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Abstract: We consider a variety of nearest-neighbor spin models defined od-the
dimensional hypercubic lattic&?. Our essential assumption is that these models satisfy
the condition of reflection positivity. We prove that whenever the associated mean-field
theory predicts a discontinuous transition, the actual model also undergoes a discontin-
uous transition (which occurs near the mean-field transition temperature), provided the
dimension is sufficiently large or the first-order transition in the mean-field model is suf-
ficiently strong. As an application of our general theory, we show that farfficiently

large, the 3-state Potts ferromagnet@h undergoes a first-order phase transition as
the temperature varies. Similar results are established forsthte Potts models with

g > 3, ther-component cubic models with> 4 and theO(N)-nematic liquid-crystal
models withN > 3.
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1. Introduction

1.1. Motivation and outline Mean-field theory has traditionally played a seminal role

for qualitative understanding of phase transitions. In fact, most practical studies of com-
plex physical systems begin (and sometimes end) with the analysis of the corresponding
mean field theory. The central idea of mean-field theory—dating back to [15, 53]—
is rather compelling: The ostensibly complicated interactions acting on a particular
element of the system are replaced by the action of an effectivenéar) external

field. This field causes a response at the point of question and its value has to be self-
consistently adjusted so that the response matches the effective field. The practical out-
come of this procedure is a set of equations, known asrtban-field equationdn
contrast to the original, fully interacting system, the mean-field equations are suscepti-
ble to direct analytical or numerical methods.

There is a general consensus that mean-field predictions are qualitatively or even
guantitatively accurate. However, for short-range systems, a mathematical foundation of
this belief has not been presented in a general context. A number of rigorous results have
related various lattice systems to their mean-field counterparts, either in the form of
bounds on transition temperatures and critical exponents, see [19,20,52] and references
therein, or in terms of limits of the free energy [48] and the magnetization [12, 41] as
the dimension tends to infinity. In all of these results, the nature of the phase transition
is not addressed or the proofs require special symmetries which, as it turns out, ensure
that the transition is continuous. But, without special symmetries (or fine tuning) phase
transitions are typically discontinuous, so generic short-range systems have heretofore
proved elusive. (By contrast, substantial progress along these lines has been made for
systems where the range of the interaction plays the role of a large parameter. See,
e.g., [10,11,14,47].)

In this paper we demonstrate that for a certain class of nearest-neighbor spin sys-
tems, namely those that areflection positive mean-field theory indeed provides a
rigorous guideline for the order of the transition. In particular, we show that the actual
systems undergo a first-order transition whenever the associated mean-field model pre-
dicts this behavior, provided the spatial dimension is sufficiently high and/or the phase
transition is sufficiently strong. Furthermore, we give estimates on the difference be-
tween the values of parameters of the actual model and its mean-field counterpart at
their corresponding transitions and show that these differences tend to zero as the spa-
tial dimension tends to infinity. In short, mean field theoryigntitatively accurate
whenever the dimension is sufficiently large.
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The main driving force of our proofs is the availability of the so caliefilared
bound[18,22-24], which we use for estimating the correlations between nearest-neigh-
bor spins. Itis worth mentioning that the infrared bound is the principal focus of interest
in a class of rigorous results on mean-fietitical behavior of various combinatorial
models [13,30-32,37,39] and percolation [29, 33-36, 38, 40] based on the technique of
the lace expansion. However, in contrast to these results (and to the hard work that they
require), our approach is more reminiscent of the earlier works on high-dimensional
systems [1-3], where the infrared bound is provided ampnt. In particular, for our
systems this input is a consequence of reflection positivity. (As such, some of our results
can also be extended to systems with long-range forces; the relevant modifications will
appear in a separate publication [9].)

The principal substance of this paper is organized as follows: We devote the remain-
der of Section 1 to a precise formulation of the general class of spin systems that we
consider, we then develop some general mean-field formalism and, finally, state our
main theorems. Section 2 contains a discussion of three eminent models—Potts, cu-
bic and nematic—with specific statements of theorems which underscore the first-order
(and mean-field) nature of the phase transitions for the ldrgersion of these models.

In Section 3 we develop and utilize the principal tools needed in this work and provide
proofs of all statements made in Section 1. In Section 4, we perform detailed analyses
and collect various known results on the mean-field theories for the specific models
mentioned above. When these systems are “sufficiently prepared,” we apply the Main
Theorem to prove all of the results stated in Section 2. Finally, in Section 5, we show
that for any model in the class considered, the mean-field theory can be realized by
defining the problem on the complete graph.

1.2. Models of interestThroughout this paper, we will consider the following class of
spin systems on tha-dimensional hypercubic lattic&": Thespins denoted bys,, take
values in some fixed s€k, which is a subset of a finite dimensional vector sgageWe
will use (-, -) to denote the (positive-definite) inner productip and assume thak
is compact in the topology induced by this inner product. The spins are weighted ac-
cording to ara priori Borel probability measurg whose support i€2. An assignment
of a spin valueS, to each sitex € Z¢ defines aspin configurationwe assume that the
a priori joint distribution of all spins orZ9 is i.i.d. Abusing the notation slightly, we
will use « to denote the joina priori measure on spin configurations and gség to
denote the expectation with respecyto

The interaction between the spins is described by the (formal) Hamiltonian

J
fH = =25 2 (S6S) = > (b.S). (1.2)
(x,y) X

Here(x, y) denotes a nearest-neighbor pai#Z8f the quantityb, playing the role of an
external field, is a vector frofig andg, the inverse temperature, has been incorporated
into the (normalized) coupling constaht> 0 and the field parametér

The interaction Hamiltonian gives rise to the concept of a Gibbs measure which is
defined as follows: Given a finite sat c Z9, a configuratiorS = (Sy)xea in A and a
boundary conditio’®’ = (S))yczd\ in Z9\ A, we letfH, (S|S) be given by (1.1) with
the first sum on the right-hand side of (1.1) restricte¢ktoy) such thafx, y}N A # 4,
the second sum restrictedxoe A, andSy for x ¢ A replaced byS,. Then we define
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the measure(Ag) on configuration$in A by the expression
—BHA(SIS)
(S) €
v (dS) = ———=—u(dS), 1.2

where Z (S) is the appropriate normalization constant which is calledpstition
function The measure in (1.2) is thimite-volume Gibbs measueerresponding to the
interaction (1.1).

In statistical mechanics, the measure (1.2) describes the thermodynamic equilib-
rium of the spin system irk. To address the question of phase transitions, we have to
study the possible limits of these measures\asxpands to fill inZ9. In accord with
the standard definitions, see [26], we say that the spin model underdwssader
phase transitiorat parameter valuegl, b) if there are at least two distinct infinite-
volume limits of the measure in (1.2) arising from different boundary conditions. We
will call these limiting objects either infinite-volume Gibbs measures or, in accordance
with mathematical-physics nomenclatu@&pbs statesWe refer the reader to [26, 52]
for more details on the general properties of Gibbs states and phase transitions.

We remark that, while the entire class of models has been written so as to appear
identical, the physics will be quite different depending on the particulats ahd x,
and the inner product. Indeed, the language of magnetic systems has been adapted only
for linguistic and notational convenience. The above framework can easily accommo-
date any number of other physically motivated interacting models such as lattice gases,
ferroelectrics, etc.

1.3. Mean-field formalismHere we will develop the general formalism needed for
stating the principal mean-field bounds. The first object of interest is the logarithmic
moment generating function of the distributian

G(h) = log /Q w1 (dS) S, (1.3)

SinceQ was assumed compa@(h) is finite for allh € Eq. Moreover,h — G(h) is
continuous and convex throughdti.

