runs over all connected components C(η) of this set, and

Θfree(C) =
q+2∑
m=1

eβhm|V(C)|, (4.8)

for any connected set of bonds C, with V
(
C(η)

)
denoting the set of sites incidental with C(η).

Similarly, the measure µRCΛ,m is obtained by normalizing the weights W
RC
Λ,m defined for any

η ∈ {0, 1}B(Λ) by the formula

WRC
Λ,m(η) = (e

βJ − 1)|η|
∏
C(η)

ΘΛ,m

(
C(η)

)
. (4.9)

Here ΘΛ,m is defined as

ΘΛ,m(C) =

{
Θfree(C) V(C) ∩ Λc = ∅
eβhm|V(C)�Λc| otherwise,

(4.10)

for any connected set of bonds C.

Proof of Theorem III.2(i). We consider Λ to be fixed and omit it temporarily from the notation.
In order to prove the strong FKG property of µRCΛ,free and µRCΛ,m, let us recall a necessary and
sufficient condition [FK], the so-called lattice condition

WRC
free

(
η(1) ∨ η(2))WRC

free
(
η(1) ∧ η(2)) ≥WRC

free
(
η(1))WRC

free
(
η(2)) (4.11)

for any pair of configurations η(1) and η(2), and similarly for WRC
m . Here η(1) ∨ η(2) denotes

the maximum and η(1) ∧ η(2) the minimum of η(1) and η(2).
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It turns out that to verify (4.11), it suffices to consider η(1) and η(2) that differ just at two
bonds. Indeed (see e.g. [CPS]), let

R(ζ,η) = WRC
free(ζ ∨ η)
WRC

free(ζ)
(4.12)

and note that (4.11) can be rewritten as R(η(1),η(2)
) ≥ R(η(1)∧η(2),η(2)

)
. Hence, the lattice

condition (4.11) is true once we verify that R(ζ,η) is increasing in ζ, for any fixed η. Let us
introduce, for any bond b, the configuration η(b) by setting η(b)b = 1 and η

(b)
b′ = 0 for any b′ (= b.

Ordering the set B1(η) into a sequence {b1, . . . , b|B1(η)|}, we have

R(ζ,η) =
|B1(η)|∏
k=1

R(ζ ∨ η(b1) ∨ · · · ∨ η(bk−1),η(bk)
)
. (4.13)

Hence, it suffices to prove monotonicity of R(ζ,η) for any η that is zero except possibly at one
bond. Moreover, it suffices to prove the growth when flipping ζ at a single bond from 0 to 1, i.e.,
ζ with ζb = 0 to ζb = ζ ∨η(b). The verification of the needed bound, R(ζb,η(b′)) ≥ R(ζ,η(b′)),
for any pair of bonds b and b′, now boils down to the special case of (4.11) with η(1) = ζb and
η(2) = ζ ∨ η(b′) that differ only at bonds b and b′.
Let thus η(1) and η(2) be such that

η
(1)
b = η

(2)
b b (= b1, b2

η
(1)
b1
= η

(2)
b2
= 0 η

(1)
b2
= η

(2)
b1
= 1.

(4.14)

Since the number of 1-bonds is equal on both sides of (4.11), the nontrivial issue is therefore to
check (4.11) for the product over the connected components. Let us suppose, without loss of
generality, that there exist disjoint connected components A1 and A2 of η(1) ∧ η(2) (possibly
isolated sites) that become connected when b1 is flipped from 0 to 1, and, similarly, B1, B2 for
the components connected by flipping b2. (The only other possibility is that both endpoints
of b1, or alternatively b2, lie in a single component of η(1) ∧ η(2), in which case both sides of
(4.11) are equal.) With this proviso, there are only three generic situations:

(a) V(A1) ∪ V(A2) is disjoint from V(B1) ∪ V(B2),
(b) V(A1) = V(B1) but V(A2) ∩ V(B2) = ∅,
(c) V(A1) = V(B1) and V(A2) = V(B2).

We will prove (4.11) separately for (a), (b), and (c). For notational brevity, we use Θ(C) for
both Θfree(C) and Θm(C).
In the case (a) both sides of (4.11) reduce to the same term

Θ(A1 ∪A2)Θ(B1 ∪B2)Θ(A1)Θ(A2)Θ(B1)Θ(B2). (4.15)
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Hence, (4.11) is fulfilled with the equality sign.
Next, consider (b). We denote by C the common component (i.e., C = A1 = B1) and use A

and B to denote the other components. Then (4.11) boils down to the inequality

Θ(C)Θ(C ∪A ∪B) ≥ Θ(C ∪A)Θ(C ∪B). (4.16)

The unified notation (4.8) and (4.10) allows us to prove this at the same time for free and
m-wired boundary conditions. Set m̄ equal to 0 in the former case and to m in the latter. Let
for any connected set of bonds A and m ∈ {1, . . . , q + 2}

χΛ,m̄(A,m) =

{
1 V(A) ∩ Λc = ∅ or m = m̄

0 otherwise.
(4.17)

Let
am = eβhm|V(A)�Λc|χΛ,m̄(A,m)

bm = eβhm|V(B)�Λc|χΛ,m̄(B,m) ∀m ∈ {1, . . . , q + 2}.
cm = eβhm|V(C)�Λc|χΛ,m̄(C,m)

(4.18)

The condition (4.16) is now, for all m̄ ∈ {0, 1, . . . , q + 2}, equivalent to(
q+2∑
m=1

cm

)(
q+2∑
m′=1

am′bm′cm′

)
≥
(

q+2∑
m=1

amcm

)(
q+2∑
m′=1

bm′cm′

)
. (4.19)

Let us assume that the fields are ordered in an increasing order, h1 ≤ h2 ≤ · · · ≤ hq+2. Taking
into account that hm̄ = hmax once m̄ (= 0, we can assume, without loss of generality, that either
m̄ = 0 or m̄ = q + 2. As a consequence, a1 ≤ a2 ≤ · · · ≤ aq+2 and b1 ≤ b2 ≤ · · · ≤ bq+2 for
both free and m-wired boundary conditions. By writing the expression (4.19) as an inequality
for a bilinear form in cmcm′ , the sufficient requirement that all the independent coefficients of
this form be non-negative reduces to

(am − am′)(bm − bm′) ≥ 0 ∀m,m′, (4.20)

which is immediate by our preceding assumptions.
It remains to establish (4.11) under (c). In this case, there are only two components in

the game: A and B. Inequality (4.11) is then implied by Θ(A ∪ B) ≤ Θ(A)Θ(B). By using
am and bm literally as defined in (4.18), this boils down to the inequality

q+2∑
m=1

ambm ≤
(

q+2∑
m=1

am

)(
q+2∑
m′=1

bm′

)
, (4.21)
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which is obviously satisfied. �

Remark. The necessity of hm = hmax for the strong FKG property of µRCΛ,m arises from (4.19).
Namely, suppose A connects to the boundary (i.e., V(A) ∩ Λc (= ∅), whereas B and C do not.
Then am = 0 unless m = m̄ (= 0, in which case (4.19) reduces to

bm̄

q+2∑
m=1

cm ≥
q+2∑
m=1

bmcm. (4.22)

It is not difficult to convince oneself that one can choose C in such a way that this is satisfied
for all B only when bm̄ = maxm bm. Consequently, hm̄ must be equal to hmax for the lattice
condition (4.11) or, equivalently, the strong FKG to hold.

Proof of Theorem III.2(ii). Let Λ ⊂ ∆ ⊂ Zd be two finite sets. We claim that

µRCΛ,free( · ) ≤
FKG

µRC∆,free( · ) (4.23)

and
µRCΛ,maxwir( · ) ≥

FKG
µRC∆,maxwir( · ). (4.24)

For free boundary conditions, the inequality (4.23) follows, with the help of (i), immediately
from the fact that

µRCΛ,free( · ) = µRC∆,free( · | DΛ), (4.25)

where DΛ is the FKG-decreasing event

DΛ =
{
η: ηb = 0∀b ∈ B0(Λ)c

}
. (4.26)

For m-wired boundary conditions, the proof is more complicated, since conditioning on the
FKG-increasing event

OΛ =
{
η: ηb = 1∀b ∈ B(Λ)c

}
(4.27)

leads to the state µRCΛ,maxwir only if Λ is a volume without ‘holes’, i.e. if Λ
c has only one

(infinite) component. If Λc has finite components H1, . . . , Hk, we use the following trick: for
each ‘hole’ Hi, we introduce an additional bond bi with one endpoint in Hi and the other in ∆c.
Introducing the set

B
∗(∆) = B(∆) ∪ {b1, . . . , bk}, (4.28)

we then define µ̄RCΛ,m as the random-cluster marginal of µ
ES
∆,B∗(∆)( · |σm

Λc ,ηB∗(∆)c), where η is a
configuration in B(Zd) ∪ {b1, . . . , bk} such that ηb = 1 for all b.
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With this definition we get

µRC∆,maxwir( · ) = µ̄RC∆,maxwir
( · | ηb = 0 ∀b ∈ B

∗(∆) \ B(∆)
)

≤
FKG

µ̄RC∆,maxwir
( · | ηb = 1 ∀b ∈ B

∗(∆) \ B(∆)
)

≤
FKG

µ̄RC∆,maxwir
( · | ηb = 1 ∀b ∈

(
B
∗(∆) \ B(∆)

) ∪ B(Λ)c
)

= µRCΛ,maxwir( · ),

(4.29)

proving the desired inequality (4.24). Here the first step uses that the strong-FKG measures
conditioned on taking a fixed configuration ηA in a set A are FKG increasing in ηA. The second
inequality is by the FKG of µRC∆,maxwir.
As a consequence of (4.23) and (4.24), the net {µRCΛ,free} (resp. {µRCΛ,maxwir}) increases (resp.

decreases) as Λ increases (in the order defined by the set inclusion), yielding the existence of
the desired limits as well as their translation invariance for all monotone quasilocal functions.
Since the latter generate all quasilocal functions, the claim is established. �

In order to prove the claim (iii) of Theorem III.2, we first need some more definitions.
Let Λ be a finite set, ∂Λ its external boundary, ∂Λ = {x ∈ Zd | dist(x,Λ) = 1}, and σ be
an arbitrary spin configuration. Recalling that µESΛ,B(Λ)( · | σΛc ,ηB(Λ)c) does not depend on
ηB(Λ)c , we abbreviate notation by calling this measure simply µESΛ,σ and using µRCΛ,σ to denote
its random-cluster marginal.
Let B ⊂ ∂Λ be an arbitrary set of boundary sites. Then we define a partially wired RC

measure µRCΛ,B,maxwir by taking the η marginal of the ES measure

µESΛ,m

( · | ηb = 0 ∀b ∈ B(Λ) \ B0(Λ ∪B)
)

(4.30)

for any m with hm = hmax. Note that µRCΛ,B,maxwir is a measure on configurations in B0(Λ ∪
B) \ B0(B) and that, being defined as the conditional measure of a strong FKG measure, it is
strong FKG.
The measures µRCΛ,σ and µRCΛ,B,maxwir satisfy the following FKG bounds:

Lemma IV.1. Let Λ be a finite set. Then for any σ on its complement

µRCΛ,σ( · ) ≤
FKG

µRCΛ,maxwir( · ). (4.31)

Moreover, let B ⊂ ∂Λ. Then

µRCΛ,B,maxwir( · ) ≥
FKG

µRCΛ,free( · ). (4.32)



Potts model with external fields 107

Proof. Given σ, let us define a partition of ∂Λ into sets ∂iΛ = {x ∈ ∂Λ: σx = i}. Similarly to
µRCΛ,m, the measure µ

RC
Λ,σ can be obtained by normalizing a suitable weight W

RC
Λ,σ(η) defined for

any η ∈ {0, 1}B(Λ) by the formula

WRC
Λ,σ(η) = (e

βJ − 1)|η|
∏
i<j

1l{∂iΛ	∂jΛ}(η)
∏
C(η)

ΘΛ,σ

(
C(η)

)
. (4.33)

Here

ΘΛ,σ(C) =

{
Θfree(C) V(C) ∩ Λc = ∅
eβhm|V(C)\Λc| V(C) ∩ ∂mΛ (= ∅

(4.34)

and ∂iΛ � ∂jΛ denotes the event that the sets ∂iΛ and ∂jΛ are not connected by a path of
occupied bonds.
Using the representation (4.33), it is now easy to see that the measure µRCΛ,σ can also be

recast as

µRCΛ,σ( · ) =
µRCΛ,maxwir( · g)
µRCΛ,maxwir( g)

, (4.35)

where
g(η) =

∏
i<j

1l{∂iΛ	∂jΛ}(η)
∏
m

∏
C:

V(C)∩∂mΛ�=∅

e−(hmax−hm)|V(C)�Λc| (4.36)

for any η ∈ {0, 1}B(Λ). It turns out that the function g is FKG-decreasing. Indeed, each
indicator 1l{∂iΛ	∂jΛ}(η) is clearly decreasing. The same is true for the remaining factor as is
seen by noting that ∑

C:
V(C)∩∂mΛ�=∅

|V(C) \ Λc|, (4.37)

being equal to the number of sites connected to ∂Λm, is an increasing function of η. Since
hmax ≥ hm and since the product of non-negative decreasing functions is decreasing, the mono-
tonicity of g is established. Since µRCΛ,maxwir is FKG, (4.31) is proved.
To prove (4.32), it is enough to observe that

µRCΛ,free( · ) = µRCΛ,B,maxwir
( · | ηb = 0∀b ∈ B0(Λ)c

)
(4.38)

by (4.30). Again, since µRCΛ,B,maxwir is FKG, the proof is finished by observing that the event on
the r.h.s. of (4.38) is decreasing. �

Apart from the previous Lemma, the second part of Theorem III.2(iii) requires also some
control over the possible values of the spins that can be attained on the infinite clusters.
Observe first that since ν

({(σ,η): σx (= σy, η〈x,y〉 = 1}
)
= 0 for each ν ∈ GES, each connected

component has a constant spin-value almost surely. Let us use S(σ,η) to denote the set of
possible spin-values attained at the infinite clusters in a configuration (σ,η).
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Proposition IV.2. Let ν ∈ GES. Then S ⊆ {m: hm = hmax} ν-almost surely.

Before we prove this claim, let us formulate a technical lemma.

Lemma IV.3. Let (ak)k≥1 be a sequence of numbers such that 1 ≤ ak ≤ Ckn for some
constant C <∞ and an integer n ≥ 0. Then for each ε > 0 and any k̄ ≥ C(n+ 1)nε−(n+1)

ak ≤ ε
∑
k′≤k

ak′ (4.39)

holds true for at least one k ∈ {k̄, . . . , (n+ 1)k̄}.
Proof. Suppose ak > ε

∑
k′≤k ak′ for all k ∈ {k̄, . . . , (n + 1)k̄}. Since ak′ ≥ 1, this implies

ak > εk̄ for all k ∈ {k̄, . . . , 2k̄} and, using induction, ak > ε?k̄? for all k ∈ {Kk̄, . . . , (K + 1)k̄},
with K ∈ {1, . . . , n}. In particular, a(n+1)k̄ > εn+1k̄n+1. However, this is in contradiction with
the assumption a(n+1)k̄ ≤ C(n+ 1)nk̄n whenever k̄ ≥ C(n+ 1)nε−(n+1). �

Proof of Proposition IV.2. Let m ∈ {1, . . . , q + 2} with hm < hmax and suppose that there is
ν ∈ GES with ν(m ∈ S) > 0. Since GES as well as the described event are invariant w.r.t.
spatial shifts, we can suppose without loss of generality that the event

Ω0m =
{
(σ,η): ∃C(η), ∣∣C(η)∣∣ =∞, V

(
C(η)

) 4 0, σ0 = m
}

(4.40)

has a positive probability under ν, i.e., ν(Ω0m) > 0. Let Λk be the box of site-length 2k + 1
centered at the origin and, for each (σ,η) ∈ Ω0m and each k ≥ 1, let

ak =
∣∣∣Vk(η) ∩ ∂Λk−1

∣∣∣, (4.41)

where Vk is the set of sites in Λk that are connected to the origin within B0(Λk). Note that∣∣Vk(η)
∣∣ ≥ ∑

k′≤k ak′ and that 1 ≤ ak ≤ |∂Λk−1| ≤ 2d(2k + 1)d−1 ≤ 3ddkd−1, with the latter
bound using that k ≥ 1. Hence, by Lemma IV.3, we know that for each ε > 0 and each
k̄ ≥ (3d/ε)d there is at least one k, with k̄ ≤ k ≤ dk̄, such that∣∣Vk(η) ∩ ∂Λk−1

∣∣ ≤ ε
∣∣Vk(η)

∣∣. (4.42)

By (4.42) and the subadditivity of the measure we have for k̄ ≥ (3d/ε)d that

ν(Ω0m) ≤ µ(∪k̄≤k≤dk̄Ω
0
m,k) ≤

∑
k̄≤k≤dk̄

ν(Ω0m,k), (4.43)

with Ω0m,k denoting the event

Ω0m,k =
{
(σ,η): σ0 = m, 0↔ ∂Λk−1,

∣∣{x ∈ ∂Λk−1: x↔Λk 0}
∣∣ ≤ ε

∣∣{x ∈ Λk: x↔Λk 0}
∣∣}. (4.44)



Potts model with external fields 109

Here x↔Λk 0 indicates the connection within B0(Λk). As a result, for each ε > 0 there is a
deterministic set Nε ⊂ N, |Nε| =∞, such that for any k ∈ Nε one has

ν(Ω0m,k) ≥
1
dk

ν(Ω0m), (4.45)

by the pigeon-hole principle as applied to (4.43).
On the other hand, since Ω0m,k is a Λk,B0(Λk)-cylinder event, we can estimate ν(Ω0m,k) using

(3.7). Recall that µESΛk,σ is the specification (3.5) with a special choice Λ = Λk and B = B(Λk)
and the spin boundary condition σ (the η boundary condition is irrelevant in this case). Then
(3.7) reads

ν(Ω0m,k) =
∫

ν(dσ,dη)µESΛk,σ(Ω
0
m,k). (4.46)

Fix ε > 0 such that dJε+ hm < hmax and pick m̃ with hm̃ = hmax. Then we have for any σ

µESΛk,σ(Ω
0
m,k) ≤ µESΛk,σ

(
1lΩ0

m,k

∏
〈x,y〉: x∈Λc

k
y∈Vk

eβJ1l{η〈x,y〉=0}

)

= µESΛk,σ

(
1lΩ0

m̃,k
e−β(hmax−hm)|Vk|

∏
〈x,y〉: x∈Λc

k
y∈Vk

eβJ1l{η〈x,y〉=0}

)

≤ µESΛk,σ

(
1lΩ0

m̃,k
e−β(hmax−hm−dJε)|Vk|

)
≤ e−β(hmax−hm−dJε)k.

(4.47)

Here, in the first step we inserted the factor eβJ in order to convert an arbitrary configuration
at the boundary bonds of the set Vk to the vacant bond-state. More explicitly, we carried out
the following estimate∑

η〈x,y〉=0,1

(
1l{η〈x,y〉=0} + (eβJ − 1)δσx,σy1l{η〈x,y〉=1}

)
= (eβJ − 1)δσx,σy + 1 ≤ eβJ =

∑
η〈x,y〉=0,1

eβJ1l{η〈x,y〉=0}

=
∑

η〈x,y〉=0,1

eβJ1l{η〈x,y〉=0}
(
1l{η〈x,y〉=0} + (eβJ − 1)δσx,σy1l{η〈x,y〉=1}

)
.

(4.48)

at every boundary bond (note that the unconstraint summation over the bond configuration is
in place because Ω0m̃,k does not depend on these bonds). This allows us to flip σx at each x ∈ Vk

from m to m̃, resulting in the exponential factor in the second line. The estimate is finished
by noting that, on Ω0m̃,k, the number of flipped bonds does not exceed d|Vk ∩ ∂Λk−1| ≤ dε|Vk|
and that |Vk| ≥ k.
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By putting (4.45), (4.46) and (4.47) together we get that

1
dkν(Ω

0
m) ≤ ν(Ω0m,k) ≤ e−β(hmax−hm−dJε)k ∀k ∈ Nε. (4.49)

However, since |Nε| = ∞ and k can thus be arbitrary large, this leads to a contradiction
whenever ν(Ω0m) > 0. Hence, no such m with hm < hmax can exist and S ⊆ {m: hm = hmax}
ν-almost surely. �

Proof of Theorem III.2(iii). Let us consider an ES Gibbs measure ν and use µ to denote its η

marginal. Applying the DLR-equations (3.7) for ν, we get

µ(f) = ν(f) =
∫

ν(dσ,dη)µESΛ,B(Λ)(f |σΛc ,ηB(Λ)c) =
∫

ν(dσ,dη)µRCΛ,σ∂Λ
(f)

≤
∫

ν(dσ,dη)µRCΛ,maxwir(f) = µRCΛ,maxwir(f) (4.50)

for any increasing cylinder function f(η) supported on B̃ ⊂ B(Λ). Here, the inequality follows
by (4.31). Applying now (3.10), we get (3.12).
In order to prove (3.13), we have to work a bit harder. Let (∆n)n≥1 be an increasing sequence

of boxes centered at the origin and let

Λn(η) = {x ∈ ∆n: x � ∆c
n} ∪ {x ∈ ∆n: x↔∞}. (4.52)

By the assumption on µ, either q0 = 1 or there is at most one infinite cluster. The spin on the
component(s) is uniquely defined in both cases under consideration: σx = m with hm = hmax
for all x in the boundary set

Bn(η) = ∂Λn(η) ∩ {x↔∞}. (4.52)

Let η̄ be a configuration and let ν be an ES measure with at most one infinite cluster
whenever q0 > 1. Denote Λ̄n = Λn(η̄) and B̄n = Bn(η̄). Then we claim that

ν
( · |{Λn( · ) = Λ̄n} ∩ {ηB0(Λ̄n)c = η̄B0(Λ̄n)c}

) ≥
FKG

µRCΛ̄n,B̄n,maxwir
( · ), (4.53)

as random-cluster measures in B0(Λ̄n). Namely, if there are no infinite clusters, then {Λn( · ) =
Λ̄n} is clearly an event independent of the bond-values in B0(Λ̄n) and the induced measure
is precisely µRCΛ̄n,B̄n,maxwir

. On the other hand, if there is an infinite component, then the
conditioning on {Λn( · ) = Λ̄n} and {ηB0(Λ̄n)c = η̄B0(Λ̄n)c} induces the additional requirement
that no ‘dangling end’ reaching outside ∆n be disconnected within B0(Λ̄n) from the backbone
of the infinite cluster. Since the latter is an increasing event and since µRCΛ̄n,B̄n,maxwir

is strong
FKG (being given by conditioning from a strong FKG measure), the bound (4.53) follows.
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Let f be a non-negative monotone increasing B0(∆)-cylinder function, where ∆ is a finite
set. Now we can write

µ(f) = ν(f) ≥ ν
(
f1l{Λn( · )⊇∆}

)
=

∑
Λ̄n⊇∆

B̄n⊆∂Λ̄n

ν
(
f1l{Λn( · )=Λ̄n}1l{Bn( · )=B̄n}

)
≥

∑
Λ̄n⊇∆

B̄n⊆∂Λ̄n

ν
(
µRCΛ̄n,B̄n,maxwir

(f)1l{Λn( · )=Λ̄n}1l{Bn( · )=B̄n}
)

≥ µRC∆,free(f)µ
({Λn( · ) ⊇ ∆}

)
.