Every mean-field theory relies on a finite number of thermodynamic functions of
internal responses. For the systems with interaction (1.1), the object of principal interest
is themagnetizationin general, magnetization is a quantity taking values in the closed,
convex hull ofQ, here denoted by Co®). If m € ConQ), then themean-field
entropy functions defined via a Legendre transform®@th),

S(m) = hiergﬂ{G(h) —(m, h}. (1.4)

(Strictly speaking, (1.4) makes sense evennfioez Conv(Q) for which we simply get
S(m) = —o0.) In generalm — S(m) is concave and we havg(m) < 0 for all
m e Con\Q). From the perspective of the large-deviation theory (see [16, 19]), the
mean-field entropy function is (the negative of) the rate function for the probability that
the average of many spins is near

To characterize the effect of the interaction, we have to introduce energy into the
game. For the quadratic Hamiltonian in (1.1), {heean-field) energy functiaa given
simply by

1
Ejp(m) = —§J|m|2 — (M, b), (1.5)
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where|m|2 = (m, m). On the basis of physical considerations, a state of thermo-
dynamic equilibrium corresponds to a balance between the energy and the entropy.
The appropriate thermodynamic function characterizing this balance is the free en-
ergy. We therefore define theean-field free-energy functidsy setting®jp(m) =
EJ,b(m) - S(m), i.e.,

B35(m) = ~ 3 IImP? — (m, b) — S(m). (1.6)

The mean-field (Gibbs) free ener@yyr(J, b) is defined by minimizing®; ,(m) over
all m € Con\Q). Assuming a unique minimizer, this and (1.4-1.5) give us a definition
of the mean-field magnetization, entropy and energy. A more interesting situation oc-
curs when there is more than one minimizerafy,. The latter cases are identified as
the points of phase coexistence while the former situation is identified as the unique-
ness region.

For the sake of completeness, it is interesting to observe that every minimizer of
@, (M) (in fact, every stationary point) in the relative interior of Cy is a solution
of the equation

m = VG(JIm+b), a.7)

where V denotes the (canonical) gradientlily,. This is themean-field equatioifor

the magnetization, which describes the self-consistency constraint that we alluded to in
Section 1.1. The relation between (1.7) and the stationarity of is seen as follows:

V& ;5(m) = 0 implies thatJm + b + VS(m) = 0. Buth = —V S(m) is equivalent to

m = VG(h), and stationarity therefore implies (1.7).

We conclude with a claim that an immediate connection of the above formalism
to somestatistical mechanics problem is possible. Indeed, if the Hamiltonian (1.1) is
redefined for the complete graph dhvertices, then the quanti; p(m) emerges as
the rate function in a large-deviation principle for magnetization and hEggéJ, b)
is the free energy in this model. A precise statement and a proof will appear in the last
section (Theorem 5.1 in Section 5); special cases of this result have been known since
time immemorable, see e.g. [19].

1.4. Main results.Now we are in a position to state our general results. The basic idea is
simply to watch what happens when the value of the magnetization in an actual system
(governed by (1.1)) is inserted into the associated mean-field free-energy function. We
begin with a general bound which relies only on convexity:

Theorem 1.1.Consider the spin system @9 with the Hamiltonian(1.1) and letvyp
be an infinite-volume Gibbs measure corresponding to the parameters @ and

b € Eq in (1.1). Suppose that; is invariant under the group of translations and
rotations ofZd. Let(—) J,b denote the expectation with respectig, and letm, be the
magnetization of the state  defined by

m, = (S())J,ba (1-8)

where0 denotes the origin iZ¢. Then

. J
Dyp(My) < meél(’)lrl:m) @yp(M) + §[<(SO’ SI)sp — Im.?], (1.9)

where x denotes a nearest neighbor of the origin.
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Thus, whenever the fluctuations of nearest-neighbor spins have small correlations,
the physical magnetizatioalmostminimizes the mean-field free energy. The bound
(1.9) immediately leads to the following observation, which, to the best of our knowl-
edge, does not appear in the literature:

Corollary 1.2. Letvjp and(—)p be asin Theorem 1.1 and let, be asin(1.8). Then
(S, Sy))yp = IMLI? (1.10)

for any pair of nearest-neighbors ¥ € Z9. In particular, for any model with interac-
tion (1.1), the nearest-neighbor spins are positively correlated in any Gibbs state which
is invariant under the translations and rotationszf.

Our next goal is to characterize a class of Gibbs states for which the correlation term
on the right-hand side of (1.9) is demonstrably small. However, our proofs will make
some minimal demands on the Gibbs states themselves and it is therefore conceivable
that we may not be able to accesdbthe extremal magnetizations. To define those val-
ues of magnetization for which our proofs hold, FetJ, b) denote the infinite-volume
free energy per site of the system @A, defined by taking the thermodynamic limit
of —ﬁ log Zx, see e.g. [50]. (Note that the existence of this limit follows automati-
cally by the compactness &f.) The functionF (J, b) is concave and, therefore, has all
directional derivatives. LetZ,(J, b) be the set of all pairse], m,] such that

F(J+AJ, b+ Ab) — F(J,b) < &,AJ + (m,, Ab) (1.11)

holds for all numbersA J and all vectorsAb € Eq. By a well-known result (see the
discussion of the properties sdibdifferentiabn page 215 of [51])/4(J, b) is a convex
set; we let#,(J, b) denote the set of all values, such that ., m,] is an extreme
point of the set’,(J, b) for some value,.

Our Main Theorem is then as follows:

Main Theorem. Let d > 3 and consider the spin system @4 with the Hamilto-
nian (1.1). Let n denote the dimension &q. For J > Oandb € Egq, letm, €
(3, b). Then

K
Dyp(m,) < inf  ®j3p(mM)+ JIn=1I 1.12
3,6( *)_meconv(g) 3,p(m) + 5lds (1.12)
wherex = maxscq (S, S) and

d _ Bn12
ld:/[ d% [1- D(K)]

—rapd @r)4 Dk (1.13)

with D(k) = 1— 3 >°{_; cosky).

The bound (1.12) provides us with a powerful method for proving first-order phase
transitions on the basis of a comparison with the associated mean-field theory. The
key to our whole program is that the “error termFnzlq, vanishes in th& — oo
limit; in fact,

lg = %(1+0(1)) as d— oo, (1.14)
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Fig. 1. The mean-field free energy as a function of a scalar magnetizaiidi for the typical model under-
going a first-order phase transition. In an interval of values athere are two local minima which switch
their order at = Jyg. If the “barrier” heightA (J) always exceeds the error term from (1.12), there is a
forbidden interval of scalar magnetizations an@J) has to jump as) varies. The actual plot corresponds
to the 3-state Potts model fdrtaking the values (a).23, (b) 276, (c) 277 and (d) 28. See Section 2.1 for
more details.

see [12]. Fod sufficiently large, the bound (1.12) thus forces the magnetization of the
actual system to beeara value ofm thatnearlyminimizes®; ,(m). Now, recall a typ-

ical situation of the mean-field theory with a first-order phase transition: Theréyjg a
such that, forJ nearJyg, the mean-field free-energy function has two nearly degen-
erate minima separated by a barrier of heigltl), see Figure 1. If the barriek(J)
always exceeds the error term in (1.12), i.e.AifJ) > JInzlg, some intermediate
values of magnetization are forbidden and,Jascreases througkiur, the physical
magnetization undergoes a jump at sodpaearJyr. See also Figure 2.