(4.54)

Here in the first step we used non-negativeness of f , in the third step we used Gibbsianness
in Λ̄n along with the bound (4.53), and then applied (4.32), (4.23) and resummed over the
volumes Λ̄n and the components B̄n to get the final expression.
Since µ

({Λn( · ) ⊇ ∆}
)
tends to 1 as n → ∞ by the Monotone Convergence Theorem, the

proof is finished for f ≥ 0 by taking that limit followed by ∆↗ Zd. Arbitrary cylinder f ’s are
handled by noting that f −min f ≥ 0. �

Proof of Theorem III.2(iv). Let g be a monotone increasing function, depending only on bonds
B0(∆) for some finite ∆. Let for each Λ define

gΛ =
∑

x: τx(∆)⊂Λ

g ◦ τx, (4.55)

where τ is the shift operator. Let µRC,(1),α
Λ,free be the state generated by the free boundary condi-

tion, however, with the weights in (3.6) multiplied by the function eαgΛ . By standard subad-
ditivity arguments, it follows that the normalizing factor of such modified weights gives rise to
the ‘free energy’

F(α) = lim
Λ↗Zd

1
|Λ| log

{ ∑
σ̄Λ,η̄B(Λ)

eαgΛ(η̄Λ) W (σ̄Λ, η̄B(Λ) |σΛc ,ηB(Λ)c)
}
, (4.56)

where F(α) is independent of the boundary condition σ,η and is convex in α. Moreover, by
differentiating we find out that

lim sup
Λ↗Zd

µ
RC,(1)
Λ,maxwir

( gΛ

|Λ|
)
≤ dF
dα+ (α1) ≤ dF

dα−
(α2) ≤ lim inf

Λ↗Zd
µ
RC,(1),α
Λ,free

( gΛ

|Λ|
)
, (4.57)

where 0 < α1 < α2 < α are arbitrary.
Since gΛ is increasing, we have from (4.24) and the translation invariance of µ

RC,(1)
maxwir that the

left hand side of (4.57) equals µRC,(1)
maxwir(g). Thus we just need to show that if α is small enough
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then µ
RC,(1),α
Λ,free is FKG-dominated by µ

RC,(2)
Λ,free . For that recall that the second measure can be

directly generated by the weights W
(2)
Λ,free defined in (4.7), and the first one by the weights

eαgΛW
(1)
Λ,free. Hence, as in the proof of Lemma IV.1, it suffices to ensure that the function

η → GΛ(η) = eαgΛ(η)
W

(1)
Λ,free(η)

W
(2)
Λ,free(η)

(4.58)

is monotone decreasing in η. Let us define the variance of g by the formula

var(g) = sup
b̄

sup
η,η′: ηb=η′

b

∀b �=b̄

∣∣ g(η)− g(η′)
∣∣. (4.59)

Note that var(g) is the maximal value that g can jump over by flipping a single bond. Since

W
(1)
Λ,free

W
(2)
Λ,free

(η) =
[
eβJ1 − 1
eβJ2 − 1

]|η|
, (4.60)

the decreasingness of GΛ is guaranteed for instance by eαvar(g)|B0(∆)|(eβJ1 − 1) ≤ (eβJ2 − 1),
with this achieved, for J1 < J2, by taking α small enough. Thus, for α small positive we have

µ
RC,(1)
maxwir(g) ≤ lim inf

Λ↗Zd
µ
RC,(1),α
Λ,free

( gΛ

|Λ|
)
≤ lim inf

Λ↗Zd
µ
RC,(2)
Λ,free

( gΛ

|Λ|
)
≤ µ

RC,(2)
free (g), (4.61)

where the last inequality follows from µ
RC,(2)
Λ,free

≤
FKG µ

RC,(2)
free and the translation invariance of

µ
RC,(2)
free . Since g was arbitrary, (3.14) is established. �

4.3. Weak limits of the ES Gibbs measures.
Since by Theorem III.2 the limits (3.10) and (3.11) exist for every quasilocal f depending

only on the bond configurations η, to prove Theorem III.3 we just need to extend this to
functions of both σ and η. It turns out that the possibility of swapping around σ-dependence
and η-dependence under the expectation w.r.t. the ES Gibbs measures will be convenient for
that. Before we formulate this precisely, let us give some definitions.
For any collection {Fi}q+2

i=1 of pairwise disjoint finite sets Fi ⊂ Zd, let us define

F free
{Fi}(η) =

∏
i<j

1l{Fi	Fj}(η)
q+2∏
m=1

∏
C:

V(C)∩Fm �=∅

eβhm|V(C)|

Θfree(C)
. (4.62)

Here, 1l{Fi	Fj}(η) indicates the event that, under η, none of the points in Fi is connected to
any point in Fj by a path of occupied bonds, the product over C runs over all components of
the set B1(η) with V(C) ∩ Fm (= ∅, and Θfree(C) is as in (4.8).
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Similarly, given also a finite set Λ with F = ∪q+2
i=1Fi ⊂ Λ, let us define

F m̄
Λ,{Fi}(η) =

∏
i<j

1l{Fi	Fj}(η)
q+2∏
m=1

∏
C:

V(C)∩Fm �=∅

eβhm|V(C)�Λc|

ΘΛ,m(C)
χΛ,m̄(C,m) (4.63)

for each m̄ ∈ {1, . . . , q + 2}, where we recall the definitions (4.10) and (4.17).
Remark. In the following, it will be important to remember explicitly which boundary spin
the measure µRCΛ,maxwir originated from. Therefore we shall henceforth write µRCΛ,m instead of
µRCΛ,maxwir.

Lemma IV.4. Let A ⊂ Zd be a finite set and let f be a cylinder function in (A,B(A)). Then
there are numbers (a{Fi}) such that

µESΛ,free(f) =
∑
{Fi}

a{Fi} µ
RC
Λ,free

(
F free
{Fi}

)
(4.64)

µESΛ,m̄(f) =
∑
{Fi}

a{Fi} µ
RC
Λ,m̄

(
F m̄
Λ,{Fi}

)
(4.65)

for each m̄ ∈ {1, . . . , q + 2} and all Λ ⊃ A with B0(Λ) ⊃ B(A). Moreover, a{Fi} = 0 whenever
there is an x ∈ F = ∪q+2

i=1Fi with dist(x,A) > 1. In particular, both sums above are finite.

Proof. Let Λ be such that Λ ⊃ A and B0(Λ) ⊃ B(A). Then by using that µESΛ,free and µESΛ,m̄ are
Gibbs measures we have

µESΛ,free(f) = µESΛ,free
(
µESA,B(A)(f |σAc ,ηB(A)c)

)
, (4.66)

and similarly for µESΛ,m̄(f). The finite volume specification µESA,B(A)(f |σAc ,ηB(A)c) depends only
on spin variables at the exterior boundary ∂A of A. It therefore suffices to prove the claim for
functions of the spin variables that are cylinder in Ā = A ∪ ∂A.
Each such function f can be uniquely recast as

∑
{Fi} a{Fi}f{Fi}, where a{Fi} are real

numbers such that a{Fi} = 0 whenever F (⊂ Ā, and

f{Fi}(σ) =
q+2∏
m=1

∏
x∈Fm

δσx,m. (4.67)

It is now a matter of a direct computation to show that, for all m̄ ∈ {1, . . . , q + 2},

µESΛ,free(f{Fi}|η) = F free
{Fi}(η)

µESΛ,m̄(f{Fi}|η) = F m̄
Λ,{Fi}(η).

(4.68)
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Namely, the components C of B1(η) such that V(C)∩Fm (= ∅ necessary satisfy that V(C)∩Fi =
∅ for all i (= m. This gives rise to the indicators 1l{Fi	Fj}. For η such that

∏
i<j 1l{Fi	Fj}(η)=

1, the spin configuration can be integrated out, yielding the ratios eβhm|V(C)|/Θfree(C) resp.
eβhm|V(C)�Λc|/ΘΛ,m̄(C). However, one gets the latter only when V(C)∩Λc = ∅ or m = m̄. The
claim is finished by taking the expectation w.r.t. η. �

Proof of Theorem III.3. It was shown in Lemma IV.4 that σ-dependent cylinder functions can
be interchanged under the expectation for η-dependent functions F free

{Fi} and Fm
Λ,{Fi}. Unfor-

tunately, the weak limits (3.10) and (3.11) cannot yet be invoked to conclude the existence of
(3.15) and (3.16), the reason being that the F{Fi}’s are, in general, not quasilocal (moreover,
Fm
Λ,{Fi} even explicitly depends on the expanding volume). However, both functions F

free
{Fi} and

Fm
Λ,{Fi} turn out to be ‘almost-surely’ quasilocal, in the terminology of [PVdV] and [Gr], which
is still sufficient for the limits (3.10) and (3.11) to exist.
For finite sets F ,∆ with F ⊂ ∆, let M∆,F be the event

M∆,F =
{
η: ∀x, y ∈ F x↔ ∆c and y ↔ ∆c implies x↔∆ y

}
, (4.69)

where x↔∆ y is the event that there is a path of occupied bonds in B(∆) connecting x and y.
Let further

Mm
∆,{Fi} =

{
η ∈M∆,F : x ∈ F with x↔ ∆c implies x ∈ Fm

}
, (4.70)

and recall q0 = #{m: hm = hmax}. For each ∆, m ∈ {1, . . . , q + 2}, and {Fi} define also a
random variable Qm

∆,{Fi} by putting

Qm
∆,{Fi} =

{
q0 Fm ↔ ∆c

1 otherwise.
(4.71)

The remainder of the proof is based on an approximation of F{Fi}’s by quasilocal functions and
showing that the error incurred thereby upon the expectations of F{Fi}’s is negligible. These
claims are formulated in Lemma IV.5 and Lemma IV.6.

Lemma IV.5. For all finite ∆ ⊂ Zd and any {Fi} with F = ∪iFi

(i) F free
{Fi} 1lMm

∆,{Fi} is quasilocal for all m ∈ {1, . . . , q + 2}.
(ii) F free

{Fi} 1lM∆,F is quasilocal.

Proof. (i) Let m be fixed and let Λ ⊃ ∆. Observe that 1lMm
∆,{Fi}

∏
i<j 1l{Fi	Fj} is a cylinder

function in B(Λ). Hence, only the contributions from the product over the connected com-
ponents in (4.62) can be altered by flipping a bond b (∈ B(Λ). Let us estimate precisely the
incurred change.
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Let η and ηb be two configurations differing at a single bond b ∈ B(Λ)c, ηb = 0, ηb
b = 1.

Suppose that η ∈Mm
∆,{Fi} is such that

∏
i<j 1l{Fi	Fj}(η) = 1 and that there is a C connecting

Fm with B(Λ)c. By the definition of Mm
∆,{Fi}, the configuration ηb also satisfies these three

conditions. Moreover, the value of F free
{Fi} is clearly not affected unless b ∈ C. Suppose the latter

occurs and denote by Cb the corresponding component under ηb. Then

∣∣F free
{Fi}(η

b)− F free
{Fi}(η)

∣∣ ≤ ∣∣∣∣eβhm|V(Cb)|

Θfree(Cb)
− eβhm|V(C)|

Θfree(C)

∣∣∣∣, (4.72)

where we have estimated all ratios by 1, except for the one affected by flipping b.
It turns out that the r.h.s. of (4.72) is exponentially small in dist(b,F). Indeed, if hm < hmax

this is immediate by estimating Θfree(C) ≥ eβhmax|V(C)|, while for hm = hmax both ratios tend
exponentially fast to 1/q0 as dist(b,F) → ∞. Thus, the r.h.s. of (4.72) is summable over the
positions of b. By the standard telescoping trick, this proves quasilocality (i.e., continuity in
product topology) of F free

{Fi}1lMm
∆,{Fi} , as required by (i).

To prove (ii), it clearly suffices to note that

F free
{Fi}

[
1lM∆,F −

q+2∑
m=1

1lMm
∆,{Fi}

]
(4.73)

is a cylinder event in B(∆). Namely, the function in the brackets is zero unless there is no
component incident with F that reaches up to ∆c. In that case, F free

{Fi} depends only on bonds
from B(∆), i.e, it is effectively a local function. �

Lemma IV.6. For any {Fi} with F = ∪q+2
i=1Fi and any m such that hm = hmax

(i)

lim
∆↗Zd

lim
Λ↗Zd

µRCΛ,free(M∆,F ) = 1 (4.74)

lim
∆↗Zd

lim
Λ↗Zd

µRCΛ,m(M∆,F ) = 1. (4.75)

(ii) Let G
{Fi}
Λ,∆,m = Fm

Λ,{Fi}1lM∆,F −Qm
∆,{Fi}1lMm

∆,{Fi}F
free
{Fi}. Then

lim
∆↗Zd

lim
Λ↗Zd

µRCΛ,m

(
G
{Fi}
Λ,∆,m

)
= 0. (4.76)

Proof. (i) The inner limits on the l.h.s. exist becauseM∆,F is a cylinder event, and the random-
cluster measures have a weak limit by Theorem III.2. The outer limit is then a consequence
of the fact that M∆,F ↑ MF , where MF is the set of configurations featuring at most one
infinite component incidental with F . The limits are thus equal to µRCfree(MF ) and µRCm (MF ),
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respectively. Now, µRCfree and µRCm are ergodic (see, e.g., [BoC]) and they satisfy the so-called
‘finite-energy’ condition. Therefore, it follows from a general argument [BK] that there is almost
surely at most one infinite cluster, which means µRCfree(MF ) = 1 = µRCm (MF ). By plugging these
observations together the claim (i) is proved.
To prove (ii), take {Fi} and ∆ ⊂ Λ with ∆ ⊃ F . Then the following three possibilities can

occur for configurations under the measure µRCΛ,m:

(A) F � ∆c

(B) F ↔ ∆c but F � Λc

(C) F ↔ Λc.
Clearly, under (A), the absence of components connecting F with the outside of ∆ implies

1lMm
∆,{Fi} = 1lM∆,F , Qm

∆,{Fi} = 1, and Fm
Λ,{Fi} = F free

{Fi}, (4.77)

by the inspection of (4.62) and (4.63). Consequently, all terms in the definition of G{Fi}
Λ,∆,m

cancel and G
{Fi}
Λ,∆,m = 0 in this case. If (C) occurs, on the other hand, we have a component

Cm,Λ connecting Fm to ∂Λ, and thus

1lMm
∆,{Fi} = 1lM∆,F , Qm

∆,{Fi} = q0, and Fm
Λ,{Fi} = q0F

free
{Fi}, (4.78)

where we used that 1
q0
= eβhm|V(Cm,Λ)|

Θfree(Cm,Λ)
µRCΛ,m-almost surely. This implies that, under (C),

G
{Fi}
Λ,∆,m = 0 as well. Hence, the estimates of the expectation µRCΛ,m

(
G
{Fi}
Λ,∆,m

)
boil down to the

analysis of (B).
Let PF

Λ,∆ denote the event (B), i.e., PF
Λ,∆ = {η: F ↔ ∆c but F � Λc}. Then, by the

preceding reasoning, |G{Fi}
Λ,∆,m| ≤ q01lPF

Λ,∆
µRCΛ,m-a.s. Thus, it suffices to prove that

lim
∆↗Zd

lim
Λ↗Zd

µRCΛ,m(P
F
Λ,∆) = 0. (4.79)

We will establish this by proving that the events (A) or (C) get the full mass under these
limits. First we recall the well known characterization

µRCm (F ↔∞) = lim
Λ↗Zd

µRCΛ,m(F ↔ Λc). (4.80)

This follows by the inequalities µRC
Λ̃,m
(F ↔ Λ̃c) ≤ µRC

Λ̃,m
(F ↔ Λc) ≤ µRCΛ,m(F ↔ Λc), where the

first one is due to monotonicity of {F ↔ Λc} in Λ and the other one is due to (4.24).
Since {F � ∆c} ↑ {F �∞} as ∆↗ Zd, we easily get that

lim
∆↗Zd

lim
Λ↗Zd

µRCΛ,m

({F � ∆c} ∪ {F ↔ Λc}) = 1, (4.81)
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proving the desired claim. �

With Lemma IV.5 and IV.6 in the hand, the proof of Theorem III.3 can be concluded.
Namely, for any ε > 0, finite sets Λ̄, ∆̄1, ∆̄2 ⊂ Zd can be chosen, such that

µRCΛ,free(M∆,F ) ≥ 1− ε/2

µRCΛ,m(M∆,F ) ≥ 1− ε/4 (4.82)

−ε/4 ≤ µRCΛ,m

(
Fm
Λ,{Fi}1lM∆,F −Qm

∆,{Fi}1lMm
∆,{Fi}F

free
{Fi}

) ≤ ε/4

for any Λ ⊃ Λ̄ and ∆̄1 ⊃ ∆ ⊃ ∆̄2, and any m such that hm = hmax. Since both Fm
{Fi},Λ and

F free
{Fi} are bounded by one, this yields∣∣∣µRCΛ,free(F

free
{Fi})− µRCΛ,free

(
F free
{Fi}1lM∆,F

)∣∣∣ ≤ ε/2∣∣∣µRCΛ,m(F
m
Λ,{Fi})− µRCΛ,m

(
Qm
∆,{Fi}1lMm

∆,{Fi}F
free
{Fi}

)∣∣∣ ≤ ε/2. (4.83)

Now the functions F free
{Fi}1lM∆,F and Qm

∆,{Fi}1lMm
∆,{Fi}F

free
{Fi} are quasilocal by Lemma IV.3 and

because Qm
∆,{Fi} is cylinder, hence the limit Λ ↗ Zd can be performed on their expectations

by Theorem III.2. Consequently∣∣ lim sup
Λ↗Zd

µRCΛ,free(F
free
{Fi})− lim infΛ↗Zd

µRCΛ,free(F
free
{Fi})

∣∣ ≤ ε∣∣ lim sup
Λ↗Zd

µRCΛ,m(F
m
Λ,{Fi})− lim infΛ↗Zd

µRCΛ,m(F
m
Λ,{Fi})

∣∣ ≤ ε. (4.84)

The arbitrariness of ε finishes the claim. �

4.4. Gibbs uniqueness and absence of percolation.

Proof of Theorem III.4(i). We shall prove that any ν ∈ GES not exhibiting percolation is equal
to the limiting measure µESfree whose existence was established previously. The proof of this item
goes along the lines of the argument in (4.51–54).
Let the sequences (∆n) and (Λn(η)) be defined as in (4.51). Since there are no infinite

components ν-a.s., the set Bn(η) = ∅ for all n ≥ 1 and ν-almost all η. Assume a cylinder
function f and given ε > 0 take ∆ large enough such that f is cylinder in ∆ and∣∣µES∆′,free(f)− µESfree(f)

∣∣ ≤ ε (4.85)

for all ∆′ ⊃ ∆. By the precisely same argument as in (4.54) we get the estimate
ν(f1l{Λn( · ) �⊃∆}) +

[
µESfree(f)− ε

]
ν(1l{Λn( · )⊃∆})

≤ ν(f) = ν(f1l{Λn( · ) �⊃∆}) +
∑

Λ̄n⊃∆

ν
(
µESΛ̄n,free(f)1l{Λn( · )=Λ̄n}

)
≤ ν(f1l{Λn( · ) �⊃∆}) +

[
µESfree(f) + ε

]
ν(1l{Λn( · )⊃∆}).

(4.86)
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Since f is bounded and Λn ↗ Zd ν-a.s., the Bounded Convergence Theorem yields∣∣ν(f)− µESfree(f)| ≤ ε. (4.87)

The arbitrariness of ε finishes the claim. �

Proof of Theorem III.4(ii). This is an easy corollary of the previous item and the bound (3.12).
Namely, if there is no percolation under µRCmaxwir then by (3.12) all ES Gibbs measures lie in the
set GES∅ . Since by (i) there is at most one measure in GES∅ , there is only one ES Gibbs state. �

Proof of Theorem III.4(iii). Since the if part is item (ii), we need only to concentrate on
the only-if part. Suppose q0 ≥ 2 and µRCmaxwir(N∞ > 0) > 0. Then we claim that the set
{µESm : hm = hmax} has q0 elements. Namely, by Proposition IV.2 each infinite cluster has a
unique color sampled from {m: hm = hmax}. By the limiting characterization

µRCmaxwir(0↔∞) = lim
Λ↗Zd

µRCΛ,maxwir(0↔ Λc), (4.88)

as already used in the proof of Lemma IV.6, we have for any m (= m̃ such that hm, hm̃ = hmax

µESm (σ0 = m) = µESm (σ0 = m, 0�∞) + µESm (σ0 = m, 0↔∞)
= µESm (σ0 = m̃) + µRCmaxwir(0↔∞),

(4.89)

where in the term with 0 � ∞ we used that there is a complete symmetry between m and
m̃ on finite clusters, whereas on 0 ↔ ∞ the spin at 0 is fixed to m by (4.88). Whenever
µRCmaxwir(0 ↔ ∞) > 0, which is by translation invariance equivalent to µRCmaxwir(N∞ > 0) > 0,
this implies that the symmetry between the m’s with hm = hmax is broken and thus q0 distinct
phases coexist. �

Before we embark on proving item (iv) of Theorem III.4, we shall establish the following
useful claim.

Lemma IV.7. The measure µRCmaxwir is strongly mixing and, in particular, ergodic w.r.t. trans-
lations in any of the lattice principal directions.

Proof. Let τ denote the translation in one of the lattice principal directions. We shall show
that µRCmaxwir(f g ◦ τn)→ µRCmaxwir(f)µ

RC
maxwir(g) for all L

2-functions f and g. As is well known, it
actually suffices to verify this for cylinder functions (which are dense in L2), and since we have
a space with a natural ordering, we can even restrict ourselves to f , g monotone.
Let f, g be non-negative monotone increasing cylinder functions and let gn = g ◦ τn. Then

fgn is also monotone increasing and hence for any box ∆ centered at the origin, an integer n
and another box Λ large enough (taken in this order)

µRCΛ,maxwir(fgn) ≤ µRCΛ,maxwir
(
fgn|{ηB(∂∆) = 1}

)
= µESΛ,m

(
fgn|{ηB(∂∆) = 1}

)
= µES∆,maxwir(f)µ

ES
τ−nΛ,maxwir

(
g|{ηB(τ−n∂∆) = 1}

)
, (4.90)
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where we used Gibbsiannes of µESΛ,m (here m is such that hm = hmax) to ‘split’ f from g. The
latter expectation tends in the limit Λ ↗ Zd and n → ∞ to µRCmaxwir(g) as follows from (4.24),
so we get

lim sup
n→∞

µRCmaxwir(f g ◦ τn) ≤ µRCmaxwir(f)µ
RC
maxwir(g), (4.91)

where we have also taken the limit ∆ ↗ Zd on the r.h.s. of (4.90). Since the complementary
inequality follows from FKG, the strong-mixing property of µRCmaxwir is established. �

Proof of Theorem III.4(iv). Suppose that J > Jc and d = 2. Then the first condition implies
that there is percolation under µRC,J

maxwir. Moreover, since µ
RC,J
maxwir satisfies the following items

(1) µRC,J
maxwir is separately ergodic in all lattice directions

(2) µRC,J
maxwir is invariant under lattice reflections and rotations

(3) µRC,J
maxwir is FKG,

(as has been proved previously) the powerful result of [GKR] asserts that the infinite cluster
is unique under µRC,J

maxwir. Moreover, by a corollary to this result, the cluster contains an infinite
series of nested circuits that (eventually) encircle any point of the lattice.
Suppose moreover q0 = 1. Then (3.13) yields that the random-cluster marginal νRC,J of any

ν ∈ GES at the coupling constant J is bounded below by µRC,J
free . Let J > J1 > Jc. Then

νRC,J( · ) ≥
FKG

µRC,J
free ( · ) ≥

FKG
µRC,J1
maxwir( · ), (4.92)

where the second inequality is Theorem III.2(iv). In particular, all measures at J exhibit an
infinite cluster as well as the above circuits running around the origin, because the latter is an
FKG-increasing event.
The proof is concluded along very much the same lines as was the argument (4.85-87), but

now with a different definition of volumes Λn. Let (∆n) be an increasing sequence of boxes
centered at the origin and let Λn(η) be the interior sites of the maximal closed circuit of
occupied bonds surrounding the origin and contained wholly in B0(∆n). As before, the event
{Λn( · ) = Λ̄n} does not depend on ηB(Λ̄n), hence the conditioning argument of (4.86) along
with the existence of the limiting state (3.15) proves that ν = µESm , where m is the unique spin
such that hm = hmax. �

4.5 Relations to the Gibbs random-cluster measures.

Proof of Theorem III.5(i). Since the free measure µRCΛ,free can be directly defined by the weights
(4.7), it is not hard to verify that µRCΛ,free satisfies the DLR condition

µRCΛ,free(f) =
∫

µRCΛ,free(dη)µ
RC
B (f |η Bc), (4.93)

for any B-cylinder function f and any B ⊂ B(Λ).