The Main Theorem is a direct consequence of Theorem 1.1 and the following lemma:

Key Estimate. Let J > O andb € Eg and letm, € .Z,(J,b). Let n,x and Iy be as
in the Main Theorem. Then there is an infinite-volume Gibbs stagefor interaction
(1.1) such that

M, = (So)u,b (1.15)
and
((Sx: Sy)) = IM.l? < niclg, (1.16)

for any nearest-neighbor pair,y € Z9. Here (—)J,b denotes the expectation with
respect ta .
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The Key Estimate follows readily under certain conditions; for instance, when the
parameter values andb are such that there is a unique Gibbs state. Under these cir-
cumstances, the bound (1.16) is a special case of the infrared bound which can be
derived using reflection positivity (see [18, 22—24]) and paying close attention to the
“zero mode.” Unfortunately, at the points of non-uniqueness, the bound in (1.16) is also
needed. The restriction to extreme magnetizations is thus dictated by the need to ap-
proximate the magnetizations (and the states which exhibit them) by states where the
standard “RP, IRB” technology can be employed.

The Key Estimate and Theorem 1.1 constitute a proof of the Main Theorem. Thus,
a first-order phase transition (fdr>>> 1) can be established in any system of the form
(1.1) by detailed analysis of the full mean-field theory. Although this sounds easy in
principle, in practice there are cases where this can be quite a challenge. But, ultimately,
the Main Theorem reduces the proof of a phase transitions to a problem in advanced
calculus where (if desperate) one can employ computers to assist in the analysis.

1.5. Direct argument for mean-field equatioe have stated our main results in the
context of the mean-field free energy. However, many practical calculations focus im-
mediately on the mean-field equation for magnetization (1.7). As it turns out, a direct
study of the mean-field equation provides us with an alternative (albeit existential) ap-
proach to the results of this paper. The core of this approach is the variance bound for
the magnetization stated as follows:

Lemma 1.3.Let d > 3and consider the spin system @f with the Hamiltoniar(1.1).
Let n and } be as in the Main Theorem. For 3 O andb € Eq, letm, € .#,(J, b).
Then there is an infinite-volume Gibbs statgy, for the interaction(1.1) such that

m, = (So)a,b and .
(2 > s-m.
X: [X|=1

where(—) n denotes the expectation with respect ig,.

Here is how the bound (1.17) can be used to prove that mean-field equations are
accurate in sufficiently large dimensions: Conditioning on the spin values at the neigh-
bors of the origin and recalling the definition Gf(h), the expectatioriSy) b can be

written as 3
(So)ap = <VG(E > S+ b)> : (1.18)

X: |X|=1 J.b
Since the right-hand side of (1.17) tends to zerd as oo, the (spatial) average of the
spins neighboring the origin—name% > x: ixi=1 Sx—is, with high probability, very
close tom,. Using this in (1.18), we thus find tlwat* approximately satisfies the mean-
field equation (1.7). Thus, to demonstrate phase coexistence od) it is sufficient
to show that, along some curve in the parameter space, the solutions to the mean-field
equations cannot be assembled into a continuous function. In many cases, this can be
done dramatically by perturbative arguments.

While this alternative approach has practical appeal for certain systems, the principal
drawback is that it provides no clue as to the location of the transition temperature.
Indeed, as mentioned in the paragraph following the Main Theorem, secondary minima
and other irrelevant solutions to the mean-field equations typically develop well below
J = Jur. Without the guidance of the free energy, there is no way of knowing which
solutions are physically relevant.

2> <nJtig (1.17)
b~ ’ '
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Fig. 2. The solutions of the mean-field equation for the scalar order paramedsra function of) for the
10-state Potts model. The solid lines indicate the local minima, the dashed lines show the other solutions
to the mean-field equation. The portions of these curves in the regions wihiersufficiently close to zero

or one can be (rigorously) controlled using perturbative calculations. These alone prove that the mean-field
theory “does not admit continuous solutions” and, therefore, establish a first order transitiehssfot.

The shaded regions show the set of allowed magnetizations for the sys@?rwdnenld < 0.002. In addi-

tion to manifestly proving a discontinuous transition, these provide tight numerical bounds on the transition
temperature and reasonable bounds on the size of the jump.

2. Results for specific models

In this section we adapt the previous general statements to three modeaisstifte
Potts model, the-component cubic model and tia N)-nematic liquid crystal model.
For appropriate ranges of the parametgrs and N and dimension sufficiently large,
we show that these models undergo a first-order phase transitibnages. The rele-
vant results appear as Theorems 2.1, 2.3 and 2.6.

2.1. Potts model.The Potts model, introduced in [49], is usually described as having a
discrete spin space withstatesgy € {1, 2, ..., g}, with the (formal) Hamiltonian

BH ==0>" 05,0, (2.1)
(X,y)

Hered,, s, is the usual Kronecker delta agd= %. To bring the interaction into the
form of (1.1), we use the so calléetrahedralrepresentation, see [54]. In particular, we

let Q = {V1, ..., Vq}, whereV, denote the vertices of @ — 1)-dimensional hyperte-
trahedron, i.e, € R4~ with

. 1, if a = p,

Vo - Vp = {—q—fl, otherwise. (2.2)

The inner product is proportional to the usual dot produ@®in. Explicitly, if Sy € Q
corresponds tey € {1, ..., q}, then we have

-1 1
(508 = TS0y = ooy — o 2:3)
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(The reason for this rescaling the dot product is to maintain coherence with existing
treatments of the mean-field version of this model.) Bheriori measureu gives a
uniform weight to allg states inQ.

Let us summarize some of the existing rigorous results abougt#tate Potts model.
Theq = 2 model is the Ising model, which in mean-field theory as well as real life has
a continuous transition. It is believed that the Potts model has a discontinuous transition
foralld > 3 andg > 3 (see, e.g., [54]). In ang > 2, it was first proved in [45]
that for q sufficiently large, the energy density has a region of forbidden values over
which it must jump discontinuously asincreases. On the basis of FKG monotonicity
properties, see [4], this easily implies that the magnetization is also discontinuous. Such
results have been refined and improved; for instance in [44, 46], Pirogov-Sinai type ex-
pansions have been used to show that there is a single point of discontinuity outside of
which all quantities are analytic. However, for> 3, the values ofj for which these
techniques work are “astronomical,” and, moreover, deteriorate exponentially with in-
creasing dimension.

Letm,(J) ande,(J) denote the the actual magnetization and energy density, respec-
tively. These quantities can be defined using one-sided derivatives of the physical free
energy:

d . 0 /

m,(J) = %F(J, bv1) b and e (J) = HF(J ,0) Jge? (2.4)
or, equivalently, by optimizing the expectatiofié:, o)), resp.,% ((S0, Sx)), where “0”
is the origin andk is its nearest neighbor, over all Gibbs states that are invariant under
the symmetries af9. Recalling the Fortuin-Kasteleyn representation [4, 21,27, 28], let
P (J) be the probability that, in the associated random cluster model with parameters
p = 1— e /@ andq, the origin lies in an infinite cluster. Than, (J) and Py, (J)
are related by the equation

m.(J) = qT_lpoo<J>. (2.5)

As a consequence, the magnetizatiog(J) is a non-decreasing and right-continuous
function of J. The energy densitg,(J) is non-decreasing id simply by concavity
of the free energy. The availability of the graphical representation allows us to make
general statements about the phase-structure of these systems. In particulad in any
2 and for allg under consideration, there isla= J:(q, d) € (0, co) such thain,(J) >
0 forJ > Je while m,(J) = 0for J < Jg, see [4,28]. Whenevean,(J;) > 0 (which,
by the aforementioned results [44-46], is knowndoy> 1), there are at least + 1
distinct extremal, translation-invariant Gibbs stateg at J..

The mean-field free energy for the model without external field is best written in
terms of components ah: If (X, ..., Xq) is a probability vector, we express as

The interpretation of this relation is immediate; corresponds to the proportion of
spins in thek-th spin-state. In terms of the variables in (2.6), the mean-field free-energy
function is (to within a constant) given by

q
®3(m) = > (=3¢ + X logx). 2.7)
k=1
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In (2.7) we have for once and all set the external fletd zero and suppressed it from
the notation.

Itis well-known (see [41,54] and also Lemma 4.4 of the present paper) that, for each
q > 3, there is alyr € (2, q) such that®; has a unique global minimizen = 0 for
J < Jur, while for J > Jur, there arey global minimizers which are obtained by per-
mutations of singlégx, .. ., Xq) with X; > X = - - - = Xq. To keep the correspondence
with m,(J), we define the scalar mean-field magnetizatiogr(J) as the maximal
Euclideannorm of all global minimizers of the mean-field free enegy(m). (In this
parametrization, the asymmetric global maxima will be giverxpy= al + mpe(Jd)

andxp = --- = Xq = %— q—ilmMF(J).) Thenmye (J) is the maximal positive solution
to the equation
J- 9 m
ea-17 -1
9 m=_% . 2.8)
q-1 ela1m 4 g-1
In particular,J — mygr(J) is non-decreasing. We note that the explicit values of the
coupling constangyr and the magnetizatiom; = myr(Jur) at the mean-field tran-
sition are known:

-1 logg—1) and m¢= qT—Z’ (2.9)

q
IvE =2
MF q—2
see e.g. [54]. Thus, the mean-field transition is first-order fay all 2.
Our main result about the Potts model is then as follows:

Theorem 2.1 (Potts model)Consider the q-state Potts model @f and let m.(J) be
its scalar magnetization. For eachx 3, there exists atJ= J(q, d) and two numbers
€1 = €1(d, J) > Oandex = e2(d) > 0 satisfyinge;(d, J) — 0, uniformly on finite
intervals of J, and2(d) —» 0as d— oo, such that the following holds:

m.(J) <er for J < (2.10)
and
IMe(d) —mye(Jd)| <€ for J> . (2.11)
Moreover,
[J — Ivr| < €2. (2.12)

In particular, both the magnetization s@J) and the energy density, @) undergo a
jump at J= J; whenever d is sufficiently large.

The jump in the energy density dt immediately implies the existence of at least
g+1 distinct extremal Gibbs measureslat J;. However, the nature of our proofs does
not permit us to conclude that,(J) = 0 for J < J nor can we rule out thah,(J)
undergoes further jumps fal > J;. (Nonetheless, the jumps fdr > J; would have
to be smaller than& (d).) Unfortunately, we can say nothing about the continugus-
variant of the Potts model—the random cluster model—for non-intggerthis work,
the proofs lean too heavily on the spin representation. Furthermore, for non-igteger
the use of our principal tool, reflection positivity, is forbidden; see [8].

We also concede that, despite physical intuition to the contrary, our best bounds
onez(d) ande1(d, J) deteriorate with increasing This is an artifact of the occurrence
of the single-spin space dimension on the right-hand side of (1.12). (This sort of thing
seems to plague all existing estimates based on reflection positivity.) In particular, we
cannot yet produce a sufficiently large dimensioior which the phase transition in all
(g > 3)-state Potts models would be provably first order.
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2.2. Cubic model.Our second example of interest is the&component cubic model.
Here the spin$, are the unit vectors in the coordinate directiongR6f i.e., if & are
the standard unit vectors IR", then

Q={+d:k=1,...,r}. (2.13)

The Hamiltonian is given by (1.1), with the inner product given by the usual dot product
in R" and thea priori measure given by the uniform measure @nAs in the last
subsection, we sdt = 0 and suppress anydependence from the notation. We note
that ther = 1 case is the Ising model while the case= 2 is equivalent to two
uncoupled Ising models.

The cubic model was introduced (and studied) in [42,43] as a model of the mag-
netism in rare-earth compounds with a cubic crystal symmetry. There it was noted that
the associated mean-field theory has a discontinuous transition fod, while the
transition is continuous far = 1, 2 and 3. The mean field theory is best expressed in
terms of the collection of parameters= (y1, ..., ¥r) andig = (u1, ..., ir), whereyy
stands for the fraction of spins that take the valti€g and uk yk is the magnetization
in the directioné. In this language, the magnetization vector can be written as

m=yiui® + -+ Yrur&. (2.14)

To describe the mean-field free-energy function, we define

r

K. 1) = > (Y 10g Yk + Yk O205(4110)). (2.15)
k=1

where® ;(u) denotes the standard Ising mean-field free energy with pja%., the
quantity in (2.7) withg = 2, x1 = 3(1+ ) andxz = 3(1— u). Thend;(m) is found
by minimizing Kg”(y, 1) over all allowed pairgy, /i) such that (2.14) holds.

As in the case of the Potts model, the global minimize®g{m) will be a permu-
tation of a highly-symmetric state. However, this time the result is not so well known,
SO we state it as a separate proposition:

Proposition 2.2.Consider the r-component cubic model. For each>JO0, the only
local minima of@j arem = 0orm = tmyr &, k=1, ...,r, where myr = mye(J)
is the maximal positive solution to the equation

sinhdm

= 2.16
r —1+ coshdm ( )

Furthermore, there is ape € (0, 0o) such that the only global minimizers &f; (m)
arem =0forJ < Jyr andm = +tmye(Dé&, k=1,...,r, (with myr(J) > 0) for
J > JvE.

For a system orZ9, the scalar magnetization is most conveniently defined as the
norm of (Sp) 3, optimized over all translation-invariant Gibbs states for the coupling
constant]. The energy densitg, (J) is defined using the same formula as for the Potts
model, see (2.4).

Our main result about the cubic model is then as follows:
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Theorem 2.3 (Cubic model).Consider the r-state cubic model &f and let m.(J)
be its scalar magnetization. Then for evergr4, there exists aiJ= Ji(q, d) and two
numbers; = €1(d, J) > Oandez = e2(d) > 0 satisfyinge1(d, J) — 0, uniformly on
finite intervals of J, and»(d) — 0as d— oo, such that the following holds:

m.(J) <er for J < (2.17)
and
Ime(J) —mme(J)| < e for J> . (2.18)
Moreover,
[J — Ivr| < e2. (2.19)

In particular, both the magnetization s6J) and the energy density,. @) undergo a
jump at J= J whenever d is sufficiently large.

As in the case of the Potts model, our technique does not allow us to concludg that
is the only value of] where the magnetization undergoes a jump. In this case, we do
not even know that the magnetization is a monotone functiod;dhe conclusions
(2.17-2.18) can be made because we know that the energy density is c%mg(tbz
and is (as always) a non-decreasing functiord ofFinally, we also cannot prove that,
in the state with large magnetization in the direct@n there will be no additional
symmetry breaking in the other directions. Further analysis, based perhaps on graphical
representations, is needed.

2.3. Nematic liquid-crystal modelThe nematic models are designed to study the be-
havior of liquid crystals, see the monograph [25] for more background on the sub-
ject. In the simplest cases, a liquid crystal may be regarded as a suspension of rod-like
molecules which, for all intents and purposes, are symmetric around their midpoint.
For the models of direct physical relevance, each rod (or a small collection of rods)
is described by an three-dimensional spin and one considers only interactions that are
(globally) O(3)-invariant and invariant under the (local) reversal of any spin. The sim-
plest latticized version of such a system is described by the Hamiltonian

J
PH(S) = =55 D (s sy)%, (2.20)
(X,y)

with s, a unit vector inR3 andx e Z9 with d = 2 ord = 3. We will study the above
Hamiltonian, but we will consider general dimensiah¢providedd > 3) and spins
that are unit vectors in argN (providedN > 3).