120 Techniques of proofs of phase transitions

Recalling (4.69), we now claim that η → 1lM∆,V(B)(η)µ
RC
B
(f |η) is a quasilocal function for

any ∆ ⊃ V(B). Namely, underM∆,V(B), there is at most one infinite cluster connecting B with
∆c and if there is one, then its weight tends exponentially fast to q0 as ∆ ↗ Zd. As in the
proof of Lemma IV.5, this is sufficient for the quasilocality of η → 1lM∆,V(B)(η)µ

RC
B
(f |η).

Let f be bounded. Then the proof is finished by the following array of identities

µRCfree(f) = lim
Λ↗Zd

µRCΛ,free(f) = lim
Λ↗Zd

µRCΛ,free
(
µRCB (f | · )

)
= lim

∆↗Zd
lim

Λ↗Zd
µRCΛ,free

(
1lM∆,V(B)( · )µRCB (f | · )

)
= lim

∆↗Zd
µRCfree

(
1lM∆,V(B)( · )µRCB (f | · )

)
= µRCfree

(
µRCB (f | · )

)
,

(4.94)

where the five equalities follow by successively applying (3.11), (4.93), (4.74) with the bound-
edness of µRC

B
(f | · ), (3.11) and the quasilocality of the involved function, and finally using

again (3.11). Hence, µRCfree satisfies (3.17), i.e., µ
RC
free ∈ GRC. The case of µRCΛ,maxwir is completely

analogous. �

Proof of Theorem III.5(ii). We claim that µRC(ηB|η Bc) is strong FKG (as a measure in B).
In order to prove that we note that since the weight (3.17) is essentially a rewrite of (4.8), we
can use that (4.8) gives rise to a strong FKG measure. Namely, pick η and define η(∆) by the
formula

η
(∆)
b =

{
ηb b ∈ B0(∆)

0 otherwise.
(4.95)

Then we have WRC
B0(∆)

(
η
(∆)
B0(∆)|η(∆)

B0(∆)c
)
= e−βhmax|∆|WRC

∆,free

(
η(∆)

)
. Consequently,

µRC
B(∆)

( · |η(∆)
B0(∆)c

)
= µRC∆,free

( · |η(∆)
B(∆)c

)
. (4.96)

Since the latter measure is strong FKG and since (µRC
B
) form a consistent family of specifications,

µRC
B
( · |η(∆)

Bc ) is strong FKG as well for any B ⊂ B(∆) (this is because conditioned strong FKG
measures are still strong FKG).
It follows that µRC

B
( · |η(∆)

Bc ) → µRC
B
( · |η Bc) as ∆ ↗ Zd. This is because for each η there is

∆ such that the number of infinite components reaching from V(B) outside ∆ is equal to the
number of infinite components touching V(B) (here we used that there is only finitely many
infinite clusters connected to B). Hence µRC

B
( · |η Bc) is strong FKG for all η. In particular,

µRC
B
( · |η Bc) is increasing in the boundary condition (the specifications are consistent) and

µRCΛ,free( · ) ≤
FKG

µRC
B(Λ)( · |ηB(Λ)c) ≤

FKG
µRCΛ,maxwir( · ), (4.97)

where we identified the specification with the RC measures for the free and m-wired boundary
condition. The claim is finished by applying this to the DLR condition for any monotone
cylinder event, followed by the limit Λ↗ Zd. �
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Proof of Theorem III.5(iii). Let ν ∈ GES be extremal (without loss of generality) with the addi-
tional assumption that ν(N∞ > 1) = 0 whenever q0 > 1. By the Backward Martingale Theorem
[Ge, Theorem 7.12], µES∆n,B(∆n)( · |σ∆c

n
,ηB(∆n)c)→ ν for ν-almost all (σ,η) along any increasing

sequence ∆n ↗ Zd. Let Λ ⊂ ∆ be finite volumes and let us recall that lim∆↗Zd ν(M∆,Λ) = 1
(see (4.69) for the definition of M∆,Λ) whenever q0 > 1. Hence, with an overwhelming prob-
ability provided n and ∆ are large enough, the boundary of Λ ‘sees’ at most one of the spins
from ∂∆n above. It is easy to verify that, under this condition, the random-cluster measure
in B(Λ) induced from µES∆n,B(∆n)( · |σ∆c

n
,ηB(∆n)c) above is Gibbsian for the specification (3.17).

The claim is finished by taking n→∞ followed by ∆↗ Zd. �
Proof of Theorem III.5(iv). Recall the definition of F free

{Fi} in (4.62). It turns out that F
free
{Fi}

satisfies the following identity:
q+2∑
m=1

F free
{F1,...,Fm−1,Fm∪{x},Fm+1,...,Fq+2}(η) = F free

{Fi}(η) (4.98)

for each {Fi}, any x (∈ F = ∪iFi and any η. Namely, let Fi � Fj for i (= j in η and suppose
x ↔ Fm for some m. Then the sum on the l.h.s. of (4.98) degenerates to the m-th summand,
which is easily identified with the r.h.s. On the other hand, if x � Fm for all m, then the
sum in (4.98) can be propagated through the products in (4.62) up to the last term, where the
desired identity then follows by taking also (4.8) into account.
The relation (4.98) enables us to define a joint measure on σ and η. Let µ ∈ GRC and let

A{Fi} denote the event
A{Fi} =

{
σ: σx = m ∀x ∈ Fm

}
. (4.99)

Note that A{Fi} is a cylinder event in F . Consider the set function ν, for the sets on the
product space of configurations (σ,η), defined as

ν
(
A{Fi} ×B

)
= µ

(
F free
{Fi}1lB

)
, (4.100)

where B stands for any cylinder event on configurations η. Due to the fact that µ is a measure
on η and due to (4.98), the set function defined in (4.100) satisfies the consistency condition for
all finite-volume projections and, by the Kolmogorov theorem, it thus gives rise to a measure
on (σ,η).
Clearly, the η-marginal of ν is µ, by the very construction, so it remains to show that

ν ∈ GES. Let Λ be a finite set of sites and let (Λi)
q+2
i=1 be a partition thereof. We would like

to use Gibbsianness of µ under the expectation in (4.100). However, in order to keep things
mathematically just, we first need to mollify F free

{Λi} for its non-quasilocality by inserting the
event M∆,Λ, where ∆ ⊃ Λ. Then we claim that for any B ⊃ B(∆)

ν
(
A{Λi} × (B ∩M∆,Λ)

)
= µ

(
µRCB (F

free
{Λi}1lB∩M∆,Λ)

)
= µ

(
µESΛ,B

(
A{Λi} × (B ∩M∆,Λ)

))
= ν

(
µESΛ,B

(
A{Λi} × (B ∩M∆,Λ)

))
. (4.101)
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Here in the first equality we used (4.100) and the fact that µ ∈ GRC. In the second equality we
used that

F free
{Λi}(η)µ

RC
B (ηB|η Bc) = µESΛ,B

(
A{Λi} × {ηB}|σΛc ,η Bc

)
. (4.102)

As follows by inspection of (3.6), the last term in (4.102) either vanishes, if σ is inconsistent
with η, or it is independent of σΛc . Since the former event has probability zero under ν, the
expectation over the last term can equally be taken w.r.t. µ or ν, which justifies the third
equality in (4.101).
The formula (4.102) is proved by noting that if η is such that Λi � Λj for any i (= j, then

F free
{Λi}(η)µB(ηB|η Bc) =

1
Zη
Λ,B

(eβJ − 1)|B1(η)∩B| ∏
V(C(η))∩V(B) �=∅

V(C(η))∩Λ=∅

e−βhmax|V(C(η))|Θfree
(
C(η)

)

×
q+2∏
m=1

∏
V(C(η))∩Λm �=∅

e−β(hmax−hm)|V(C(η))|,

(4.103)

where Zη
Λ,B is some suitable normalization. Since the exponenents in the terms e

−βhmax|V(C(η))|

combine to
∑

C(η)∩B�=∅ |V(C(η))|, which depends neither on ηB nor on the partition (Λi), the
r.h.s.’s of (4.102) and (4.103) are easily identified.
The proof of (iv) is now completed by using that (4.101) is satisfied for any events of the

type C ∩M∆,Λ, where C is any cylinder event in Λ of both σ and η. By neglecting the event
M∆,Λ on the r.h.s. of (4.101) and by recalling that lim∆↗Zd ν(M∆,Λ) = 1 from the assumption
µ(N∞ > 1) = 0, we get the inequality

ν(C) ≤ ν
(
µESΛ,B(C| · )

)
, (4.104)

for any Λ,B-cylinder event C on configurations (σ,η). Here we used the consistency of the
specifications µESΛ,B to keep B fixed while ∆ is expanding (note that (4.101) was derived under
the assumption that B ⊃ B(∆)). By going to the complementary event, the DLR equation for
ν is proved. �

5. COLORED RANDOM-CLUSTER REPRESENTATIONS

AND THE CONTOUR MODEL

5.1. Colored random-cluster model.
In the preceding section, we studied the random-cluster model and the connection between

its percolation properties and the uniqueness of the spin Gibbs states. The random-cluster
measures, being just the η-marginal of the ES Gibbs measures, were ‘colorless’ because no
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information about the incidental spin values was retained. In this section to introduce an alter-
native random-cluster representation, where some information about the spins remains attached
to the bond configurations. Even though such a ‘colored’ representation can be introduced for
general values of external fields hm, m = 1, . . . , q + 2, it will be convenient to restrict oneself
to the case with only two nonvanishing fields.
Let us consider the spin system as described by the Hamiltonian (2.1), where we assume

that h3 = · · · = hq+2 = 0. We shall consider the following marginal of the ES Gibbs measures
defined in Section 3. With each (σ,η) we associate the bond configuration ω ∈ {I, J,Q,D}B(Zd)
by putting for each bond b ≡ 〈x, y〉

ωb =


I ηb = 1, σx = σy = 1

J ηb = 1, σx = σy = 2

Q ηb = 1, σx = σy ∈ Q
D otherwise,

(5.1)

where we denote Q = {3, . . . , q+ 2}, i.e., the spin values unaffected by the external fields. The
mapping (σ,η) → ω is measurable w.r.t. the natural σ-algebra on configurations (σ,η), hence
it induces a well-defined marginal, which we call the colored random cluster measure.
The colored random-cluster marginal will play an important role in the computation of (some

part of) the phase diagram performed in the next Section. For that it will be useful to have
explicit formulas for the weigths of the graphical configurations. Therefore, similarly as in (3.4),
we employ the standard Fortuin-Kasteleyn trick in the ‘colored’ version,

eβJδσx,σy = 1 + (eβJ − 1)δQσx,σy + (eβJ − 1)δσx,1δσy,1 + (eβJ − 1)δσx,2δσy,2. (5.2)