The Hamiltonian (2.20) can be rewritten into the form (1.1) as follows [25]H¢gpt
be the space of all tracelebs x N matrices with real coefficients and l@tbe the set
of those matrice® = (Q, p) € Eq for which there is a unit vector m = (v,) € RN
such that L
N&gﬂ, a,p=1,...,N. (2.21)
Writing Qy for the matrix arising from the spigy via (2.21), the interaction term be-
comes

Qaﬁ = Vglp —

1
(5¢+8)° =TrQuQy) + - (2.22)
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Now Eg, is a finite-dimensional vector space ai@, Q') = Tr(QQ’) is an inner prod-
uct onEq, so (2.20) indeed takes the desired form (1.1), up to a constant that has no
relevance for physics.

The a priori measure o2 is a pull-back of the uniform distribution on the unit
sphere inRN. More precisely, ifv is uniformly distributed on the unit sphere &N,
thenQ € Q is a random variable arising fromvia (2.21). As a consequence, tae
priori distribution is invariant under the action of the Lee gradgN, R) given by

Q> 07'Qxg.  ge O(N,R). (2.23)

The parameter signaling the phase transition, the so caitéet parameteris “tensor”
valued. In particular, it corresponds to the expectatio@gf The order parameter can
always be diagonalized. The diagonal form is not unique; however, we can find an
orthogonal transformation that puts the eigenvalues in a decreasing order. Thus the order
parameter is effectively aN-vectord = (11, ..., An) suchthatly > 12 > .- > An.
We note that, since ea@ is traceless, we havg, ix = 0.

The previous discussion suggests the following definition ofttadar order param-
eter: ForJ > 0, we let,(J) be the value of the largest non-negative eigenvalue of
the matrix(Qg) j, optimized over all translation-invariant Gibbs states for the coupling
constantl. As far as rigorous results about the quantityJ) are concerned, we know
from [6] that (ind > 3) 1.(J) > 0 oncel is sufficiently large. On the other hand,
standard high-temperature techniques (see e.g. [5, 7, 17]) show tha gufficiently
small then there is a unique Gibbs state. In particular, since this state is then invariant
under the action (2.23) of the fuD (N, R) group, this necessitates thigi(J) = 0 for J
small enough. The goal of this section is to show tha&t)) actually undergoes jamp
asJ varies.

The mean-field theory of the nematic model is formidable. Indeed, for any partic-
ular N it does not seem possible to obtain a workable expressio®jgd), even if
we allow that the components #éfhave only two distinct values (which is usually as-
sumed without apology in the physics literature). Notwithstanding, this simple form of
the vector minimizer and at least some of the anticipated properties can be established:

Proposition 2.4.Consider the @N)-nematic model for N> 3. Then every local min-
imum of®;(4) is an orthogonal transformation of the matrix

A :diag(z,—NL_l,...,—NL_l) (2.24)

where/ is a non-negative solution to the equation

1 5 N= )
/ dx (1 —x )Nz’se&N—)ixz(X ——N)
=120

1

N—-3 JNi,2

/dx(l—xz)TeN—lx
0

In particular, there is an increasing and right-continuous functiom-J Apme(J) such
that the unique minimizer @b;(4) isA = 0for J < Jvg, while for any J> Jur, the
function®;(4) is minimized by the orthogonal transformations of

Ine(d AME(J

At the continuity points ofur: (Jur, o) — [0, 1], these are the only global minimiz-
ers ofdy;.

(2.25)

(2.26)
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Based on the pictorial solution of the problem by physicists, see e.g. [25], we would
expect that]) — Ayp(J) is continuous on its domain and, in fact, corresponds to the
maximal positive solution to (2.25). (This boils down to showing certain convexity-
concavity property of the function on the right-hand side of (2.25).) While we could not
establish this fact for alN > 3, we were successful at least fdr sufficiently large.

The results of the larg®t analysis are summarized as follows:

Proposition 2.5.Consider the @N)-nematic model for N> 3 and Ietll,(leF)(J) be the
maximal positive solution t(2.25) Then there exists ang\> 3 and, for each N> No,
a number gir = Jur(N) € (0, co) such that for each N> Np, the unique minimizer
of d3(A) isd = 0for J < Jur, while for any J > Jur, the function®;(4) is
minimized only by the orthogonal transformationg(@f26), with Ame(J) > O.

The function J— /IKANF)(J) is continuous and strictly increasing on its domain and
has the following large-N asymptotic: For all 3 2,

1
lim AN (IN) = Z(1+v/1-43-2). (2.27)
N— oo 2
Moreover, there exists a{,ﬁ” (with J,\(,loé’) ~ 2.455) such that
. Iur(N) (00)
I = . 2.2
Ninoo N JMF ( 8)

Now we are ready to state our main theorem concer@igly)-nematics. As can be
gleaned from &arefulreading, our conclusions are not quite as strong as in the previous
cases (due the intractability of the associated mean-field theory). Neverthdiess a
fidefirst-order transition is established for these systems.

Theorem 2.6 (Nematic model) Consider the @N)-nematic model with the Hamil-
tonian (2.20)and J > 0. For each N > 3, there exists a non-negative function
J = Iye(J), a constant J= J(N, d) and two numberg; = €1(d, J) > 0 and
€2 = e2(d) > 0 satisfyingey(d, J) — 0, uniformly on finite intervals of J, and
€2(d) > 0as d— oo, such that the following holds:

For all J > 0, the matrixA = diag(4y(J), —)'K,('f_(i),...,—%) is a local
minimum of® ;. Moreover, we have the bounds
(D) <e1 for J < (2.29)
and
4:(D) = Ayp(DI < e for I > J. (2.30)
Furthermore,
| % — JvFl < e2. (2.31)

In particular, 1,(J) > »» > Oforall J > J; and all N > 3 and both the order param-
eter and the energy density(d) undergo a jump at = J;, provided the dimension is
sufficiently large.

The upshot of the previous theorem is that the high-temperature regiod wit
and the low-temperature region wigh # 0 (whose existence was proved in [6]) are
separated by a first-order transition. However, as with the other models, our techniques
are not sufficient to prove thatis exactly zero for all < %, nor, forJ > }, that all
states are devoid of some other additional breakdown of symmetry. Notwithstanding,
general theorems about Gibbs measures guarantee that, a jump of,(J) atJ =
implies the coexistence of a “high-temperature” state with various symmetry-broken
“low-temperature” states.
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3. Proofs of mean-field bounds

3.1. Convexity estimatesn order to prove Theorem 1.1, we need to recall a few stan-
dard notions from convexity theory and prove a simple lemmagtet R" be a convex
set. Then we define thafine hullof <7 by the formula

aff = {ix+ (1 - 2Ay:x,ye o, L eR}. (3.1)

(Alternatively, aff< is an smallest affine subset Bf' containing.<?.) This concept
allows us to define theelative interior, ri o7, of &/ as the set of alk € & for which
there exists ama > 0 such that

yeaffer & |y—X/<e = yedd. 3.2)

It is noted that this definition of relative interior differs from the standard topological
definition. For us it is important that the standard (topological) closurewfig simply
the standard closure of . We refer to [51] for more details.

Lemma 3.1.For eachm e ri{m’ € Eg: S(M") > —oo}, there exists a vectdr € Eq
such thatvG(h) = m.

Results of this sort are quite well known; e.g., with some effort this can be gleaned
from Lemma 2.2.12 in [16] combined with the fact that the so called exposed points
of S(m) can be realized a¥G(h) for someh. For completeness, we provide a full
derivation which exploits the particulars of the setup at hand.

Proof. Let ¢ abbreviatelm’ € Eq: S(M’) > —oo} and letm € ri €. Let us define
the setV = {m’ — m: m’ € aff €}. It is easy to see thd is in fact the affine hull of
the shifted se¥” — m and, sinced € V, it is a closed linear subspacelB§. First we
claim that the infimum in (1.4) can be restrictedntee V. Indeed, ith, a € Eq, then
the convexity oth — G(h) gives

G(h+a) — (h+a,m) > G(h) — (h,m)+ (a, VG(h) —m) (3.3)

for any m. This implies thatVG(h) has a finite entropy, i.eYG(h) € ¥ for any
h € Eq. Now letm be as above ana € V*. Then an inspection of the definition f
shows that the last term in (3.3) identically vanishes. Consequently, for the infimum
(1.4), we will always be better off with € V.

Let hy € V be a minimizing sequence f&m); i.e., G(hyx) — (hx, m) —» S(m) as
k — oco. We claim thathy contains a subsequence tending to a finite limit. Indeed, if
on the contranhy = |hx| — oo we letzy be defined byhy = hyrk and suppose that
7k — 7 (atleast along a subsequence), whete= 1. Now sincem € ri ¥ andz € V,
we havem + et € aff @ for all e and, by (3.2)m+ et € € for somee > 0 sufficiently
small. But we also have

G(hy) — (hg, m + et) = G(hy) — (hx, m) — ehy(zk, T), (3.4)

which tends to the negative infinity becau@g,r) — 1 andhy — oo. But then
S(Mm + et) = —oo, which contradicts thah + ez € €. Thushy contains a converging
subsequenceéy; — h. Using thath is an actual minimizer o&(h) — (h, m), it follows
thatVG(h)=m. O

Now we are ready to prove our principal convexity bound:
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Proof of Theorem 1.1Recall thatFyr(J, b) denotes the infimum ob ; p(m) over all
m € ConvQ). As a first step, we will prove that there is a const@nk oo such that
for any finiteA c Z9 and any boundary conditic®, , , the partition function obeys the
bound

ZA(Sp) = e—|A|FMF(J’b)—C|aA|’ (3.5)

where|A | denotes the number of sitesAnand|6A | denotes the number of bondsZft
with one end inA and the other itZd \ A. (This is an explicit form of the well known
fact that the free energy is always lower than the associated mean-field free energy,
see [19,52].)
To prove (3.5), leM 5 denote the total magnetization in

My = Z Sy, (3.6)
XeA
and Iet<—)g}1) be thea priori state inA tilted with a uniform magnetic field, i.e., for
any measurable functioh of the configurations im\,

<f>g,\h) — e_|A|G(h)<fe(h5MA)>0' (37)

Fix anh € Eg and letm, = VG(h). By inspection,VG(h) = (Sx)éAh) forall x € A.
Then ’
ZA(S,y) = e|A|G(h><e—(h,MA>—/fHA(sA|SaA>>éAh>’ (3.8)

which using Jensen’s inequality gives
ZA(S,) 2 exp{IAI(G() — (h, mn)) = (BH (SIS0 - (3.9)

To estimate the expectation ¢fH (S5 |S;, ), we first discard (through a bound) the
boundary terms and then evaluate the contribution of the interior bonds. Since the num-
ber of interior bonds in\ is more thard|A| — |0A], this gets us

J
—(BH(SAIS;W)op = —§|mh|2 — C|oA]. (3.10)

Now G(h) — (h,mp) > S(Mp), SO we haveZ,(S;,) > e |AlPap(m)—CIoAl Byt
Lemma 3.1 guarantees that eanhwith S(m) > —oo can be approximated by a se-
guence ofnp with h € Eq, so the bound (3.5) follows by optimizing oviere Eg,.
Next, letv;p be an infinite volume Gibbs state and let);, denote expectation
with respect ta; . Then we claim that
eAIGh) _ <e(h,MA)+ﬂHA(SA|S[:A)ZA(SaA))J’b_ (3.11)
(HereS,, resp.Sya denote the part of theameconfiguratiorSinside, resp., outsida.

Note that the relation looks trivial far = 0.) Indeed, the conditional distributionin

given that the configuration outside equalsS' is v/(\s), as defined in (1.2). But then

(1.2) tells us that

/ eMMAHAHASNS) 7, (8 1) (dS) = / e™MD) (dSy) = MM (3.12)
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The expectation over the boundary condit®rthen becomes irrelevant and (3.11) is
proved.

Now suppose that; p, is the Z9-translation and rotation invariant Gibbs measure
in question and recall thah, = (Sp) b, Where(—); denotes the expectation with
respect tovy p. To prove our desired estimate, we use (3.5) on the right-hand side of
(3.11) and apply Jensen'’s inequality to get

gMem > exp{((h, Ma) + BHa), b}e_lAlpMF(J’b)_claAl- (3.13)

Using the invariance of the staig p with respect to the translations and rotations of
79, we have

while ]
(BHA b = —IAIZ((S0. S0) 3 = [AID. M) — C'0A], (3.15)

whereC’ is a constant that bounds the worst-case boundary term and wistaeds
for any neighbor of the origin. By plugging these bounds back into (3.13) and passing
to the thermodynamic limit, we conclude that

~G(h) + (h = b, m.) — 3((So S0 < Fur(3. ). (3.16)

Now optimizing the left-hand side ovére Eq allows us to replace-G(h) + (h, my)

by —S(m,). Then the bound (1.9) follows by adding and subtracting the %rm*|2
on the left-hand side. O

3.2. Infrared bound.Our proof of the Key Estimate (and hence the Main Theorem)
requires the use of thiafrared boundswhich in turn are derived from reflection posi-
tivity. The connection between infrared bounds and reflection positivity dates back (at
least) to [18, 22—-24]. However, the present formulation (essentially already contained
in [12,24,41]) emphasizes more explicitly the role of ttlke= 0” Fourier mode of the
two-point correlation function by subtracting the square of the background average.
Reflection positivity is greatly facilitated by first considering finite systems with
periodic boundary conditions. If it happens that there imaueGibbs state for pa-
rameter values) andb then the proof of the Key Estimate is straightforward—there
is no difficulty with putting the system on a torus and taking the limit. In particular,
the Key Estimate amounts (more or less) to Corollary 2.5 in [24]. But when there are
several infinite-volume Gibbs states, we can anticipate trouble with the naive limits of
the finite-volume torus states. Fortunately, Gibbsian uniqueness is not essential to our
arguments. Below we list two properties of Gibbs states which allow a straightforward
proof of the desired infrared bound. Then we show that in general we can obtain the
infrared bound for states of interest by an approximation argument.

Property 1. An infinite-volume Gibbs measuvg, (not necessarily extremal) for the
interaction(1.1)is called atorus statéf it can be obtained by a (possibly subsequential)
weak limit as L— oo of the Gibbs states in volunje-L, L]9NZY, for the interaction
(1.1) with periodic boundary conditions.
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Given J andb, we let.# (J, b) denote the subset of Cog€) containing all mag-
netizations achieved by infinite-volume translation-invariant Gibbs states for the inter-
action d(1.1). Next, recall the notatiavi , from (3.6) for the average magnetization in
AN CZ

Property 2. An infinite-volume Gibbs measuvg, (not necessarily extremal) for the
interaction(1.1)is said to havénlock-average magnetization if

lim — =m, v3 p-almost surely (3.17)

Here the convergenca ~ Z9 is along the net of all the finite boxes c Z9 with
partial order induced by set inclusion. (See [26] for more details.)

Our first goal is to show that every torus state with a deterministic block-average
magnetization satisfies the infrared bound. Suppbse 3 and letD~! denote the
Fourier transform of the inverse lattice Laplacian with Dirichlet boundary condition. In
lattice coordinatesD ! has the representation

Dt = k1 keey) Ve 3.18
(X, y) = [_””]dmme ) X,y e4L, (3.18)

whereﬁ(k) =1- % Z‘le cogkj). Note that the integral converges by our assumption
thatd > 3.