Here, δQσx,σy indicates that the spins at x and y are equal and belong to Q. The four terms
correspond exactly to the four distinct types of bonds in (5.1), here in the order D, Q, I, and J .
By using (5.2) we get a natural graphical representation of the partition function Z =∑
σ e−βH(σ) as a sum

∑
ω W (ω) with suitable weights W (ω), and similarly for the Gibbs

measures of the model. To make this precise, we will consider a finite volume Λ, and specify
boundary conditions on ∂B(Λ) = B(Λ) \B0(Λ). Actually, we will restrict ourselves to constant
boundary coditions L (corresponding to constant and free boundary conditions of the spin
model)—with L standing for I, J , Q, or D—defined by fixing all bonds on the boundary to be
L-bonds. If L = Q, I, or J we call such a boundary condition wired, while for L = D we call
it free. Let ΩL

B(Λ) be the space of all possible configurations with boundary condition L. Note
that ΩL

B(Λ) (= {I, J,Q,D}B(Λ) because no two ordered bonds of different color can meet—they
are always interlaced by at least one D bond.
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To determine the weights WΛ,L(ω) for graphical configurations ω ∈ ΩL
B(Λ) in finite Λ with

fixed boundary condition L, we sum the Boltzman weights over all σ consistent with ω. Up to
a boundary factor independent of ω ∈ ΩL

B(Λ), we get

WΛ,L(ω) = (eβJ − 1)|BQ(ω)|+|BI(ω)|+|BJ (ω)|

× eβh1|VI(ω)| eβh2|VJ (ω)| (q + eβh1 + eβh2)|VD(ω)| qCQ(ω). (5.3)

Here, for any L̄ ∈ {Q, I, J}, we use BL̄(ω) ⊂ B(Λ), to denote the set of L̄-bonds in ω. The
set VI(ω) ∩ Λ consists of all sites incident with the bonds in BI(ω) (and similarly for VJ(ω)),
while VD(ω) ∩ Λ is the set of all lattice sites in Λ such that all adjacent bonds are of D-type.
Furthermore, VL̄(ω) ∩ ∂Λ = ∂Λ if L̄ equals the boundary condition L and VL̄(ω) ∩ ∂Λ =
∅, otherwise. Finally, CQ(ω) stands for the number of connected components of Q-bonds
(excluding, however, the boundary component).

5.2. Contour model.
In this subsection we reformulate the graphical representation into a labeled-contour model.

We essentially adopt the definition presented in [BKM] (see also [K] for a pedagogical treatment
on these issues in the context of the standard Potts model).
Given a configuration ω on B(Zd), a closed k-dimensional unit hypercube c ⊂ Rd with

vertices in Zd is called occupied if all bonds b ⊂ c are ordered (i.e., if they are not of type D).
In particular, occupied one-dimensional hypercubes are just the ordered bonds themselves. Let
a boundary condition L be given and let ω ∈ ΩL

B(Λ). To introduce contours, let U(ω) ⊂ Rd be
the 1/3-neighborhood of the union of all occupied k-dimensional hypercubes, k = 1, . . . , d, i.e.,

U(ω) = {x ∈ R
d:∃c occupied, with dist(x, c) < 1/3}. (5.4)

Since no two ordered bonds of different type can share a common endpoint, all bonds in a
component of U(ω) are of the same type, inducing thus a label Q, I, or J to each connected
component of U(ω). The complement Rd \ U(ω) is labeled by D. Contours (denoted by Γ) of
ω are then the components of the boundary of U(ω).
Note that, due to ω ∈ ΩL

B(Λ), each contour Γ is an orientable surface that splits Rd \Γ into a
bounded component, Int Γ, and an unbounded one, Ext Γ, i.e., Ext Γ∪Γ∪Int Γ = Rd. Moreover,
Γ is touching one component of U(ω) and one component of Rd \ U(ω) and is thus endowed
with two labels—interior and exterior ones, denoted by i and e. The whole triple γ = (Γ, i, e)
is called a labeled contour. Notably, while one of the labels is of the ordered type (Q, I, or
J), the other is always disordered. Given a labeled contour γ = (Γ, i, e) = (Γγ , iγ , eγ), we use
B(γ) = B(Γγ) to denote the set of all bonds intersecting Γγ . Notice that, neccesarily, ω(b) = D

for each b ∈ B(γ). Finally, we use the notation Int γ = Int Γγ and Ext γ = ExtΓγ .
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Clearly, there is a one-to-one correspondence between graphical configurations ω ∈ ΩL
B(Λ)

and sets ∂(ω) of labeled contours, for which

(1) no pair of contours γ1, γ2 ∈ ∂(ω) spatially overlap
(2) the contour labels match (i.e., the labels of contours attached to a component of Rd \
∪γ∈∂γ coincide)

(3) the exterior labels of exterior contours equal to L.

Correspondingly, we need to recast the weightsWΛ,L(ω) as the products of some contour weights
and the ‘ground state’ contributions associated with the regions of constant configurations in
the complement of the contours. There are two strategies for separating these volume terms
depending on whether one regards the ‘volume’ as the number of bonds contained in it, or the
number of its sites. These approaches lead to different contour weights, which will allow us to
study the model in two different parameter domains. Namely, it turns out that the former is
suitable for all temperatures but limited external fields, while the latter is suitable for arbitrary
fields but only a restricted range of temperatures.

Bond model. To introduce the first model, we redistribute the site weights in (5.2) uniformly
over all adjacent bonds. Namely, by using that every point in a set V of lattice sites is shared
by 2d bonds in B(V), we can write

2d|VI | = 2|BI | +
∑

γ:iγ or eγ=I

|γ|+RI,L (5.5)

and similarly for J . Here |γ| = |Γγ | denotes the ‘area’ of γ defined as the number of intersection
points of Γγ with bonds from B(γ). (Note that any bond b ∈ BD, such that both its endpoints
are in VI , has two intersections with Γγ and therefore contributes twice to |γ|.) The boundary
term RL̄,L, defined for any L, L̄ ∈ {I, J,Q,D} as

RL̄,L =

{
2d(|Λ|+ |∂Λ|)− |B(Λ)| L̄ = L

0 otherwise
(5.6)

arises because the sites in ∂Λ are contained in less then 2d bonds in B(Λ). Similarly, we get

2d|VD| = 2|BD| −
∑

γ:iγ or eγ=D

|γ|+RD,L, (5.7)

where BD is the set of all disordered bonds, BD = B(Λ)\ (BI ∪BJ ∪BQ). The difference in sign
in front of the sum originates from the fact that both endpoints of bonds from BI lie in VI ,
whereas BD contains also bonds with one endpoint or even no endpoints in VD. Substituting
these formulas into (5.3), we get, up to a fixed boundary factor stemming from the R·,L’s, the
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expression

WB(Λ)(ω) = (eβJ − 1)|BQ(ω)| [eβh1/d(eβJ − 1)]|BI(ω)| [
eβh2/d(eβJ − 1)]|BJ (ω)|

× [
(q + eβh1 + eβh2)1/d

]|BD(ω)| ∏
γ∈∂(ω)

>(γ). (5.8)

Here the contour weights >(γ), for contours with the labels eγ → iγ , are given by

>(γ) =



(q + eβh1 + eβh2)−
|γ|
2d Q→ D

(q + eβh1 + eβh2)−
|γ|
2d q D → Q[

e−βh1(q + eβh1 + eβh2)
]− |γ|

2d D → I, I → D[
e−βh2(q + eβh1 + eβh2)

]− |γ|
2d D → J, J → D.

(5.9)

Note that the additional q for D → Q contours accounts for the number CQ(ω) of Q-compo-
nents, as it appears in (5.2).

Site model. The alternative definition is again based on (5.5), but this time expressing all
bulk terms by means of site-numbers |VL(ω)| rather than bond-numbers |BL(ω)|. We get,
again up to a fixed boundary factor, the expression

W̃B(Λ)(ω) = (eβJ − 1)d|VQ(ω)| [eβh1(eβJ − 1)d]|VI(ω)| [
eβh2(eβJ − 1)d]|VJ (ω)|

× [
q + eβh1 + eβh2

]|VD(ω)| ∏
γ∈∂(ω)

>̃(γ) (5.10)

with new contour weights

>̃(γ) =

{
q
(
eβJ − 1)− |γ|

2 D → Q(
eβJ − 1)− |γ|

2 otherwise.
(5.11)

In order to avoid the reader’s confusion, let us emphasize once more that both expressions (5.8)
for WB(Λ)(ω) and (5.10) for W̃B(Λ)(ω) agree with (5.3) for WΛ,L(ω) only modulo a fixed (and
boundary-condition dependent) term.
An important feature of the decompositions (5.8) and (5.10) is that the bulk terms associated

with each of the phases exhaust the entire volume (B(Λ) or Λ)—the weights (5.9) and (5.11)
then represent the true energy gain rendered by introducing a contour. With this observation,
(5.8) and (5.9), or alternatively (5.10) and (5.11), establish a standard Pirogov-Sinai setup; the
only thing now required for all machinery to set into motion is an appropriate upper bound for
the contour weights:
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Lemma V.1. Let d ≥ 2.
(A) Let h1, h2 ≤ 2

3β log q. Then >(γ) ≤ q−
|γ|
6d .

(B) Let eβJ − 1 ≥ q
1
3d . Then >̃(γ) ≤ q−

|γ|
6d .

Proof. (A) While the bound on >(γ) is for the case Q→ D valid for any value of external fields
h1, h2, the validity for the cases D ↔ I and D ↔ J is clearly ensured by the assumed condition
on h1 and h2. In the remaining case of contours of the type D → Q, the independence of
the prefactor q entails that the bound is the most restrictive for the smallest possible closed
contour. Observing that the area of such a contour is |γmin| = 4d− 2 (the contour surrounding
just one bond), we get

>(γ) = q(q + eβh1 + eβh2)−
|γ|
2d ≤ q|γ|(

1
4d−2− 1

2d ) = q−|γ|
1
2d

d−1
2d−1 , (5.12)

where the middle inequality follows by neglecting eβh1 and eβh2 and using that 1 ≤ |γ|
|γmin| =

|γ|
4d−2 . Now,

d−1
2d−1 ≥ 1

3 for d ≥ 2, which yields the claim.
(B) Again, taking into account the area of the smallest contour of type D → Q, we easily

derive that
>̃(γ) ≤ (

(eβJ − 1)− 1
2 q

1
4d−2

)|γ|
. (5.13)

The claim now follows by employing the conditions eβJ − 1 ≥ q
1
3d and d ≥ 2. �

6. EXPLICIT PHASE DIAGRAM COMPUTATIONS

This section is more or less a standard exercise in Pirogov-Sinai theory. First we recast the
partition functions of the model (5.8) in terms of the so-called polymer models with weights
zL(γ), L = I, J,Q,D (resp. z̃L(γ) for the model (5.10)) to be introduced below. By banning the
contours with disfavorably large weights, one eventually arrives at the ‘metastable free energies’
fO, fI , fJ , and fD, in whose terms the phase diagram is rigorously given and, moreover, can
recursively be determined to an arbitrary degree of accuracy with the aid of cluster expansion.
In particular, in Subsections 6.3 and 6.4, the explicit computations corroborating the phase
diagrams (Fig.1̃–3) as well as the Gibbs uniqueness in the one-field case and h1 → ∞ and/or
high temperature are carried out.

6.1. Labeled-contour models.
Let us return to the expressions (5.8) and (5.10) and introduce the partition functions of

labeled contour models in the form that is the initial point of the Pirogov-Sinai theory. For
any set V ⊂ Rd, we define V(V ) = V ∩Zd and B(V ) as the set of all bonds whose middle point
belongs to V . Notice that if γ is a disordered contour (eγ = D), the set B(Int γ) contains only
bonds whose both endpoints belong to Int γ, while for an ordered contour (eγ ∈ {Q, I, J}), the
set B(Int γ) contains also bonds from B(γ) with one endpoint in Int γ and the other in Ext γ.
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Further, we use EL to denote the ‘ground state’ contribution to the metastable free energy
arising from the bulk terms in (5.8) (or (5.10)). Namely,

EQ = − 1
β log(e

βJ − 1)
EI = EQ − h1

d

EJ = EQ − h2
d

ED = − 1
βd log(q + eβh1 + eβh2).