Lemma 3.2.Let d > 3 and suppose that;, is a Gibbs state for interactiofl.1)
satisfying Properties 1 and 2. Lét)j, denote the expectation with respectutgy

and letm denote the value of magnetizationugy. Then for all (vx)yc7¢ Such that
vx € Rand} ) 7d lox| < oo,

Z oxy {(Sx =M, Sy —m)), < nJ~1 Z oxvy DX, y). (3.19)
x,yeZd x,yeZd

Here n denotes the dimensionkx.

Proof.Let A, =[—L, L]9nZ% and Ietug"g be the finite-volume Gibbs state i, for
the interaction (1.1) with periodic boundary conditions. Let

AF = {(2'_2—’;1n1 ZLZ—’:Llnd): —L<n< L} (3.20)
denote the reciprocal lattice. L@ty )xea, be a collection of vectors froifig satisfying
thatwy # O for only a finite number ok € Z4 and> ., Wx =0. Let(—)(h)) denote
the expectation with respect té"g Then we have the infrared bound [22-24],

> (e, SOy S) T < 371 D" (W wy) DX, Y) (3.21)
X,yeAL X, yeAL
where 1
DIlx.y)=—— > =&k, (3.22)
IALI keA} {0} D)
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Now, let &, ..., &, be an orthogonal basis g and choosevy = wx&, where
(wx)ye7zd 1S such thaivy # 0 only for a finite number ok e 74 and

> wyx=0. (3.23)

xeZd

Passing to the limit. — oo in such a way thatng converges to the staig , and
then summing ovef = 1, ..., n gets us the bound

> wxwy ((Sx, Sy));p < NI > wxwy DTHX, y). (3.24)

x,yeZd x,yeZd

So far we have (3.24) only fdiwy) with a finite support. But, using that fact that both
quantitiesD~1(x, y) and((Sx, Sy)) 3,p are uniformly bounded, (3.24) is easily extended
to all absolutely-summabl@ox)yczd (i-€., those satisfyin® ", _74 |wx| < co) which
obey the constraint (3.23).

Let (vx) be as specified in the statement of the Lemma araletd ", _;4 vx. Fix K,

let Ak be as above and defimw)((K)) by

a
Wl = vy — ——Lixeny)- (3.25)

[Ak]

Clearly, these(w)((K)) obey the constraint (3.23). Our goal is to recover (3.19) from

(3.24) in theK — oo limit. Indeed, plugging this particula(rw)((K)) into (3.24), the

left hand side opens into four terms. The first of these is the swywgf (S«, Sy)) b,

which is part of what we want in (3.19). The second and the third terms are of the same
form and both amount to

azvxl{XeAK}<(SX’ Sy))_]yb = a<z Ux (Sx; ﬁ Z Sy))J,b. (3-26)

X,y x yeAk

By our assumption of a sharp block-average magnetization i the average of the
spins inAk can be replaced, in the¢ — oo limit, by m. Similarly, we claim that

. 1
Jm o 2 (Ge Syl =Imi’, (3.27)

X,YeAK

so, recalling the definition dd, the left hand side is in a good shape.
As for the right-hand side of (3.24) withwy) = (w{"), here we invoke the fact
that (ford > 3)
. 1
lim — D~Y(x,y) =0, (3.28)
K—oo |Ak|
XeAL

uniformly iny € Z9. The claim therefore follows. o

Next we show that for any parametefsandb, and anym, € .#,(J,b), we can
always find a state with magnetization, that is a limit of states satisfying Properties 1
and 2.
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Lemma3.3.Forall J > 0, all b € Eqg and allm, € .#,(J, b), there are sequences

(X), (bx) and (my) with k% — J,bx —» b, m¢ - m, and .#Z(J, bx) = {my}.

In particular, there is a sequende, b, ) of infinite-volume Gibbs measures satisfying
Properties 1 and 2, which weakly converge (possibly along a subsequence) to a measure
v3,p With magnetizatiom,.

Proof. The proof uses a little more of the convexity theory, let us recapitulate the nec-
essary background. Ldt: R" — (—o0, 00) be a convex and continuous function. Let
(-, -) denote the inner product IR". For eachx € R", let S(x) be the set of all possible
limits of the gradientsV f (xx) for sequencegx € R" such thatxx — x ask — oo.

Then Theorem 25.6 of [51] says that the set of all subgradi&hgs) of f atx,

of(x)={aeR™ f(y)— f(x) > (y—x,a), yeR"}, (3.29)

can be written as
of(x) = ConuS(x)) (3.30)

where ConyS(x)) is the closed, convex hull oB(x). (Here we noted that since the
domain of f is all of R", the so called normal cone is empty atakk R".) But S(x) is
closed and thus CoK8(x)) is simply the convex hull 08(x). Now, by Corollary 18.3.1
of [51], we also know that i§ ¢ R" is a bounded set of points afis its convex hull
(no closure), then every extreme point®fs a point fromS. Thus, we concludesvery
extreme point of f (x) lies in Yx).

Now we can apply the above general facts to our situation. @l b) be the
infinite-volume free energy of the model in (1.1). Noting ti&t], b) is defined for
all J € Rand allb € Eq, the domain ofF isR x Eg. By well known arguments;
is continuous and concave. Moreover, a comparison of (1.11) and (3.30) shows that
#,.(J,b) is—up to a sign change—the subdifferential I6fat (J, b). As a conse-
guence of the previous paragraph, every extreme peinti,]Je #4(J, b) is given
by a limit limg_, oo[&, Mk], where [k, mg] are such thatz, (Jk, bx) = {[ex, mk]} for
someJ — J andby — b. Butm, € .Z.(J,b) implies that g, m,] is an extreme
point of 27, (J, b) for somee,, so the first part of the claim follows.

To prove the second part, note that any infinite-volume limit of the finite-volume
Gibbs state with periodic boundary condition and parameleendby must necessar-
ily have energy densitgk and magnetizatiomy. By compactness of the set of all Gibbs
states (which is ensured by compactnes@)pthere is at least one (subsequential) limit
(=), Of the torus states a% — J andbyx — b, which is then a translation-invariant
Gibbs state with parametedsandb such that

& =((5xSy));p, and m.=(Sq)ap, (3.31)

wherex andy is any pair of nearest neighbors 8Y. However, the block-average val-

ues of both quantities must be constant almost-surely, because othényjgecould

have been decomposed into at least two ergodic states with distinct values of energy-
density/magnetization pair, which would in turn contradict tleat fn,] is an extreme

point of /Z,(J,b). O

We note that the limiting measure is automaticalf-translation and rotation in-
variant and, in addition, satisfies the block-average property. But, in the cases that are
of specific interest to the present work (i.e., whefy(J, b) contains several elements),
there is little hope that such a state is a torus state. Nevertheless, we can prove:
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Corollary 3.4. Let J > Oandb € Eq. Then for anym, € .#,(J, b), there exists a
statev , with (block-average) magnetization, for which the infrared bound3.19)
holds. Moreover, the staig p, is 7Z9-translation and rotation invariant.

Proof.For J = 0 we have a unique Gibbs state and the claim trivially holds. Otherwise,
all of this follows from the weak convergence of thg p, discussed above.o

3.3. Proof of Main TheoremNow we have all the ingredients ready to prove Lemma 1.3:

Proof of Lemma 1.3Fix m, € .#,.(J,b) and letv;, be the state described in Corol-
lary 3.4. To prove our claim, it just remains to chod@sg) as follows:

1 .
, if x| =1,
by =12 (3.32)
0, otherwise

and recall the definition ofy from (1.13). O

Having established Lemma 1.3, we are ready to give the proof of the Key Estimate:
Proof of Key EstimateLet J > 0 andb € Eq. Letm, € .Z.(J,b) and let(—),p be
the state satisfying (1.15) and (1.17). Our goal is to prove the bound (1.16). To that end,

let mp = Mmp(S) denote the spatially averaged magnetization of the neighbors of the
origin. The rotation symmetry of the state) ; , then implies

((Sx: S0)); pp = {(Mo, S0)) ;- (3.33)

Next, conditioning on the spin configuration in the neighborhood of the origin, we use
the DLR condition for the state-) j » which results in

((mo, so))J,b = ((mo, VG(Imo + b)) - (3.34)

Finally, a simple calculation, which uses the fact that = (So)sp = (Mo)yp =
(VG(Img + b)) 3.p, allows us to conclude that

((mo, VG(Imo + b)), ) — Im,|?