(6.1)

These definitions enable us to express the partition function in a unified fashion, embodying
a variety of choices of volumes and boundary conditions. For any bounded V ⊂ Rd and any
L ∈ {Q, I, J,D}, we define

ZL(V ) =
∑

∂∈ML(V )

∏
γ∈∂

ρ(γ)
∏
L̄

e−βEL̄|BL̄(∂,V )|. (6.2)

Here the sum is over the setML(V ) of all families of matching labeled contours contained in
V , such that their exteriormost label is L and B(γ) ∩ B(∂V ) = ∅ for each its contour (with
B(∂V ) denoting the set of all bonds intersecting ∂V )12. The set BL̄(∂, V ) ⊂ B(V ), for any
L̄ ∈ {Q, I, J,D}, is the set of bonds in the state L̄ for the given labeled contour configuration
∂. Finally, in a similar fashion we introduce

Z̃L(V ) =
∑

∂∈ML(V )

∏
γ∈∂

ρ̃(γ)
∏
L̄

e−βdEL̄|VL̄(∂,V )|. (6.3)

Now, for any (geometric) contour Γ such that there exists a labeled contour γ of the type
L→ D, L ∈ {I, J,Q}, with Γγ = Γ, we define the weight

zL(Γ) = ρ(γ)
ZD(Int Γ)
ZL(Int Γ)

. (6.4)

If, on the other hand, Γ corresponds to a disordered contour, there exist labeled contours γI ,
γJ and γQ such that Γ = ΓγL and iγL = L, with L = I, J,Q. Then we define

zD(Γ) =
ρ(γI)ZI(Int Γ) + ρ(γJ)ZJ(Int Γ) + ρ(γQ)ZQ(Int Γ)

ZD(Int Γ)
. (6.5)

The weights z̃L(Γ) are defined analogously in terms of ρ̃(γ) and Z̃L(Int Γ). Notice that the
contours in zL and z̃L are regarded just as geometric objects without any additional labels.

12Notice that the last condition is trivially satisfied when defining Ziγ (Int γ) for any given labeled contour γ.
On the other hand, it disallows contours in Int γ to get ‘too close’ to Γγ in the definition of Zeγ (Int γ) (i.e.
when the boundary condition on Int γ is as if the contour γ were not present). In the standard Pirogov-Sinai
approach, this amounts to a version of the diluted and crystalic partition functions (see [Z]).



Potts model with external fields 129

It is now easy (and quite standard) to prove by induction that

ZL(V ) = e−βEL|B(V )| ∑
∆∈M(V )

∏
Γ∈∆

zL(Γ) (6.6)

and

Z̃L(V ) = e−βdEL|V(V )| ∑
∆∈M(V )

∏
Γ∈∆

z̃L(Γ) (6.7)

for any bounded V ⊂ Rd and any L ∈ {I, J,Q,D}. Here, the sums are running over the set
M(V ) of all collections ∆ of L-contours in V (i.e., those with eγ = L) such that

B(Γ)∩B(∂V ) = ∅ ∀Γ ∈ ∆
B(Γ1) ∩ B(Γ2) = ∅ ∀Γ1,Γ2 ∈ ∆, Γ1 (= Γ2,

(6.8)

where the second line is the so called compatibility condition. To emphasize that the model is
now based on purely geometric objects without any labels, we refer to it as a polymer model
(with weights zL resp. z̃L).

Lemma V.1. zL(Γ) = z̃L(Γ) for all L and all L-contours Γ.

Proof. Fix L ∈ {Q, I, J} and define a partial order ≺ on L-contours, by putting Γ ≺ Γ′
whenever Γ′ ⊂ Int Γ′. Pick an L-contour Γ and suppose that zL(Γ̃) = z̃L(Γ̃) for any Γ̃ ≺ Γ.
We shall show that this implies that the weights must be equal even for Γ. Namely, using (6.6)
resp. (6.7) with V = Int Γ in the definitions (6.4) we see that the condition zL(Γ) = z̃L(Γ) boils
down to

ρ(Γ)
e−βED|B(Int Γ)|

e−βEL|B(Int Γ)| = ρ̃(Γ)
e−βdED|V(Int Γ)|

e−βdEL|V(Int Γ)| , (6.9)

because the sums in (6.6) and (6.7) over the contours inside Int Γ cancel out by the induction
assumption.
The obtained condition is easily checked from the definition of the contour weights (5.8–11).

By proceding to larger and larger contours, the claim is established. The case when L = D is
completely analogous. �

6.2. Cluster expansion.
By neglecting the difference between the models (5.8) and (5.10), as follows from Lemma V.1,

we see that Lemma V.1(A) guarantees that contour weights decay fast enough with the size of
the contour, provided q is large and either the fields are not too large positive or the temperature
is not too large. As then follows, e.g., from [Z,BI], the phase digram can be computed by
equating the metastable free energies fO, fI , fJ , fD corresponding to the phases Q, I, J , and D.
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The latter quantities are evaluated using a truncated polymer model with weights z̄L defined
by putting

z̄(Γ) =

{
z(Γ) z(Γ) ≤ e−τ |Γ|

0 otherwise.
(6.10)

Here τ is a large number growing linearly with dimension. The evaluation is performed by
means of the cluster expansion. It will be convenient to invoke here the version [KP] based on
the Möbius formula (see also [DKS] for a related setup), because, as will be appreciated later,
in this way a partial resummation of the otherwise clumsy expansion can be accomplished.
We begin by extending the definition of the polymer model partition function to any finite

set B of bonds,
ZL(B) =

∑
∆∈M(B)

∏
Γ∈∆

z̄L(Γ). (6.11)

With a slight abuse of notation, M(B) denotes here the set of compatible collections ∆ of
L-contours such that B(Γ) ⊂ B for each Γ ∈ ∆. Then we get the cluster terms

zT
L(C) =

∑
B⊂C

(−1)|C|−|B| log(ZL(B)
)

(6.12)

defined for each finite set of bonds C. Due to (6.6–7) and (6.12), the cluster terms zT
L(C) vanish

whenever the set C is not connected and decay with the size of the set C,

|zT
L(C)| ≤ ε|C|, (6.13)

where for ε we get an estimate of the order q−
1
6d both for the Bond and the Site model, in the

respective regions as articulated in Lemma V.1. In terms of these contributions we get

fL = dEL − d

β

∑
C�b

zT
L(C)
|C| (6.14)

for any L = Q, I, J,D, where b is a fixed bond.

6.3. Pirogov-Sinai expansion.
We begin by evaluating first couple of terms in the expansion of the ordered metastable free

energies, i.e., the ones for L = Q, I, J . This is feasible to do all at once, because the three phases
are of a very similar nature. Throughout the computation we neglect the difference between the
functionals z (resp. z̃) and z̄. This has no influence upon the resulting phase diagram, because,
as follows e.g. from Theorem 1.7(i) in [Z], min{diam(γ): eγ = L, zL(γ) (= z̄L(γ)} is inversely
proportional to the difference fL −minL̄ fL̄, i.e., it diverges at the points where L gives rise to
a ‘stable’ phase.
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The simplest possible contour inside an ordered phase corresponds to a single bond being
flipped from L to D. Then C above contains only one bond, in which case we denote it
pictorially as . Since there are no non-trivial sub-terms to , we get ZL( ) = 1+ zL( ),
which yields, for all L = Q, I, J ,

zT
L( ) = log

(
1 +

1
eβJ − 1

)
. (6.15)

The next simplest contours correspond to flipping two, three, four or more neighboring sites,
but without having ‘liberated’ any single site from the L-phase. It is not difficult to see from
(6.8) that all these contours have a vanishing zT

L functional. Namely, ZL(C) = [1 + zL( )]|C|

in that case, and the same applies also to all subsets B ⊂ C, resulting in enormous cancelations
due to the term (−1)|C|−|B|. This is acturally the reason why it is more convenient to work
with C’s rather than the contours themselves, because otherwise this effect would be concealed
under complicated geometry considerations and would appear, if at all, just as a sheer miracle.
The next non-trivial contribution therefore comes from ‘liberating’ a single site. Then the

corresponding set C has a shape of a d-dimensional coordinate ‘star’, i.e., the set of all bonds
adjacent to a single site, denoted pictorially as . In that case we have ZL( ) = [1 +

zL( )]2d + zL( )− zL( )2d. By observing that zL( ) = DL [zL( )]2d, with

DL = (q + eβh1 + eβh2)×


1 L = Q

e−βh1 L = I

e−βh2 L = J,

(6.16)

we get

zT
L( ) = log

(
1 + (DL− 1)

[ zL( )
1 + zL( )

]2d)
. (6.17)

This is where we stop evaluating the cluster terms. However, in order to estimate correctly
the error incurred thereby, let us find out what is the next contributing cluster. It turns
out that (as before, but now a little less transparently) larger C’s that do not ‘liberate’ an
additional site get again zero under (6.8). This is because their partition sums ZL(C) factorize
into products ZL( )ZL( )|C� |. The next contributing C then consists of two coordinate
‘stars’ positioned next to each other. Since the induced contour has |γ| ≥ 4d − 2, we get an
error term of size q−

4d−2
6d , i.e.,

fL = dEL − d

β
zT
L( )− 1

β
zT
L( ) +O(q− 1

2 ) (6.18)

for arbitrary dimension d ≥ 2 and L = Q, I, J .
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The computation of fD is fairly analogous in spirit, so let us stay sketchy. It turns out
that, in order to get below the error exhibited in (6.18), it suffices to analyze only the simplest
possible cluster C, with |C| = 1. In the graphical language, this corresponds to connecting two
disordered sites by an ordered bond—we denote the corresponding C pictorially as . Then
we have

zT
D( ) = log

(
1 + (eβJ − 1) q + e2βh1 + e2βh2

(q + eβh1 + eβh2)2

)
. (6.19)

The higher-order clusters correspond to contours with the surface of at least 6d− 4, whence we
obtain

fD = dED − d

β
zT
D( ) +O(q−

3
4 ), (6.20)

for all d ≥ 2.
6.4. High field/temperature expansion.
So far we have dealt with fields or temperatures taking not too large positive values. The

opposite extremes are handled by the high-fugacity and the high-temperature expansions [Ru].
In the former case, with the most interesting application to the one-field problem (see Fig. 1),
this has to be done back in the original spin language, because the graphical representation keeps
on exhibiting a phase transition—a percolation transition inherent to the Bernoulli measure
used to generate the graphical representation.
Let us sketch how such an expansion is devised in the ‘almost’ one-field case (i.e., when

h1  max{h2, 0}). We shall do this by a reduction to a contour model, whose means of control
have been elucidated already in Subsections 6.1 and 6.2. Let us assume the original spin model
with Hamiltonian (2.1), and, given a spin configuration σ, let us declare x to be a bad site
whenever σx (= 1. Contours are then the connected components of the set of all bad sites. Each
geometrical contour Γ then carries the weight

>̂(Γ) =
∑
σΓ

σx �=1 ∀x∈Γ

exp
(−βH1

Γ(σΓ)
)
, (6.21)

with H1
Γ denoting the restriction of (2.1) to Γ ∪ ∂Γc with the boundary condition at ∂Γc set

equal to 1. An analogous expression to (6.2) then holds for the partition function of the model,
however, with only one (equal to 1) ‘ground state’ configuration entering the product over L̄.
Moreover, all internal/external colors of the contours are automatically matching, being equal
to 1, so the only consistency condition required upon the contours is that they do not touch
each other.
The associated weights z1 are then given by the expression

z1(Γ) = e−βh1|Γ|>̂(Γ), (6.22)
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where |Γ| is the number of sites in Γ, with z1 fulfilling the bound

z1(Γ) ≤
[
e−βh1(q + eβh2)e2βJd

]|Γ|
, (6.23)

derived by estimating the interactions within Γ by their absolute minimum. Thence, for h1

large enough, the contour model with weights z1 can be cluster-expanded as indicated in Subec-
tion 6.2, showing thus that each Gibbs state features a decisive abundance of 1-sites—a typical
configuration under any measure looks as a ‘sea’ of 1’s with small ‘islands’ of other values of
the spins. Consequently, there is a uniqueness of the infinite volume Gibbs states, provided
h1  max{h2, 0, 2Jd, 1

β log q}.
The expansion associated with high temperatures (i.e., small β) is developed analogously,

however, one can stay with the graphical representation in this case. Namely, as is seen from
(5.3), each ordered bonds is assigned a weight proportional to βJ , for β small enough, so by
declaring all ordered bonds to be bad we are in the same situation as in the high-field case.
Contours are then the connected components of the set of all ordered bonds. In this way,
uniqueness of the Gibbs state for the full Edwards-Sokal measure can be proved, yielding as a
corollary the uniqueness of the associated Gibbs state.

6.5. Proof of Theorem II.1.
The claim is, in fact, for the most part already proved. Namely, by inspection of the

Lemma V.1, there are h̄, β̄ positive, such that the expansion methods converge in the parameter
set

R̄ = {(β, h): h ≤ h̄} ∪ {(β, h): β ≥ β̄}. (6.24)

Notably, here β̄ is about a third of the critical temperature of the q-state Potts model. By the
expansions from the previous subsections, the corresponding phases as well as the coexistence
lines are established in R̄.
As to the percolation statements, first note that the percolation lines coincide with the first-

order transition lines in R̄, because all contours are finite almost surely. The statement about
the Gibbs uniqueness then follows from Theorem III.4(i). The result for the one-field case and
d = 2 is then an adaptation of Theorem III.4(iv).
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SUMMARY

Understanding phase transitions, both qualitatively and quantitatively, is one of the most
frequented topics of investigation on the borderline of statistical physics and probability theory.
This thesis offers four studies on the subject: in four papers written in collaboration with my
two promotors F. den Hollander and R. Kotecký and with L. Chayes from UCLA and C. Borgs
and J. Chayes from Microsoft Research, various aspects of phase transitions are studied by
rigorous mathematical methods.
The unifying framework of these papers is the theory of infinite-volume Gibbs measures,

with the latter describing the large-volume asymptotics of the physical systems of interest. The
occurrence of a phase transition means that this asymptotics is not unique, but depends cru-
cially on the choice of the parameters and on the boundary condition. In order to control such
phenomena, different tools have to be applied in different contexts. In particular, we demon-
strate three techniques ‘in action’, applied to phase transitions in a model of a heteropolymer
at an interface (Chapter 2) and in lattice models related to the Potts model (Chapters 3–5).
Below we proceed by summarizing the problems that are addressed, with no intention of being
exhaustive—the reader is urged to consult the Introduction and the respective chapters for a
more detailed commentary.
The first paper ‘A Heteropolymer near a linear interface’ deals with the thermodynamics

of a disordered chain of two species of monomers, with an interaction tending to place each
monomer on one side of a one-dimensional interface. The ‘disorder’ is quenched, in the sense
that the monomer arrangement is fixed and is sampled from an i.i.d. random sequence of ±1.
In the parameter region where previous work shows a localization property in terms of the free
energy, the existence of a unique Gibbs measure and some of its properties are established,
for instance, the exponential tail for the distribution of the typical distance of a monomer
away from the interface. The heteropolymer is described by a stationary process which makes
coupling theory and ergodic theory available. The latter are indeed our main technical tools
throughout this chapter.
The second paper ‘Coexistence of partially disordered/ordered phases in an extended Potts

model’ studies the phase diagram of a ‘crossbreed’ between the Ising model and the Potts model,
related to the ‘fuzzy’ Potts model with two ‘fuzzy’ spin-values. More precisely, the q Potts spins
are split into two families labeled by the ‘fuzzy’ spin ±1, with an additional Ising interaction
and an external field acting on the latter variables. However, unlike previous studies, we are
predominantly concerned with the case when the families are of different sizes. In this case, the
phase diagram exhibits two distinct triple points at intermediate temperatures, connected by
the first-order phase transition line between the low-temperature ordered phase concentrated
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on the spins of one family and the high-temperature disordered phase concentrated on the spins
of the other family. The complexity of the spin system is reduced by resorting to a ‘graphical
representation’, which allows for characterizations of the phases in terms of percolation.
The third paper ‘Reflection positivity of the random-cluster measure invalidated for nonin-

teger q’ is linked with the previous one, in the sense that it disqualifies its main technical tool
whenever one tries to cover the ‘extension’ of the graphical representation to noninteger spin
numbers (the so-called random-cluster model). Since reflection positivity is associated with
nice convexity properties of the system (this is the way it arises in quantum field theory), this
suggest that the random-cluster model is not a ‘nice’ field theory for q noninteger. The lack
of reflection positivity serves thus as another example where an ‘obvious’ analytic continuation
fails, as has been elaborated on in related contexts by Griffiths and Gujrati.
The fourth paper ‘Gibbs structure and phase coexistence in the Potts model with external

fields’ devises a novel approach to the Gibbs theory of coupled Potts-spin and random-cluster
measures—the so-called Edwards-Sokal (ES) measures. In the case when each of the Potts
spins is coupled to an external field, we prove several structure theorems on (1) the relation
between the number of Potts-spin and ES Gibbs measures, (2) the FKG properties of the
random-cluster projections of the ES measures, (3) the existence of the thermodynamic limit
for ‘extremal’ boundary conditions, and (4) the characterization of phase transitions in terms
of percolation. Using the powerful expansion technique, based on a merging of Pirogov-Sinai
theory with ‘colored’ random-cluster representations, we further establish large parts of the
phase diagram in the case of two fields taking on nonzero values.
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SAMENVATTING

Het begrijpen van faseovergangen, zowel kwalitatief als kwantitatief, is een van de meest in-
tensief onderzochte onderwerpen op het grensvlak tussen de statistische fysica en de kansreken-
ing. Dit proefschrift presenteert vier studies op dit gebied: in vier artikelen, die geschreven
werden in samenwerking met mijn twee promotores F. den Hollander en R. Kotecký en met
L. Chayes van UCLA en C. Borgs en J. Chayes van Microsoft Research, worden verschillende
aspecten van faseovergangen bestudeerd met wiskundig strenge methoden.
Het verbindende thema van deze artikelen is de theorie van Gibbsmaten op oneindige ruimten,

waarbij deze laatste het limietgedrag representeren van de onderzochte systemen wanneer het
volume groot is. Het optreden van een faseovergang betekent dat dit limietgedrag niet uniek
is, maar afhangt van de keuze van de parameters en van de randvoorwaarden. Om greep te
krijgen op dergelijke verschijnselen moeten afhankelijk van de situatie verschillende gereed-
schappen gebruikt worden. We laten in het bijzonder drie technieken ‘in actie’ zien, toegepast
op faseovergangen in een model van een heteropolymeer in de nabijheid van een grensvlak
(hoofdstuk 2) en in roostermodellen verwant aan het Pottsmodel (hoofdstuk 3–5). Hieronder
gaan we verder met het samenvatten van de vraagstellingen die we behandelen, zonder daarbij
uitputtend te willen zijn–de lezer wordt dringend verzocht om voor gedetailleerder commentaar
er de inleiding en de desbetreffende hoofdstukken op na te slaan.
Het eerste artikel—over een heteropolymeer in de nabijheid van een lineair grensvlak—

behandelt de thermodynamica van een ongeordende keten van twee soorten monomeren, met
een wisselwerking die de neiging heeft om de monomeren elk aan een kant van het eendimen-
sionale grensvlak te plaatsen. De ongeordendheid is ‘quenched’, in de zin dat de volgorde van
de monomeren vaststaat en getrokken is uit een o.i.v. rij van ±1. In een parametergebied
waar eerder werk een localisatie-eigenschap laat zien in termen van de vrije energie, wordt het
bestaan van een unieke Gibbsmaat en een paar van zijn eigenschappen aangetoond, bijvoor-
beeld de exponentiele staart van de verdeling van de typische afstand van een monomeer tot
het grensvlak. Het heteropolymeer wordt beschreven met een stationair proces dat het gebruik
van koppelingstheorie en ergodentheorie beschikbaar maakt. Deze laatste twee zijn in feite onze
belangrijkste stukken gereedschap in dit hoofdstuk.
Het tweede artikel—over het naast elkaar bestaan van gedeeltelijk geordende/ongeordende

fasen in een uitbreiding van het Pottsmodel—onderzoekt hat fasediagram van een kruising
tussen het Isingmodel en het Pottsmodel, gerelateerd aan het ‘fuzzy’ Pottsmodel met twee
‘fuzzy’ spinwaarden. Om precies te zijn worden de q Potts-spins verdeeld in twee families, aange-
duid met de ‘fuzzy’ spin ±1, met daaraan toegevoegd een Ising-wisselwerking en een uitwendig
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veld dat werkt op deze laatste grootheden. In tegenstelling tot eerder onderzoek houden wij
ons echter hoofdzakelijk bezig met het geval dat de families van verschillende grootte zijn. In
dit geval laat het fasediagram bij gematigde temperaturen twee verschillende driefasenpunten
zien, verbonden door de lijn van de eerste-orde faseovergang tussen de lage-temperatuur geor-
dende fase geconcentreerd op de spins uit één familie, en de hoge-temperatuur ongeordende
fase geconcentreerd op de spins uit de andere familie. De complexe natuur van het spinsysteem
wordt gereduceerd door middel van een ‘grafische representatie’, die het mogelijk maakt de
fasen in termen van percolatie te karakteriseren.
Het derde artikel—over het uitgesloten zijn van reflectie-positiviteit voor de random-cluster-

maat voor niet gehele q—houdt verband met het vorige, in de zin dat het voornaamste daar
gebruikte stuk gereedschap buiten spel wordt gezet zodra men probeert om ook de ‘uitbreiding’
te behandelen van de grafische representatie naar niet gehele aantallen spins (het zogenaamde
random cluster model). Aangezien reflectie-positiviteit verband houdt met ‘prettige’ convex-
iteitseigenschappen van het systeem (dit is hoe het in de quantumveldentheorie opduikt), sug-
gereert dit dat het random cluster model geen ‘prettige’ veldentheorie is voor niet gehele q.
Het ontbreken van reflectiepositiviteit geeft dus een voorbeeld van een geval waarin een ‘voor
de hand liggende’ analytische voortzetting faalt, zoals in verwante context is uitgewerkt door
Griffiths en Gujrati.
Het vierde artikel—over Gibbs structuur en het naast elkaar bestaan van fasen in het

Pottsmodel met uitwendige velden—ontwerpt een nieuwe aanpak van de Gibbstheorie van
gekoppelde Pottsspin- en random-cluster-maten—de zogenaamde Edwards-Sokal (ES) maten.
In het geval dat elk van de Pottsspins gekoppeld is aan een uitwendig veld, bewijzen we
verschillende structuurstellingen aangaande het aantal Pottsspin- en ES-Gibbs-maten, FKG-
eigenschappen van de random-cluster-projecties van de ES-maten, het bestaan van de thermo-
dynamische limiet voor ‘extremale’ randvoorwaarden, en de karakterisatie van faseovergangen in
termen van percolatie. Met gebruikmaking van de krachtige expansietechniek, gebaseerd op een
samengaan van Pirogov-Sinai-theorie met ‘gekleurde’ random-cluster-representaties, bepalen we
verder grote delen van het fasediagram in het geval van twee velden die waarden ongelijk aan
nul aannemen.
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After July 1, 1999, we both return to Microsoft, where I will be a post-doc for two years in

the ‘Theory’ group.