- <(m0 —m,, VG(Imo + b) — VG(Im, + b))> (3.35)

J,b
To proceed with our estimates, we need to understand the structure of the double

gradient of functionG(h). Recall the notation—)on for the single-spin state tilted

by the external fielch. Explicitly, for each measurable functioh on Q, we have

(f(S)on = e €M (1(5el9)o. Then the components of the double gradient corre-

spond to the components of the covariance matrix of the vector-valued random variable

S. In formal vector notation, for ang € Eq,

@ V)’G(h) = (@ S— (Son)?)o - (3.36)

Pickhg, hy € Eq. Then we can write

! 2
(h1 — hg, VG(h1) — VG(ho)) =/0 di <(h1—h0,S— (So,n;) >Oh ., (3.37)

v
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whereh; = (1 — 1)hg + Z1h1. But the inner product on the right-hand side can be
bounded using the Cauchy-Schwarz inequality, and since

2
(IS— (Son*)op, < maxs, 9 =, (3.38)

we easily derive that
(h1 = ho, VG(hy) — VG(ho)) < xlhy — hol®. (3.39)

This estimate shows that the right-hand side of (3.35) can by bounded tsng —
m.|?) 3.p. But for this we have the bound from Lemma 1{Bng —m,|?) 3 < nJ"14.
Putting all the previous arguments together, (1.16) follows.

Proof of Main TheoremThis now follows directly by plugging (1.16) into (1.9).c

4. Proofs of results for specific models

By and large, this section is devoted to the specifics of the three models described in
Section 2. Throughout the entire section, we will assumelthat 0 and henceforth

omit b from the notation. We begin with some elementary observations which will be
needed in all three cases of interest but which are also of some general applicability.

4.1. General considerations.

4.1.1. Uniform closeness to global minim#/e start by showing that, for the systems
under study, the magnetization usiformly close to a mean-field magnetization. Let
e (J) denote the set of all local minima @b;. Obviously, if we know that the
actual magnetization comes close to minimizing the mean-field free energy, in must be
close to a minimum or a “near-minimum” of this function. A useful measure of this
closeness is the following: Far € [0, co] and¥ > 0, we let

D) = sup{dist(m,,///MF(J)) ‘ m e ConQ), ®3(m) < Fur(J) +19}, (4.1)

where Fyyr(J) denotes the absolute minimum @&f;. However, to control the “close-
ness” we will have to make some assumptions about the behavior of the (local) minima
of @3. An important property ensuring the desired uniformity in all three models under
study is as follows:

Uniformity Property. If J > Oand ifm € Con\Q) is a global minimum o# 3, then
there is ane > 0 and a continuous functiom?: [J — ¢, J + ¢]—» ConQ) such that
limy_, 3 mf(J) = mandm?(J’) is a local minimum ofby forall J’ € [J —¢, J +¢].

In simple terms, the Uniformity Property states that every global minimum can be
extended into a one-parameter family of local minima. Based on the Uniformity Prop-
erty, we can state a lemma concerning the limiDgf(:}) as? | O:

Lemma 4.1.Suppose thatb; satisfies the above Uniformity Property. Then for all
Jo > 0,
lim sup Dj(®)=0. (4.2)
910 0<J<Jo
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Proof. This is essentially an undergraduate exercise in compactness. Indeed, if the above
fails, then for some > 0, we could produce a sequenége | 0 and J € [0, Jo]
such that

Dy (Yk) = 6e. (4.3)
This, in turn, implies the existence ofy € Con\ Q) such that
dist(mk,///MF(Jk)) > 3¢ while @;3(my) < Fmr(k) + Y. (4.4)

Let us useJ andm to denote the (subsequential) limits of the above sequences. Using
the continuity of® j(m), to the right of thewhile we would have®;(m) = Fyr(J)
andm is thus a global minimum o 3. By our hypothesis, for eadbsufficiently large,
there is a local minimurm? (J) of @4, with m? (Jx) converging tan ask — oo. Since

my is also converging tm, the sequences andm?(Jy) will eventually be arbitrary
close. But that contradicts the bound to the left ofwhigle. O

4.1.2. Monotonicity of mean-field magnetizatidfor spin systems with an internal
symmetry (which, arguably, receive an inordinate share of attention), the magnetiza-
tion usually serves as an order parameter. In the context of mean-field theory, what
would typically be observed is an interval, [@yr] wherem = 0 is the global min-
imizer of @3, while for J > Jur, the function®; is minimized by a non-zerm.

This is the case for all three models under consideration. (It turns out that whenever
(S)o = 0, the unique global minimum @b ; for J sufficiently small ism = 0.)

In order to prove the existence of a symmetry-breaking transition, we need to prove
that the models under considerations have a unique point where the local minimum
m = 0 ceases the status of a global minimum. This amounts to showing that, once the
minimizer of @3 has been different from zero, it will never jump backio= 0. In the
mean-field theory with interaction (1.1), this can be proved using the monotonicity of
the energy density; an analogous argument can be used to achieve the same goal for the
corresponding systems @'

Lemma 4.2.Let J < Jp and letm; be a global minimizer o® 3 andm; a global min-
imizer of@3,. Then|mz| < |my|. Moreover, if J— m(J) is a differentiable trajectory
of local minima, then

d 1 2

— @3(mJ)) = —=m(J)|". 4.5

3 1(m(J)) 2’()| (4.5)
Proof. The identity (4.5) is a simple consequence of the fact tham, i$ a local mini-
mum of @3, thenV® 3(m) = 0. To prove the first part of the claim, 161 ' > 0 and let
m be a minimizer ofp;. Let Fyr(J) be the mean-field free energy. First we claim that

I

J Im|2. (4.6)

J
Fue(J) — Fue(J)) > —

Indeed, sincd-yr(J) = @3(m), we have from the definition ab; that
J-J

Fue(J) = — Im|% + @3/ (m). 4.7)

Then the above follows using thé#y (m) > Fyr(J’). Let 1 < J» andmjy andm; be

as stated. Then (4.6) for the choide= Jp, J’ = J; andm = m;, gives

Fumr(J2) — Fur(J1) 1
> ——|my|©. 4.8
5,0 = —5Imz| (4.8)
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while (4.6) for the choicel = J;, J’ = J, andm = m; gives

Fmr(J1) — Fur(J2) 1 5
< —=|mq|“. 4.9
-1 < —5Imi| (4.9)

Combining these two bounds, we hgue | < |m3| as stated. O

4.1.3. One-component mean-field probleridten enough, the presence of symmetry
brings along a convenient property that the multicomponent mean-field equation (1.7)
can be reduced to a one-component problem. Since this holds for all cases under consid-
eration and we certainly intend to use this fact, let us spend a few minutes formalizing
the situation.

Suppose that there is a non-zero veeaict Eq such tha G (h) is colinear withm
(and not-identically zero) for ali. As it turns out, then als¥ S(m) is colinear withm,
providedme € Conv Q). Under these conditions, let us restrict bbthndm to scalar
multiples ofe and introduce the functions

g(h) = lo|°G(hw) and s(m) = |@| >S(Mw). (4.10)

The normalization bye| ™2 ensures thas(m) is given by the Legendre transform of
g(h) via the formula (1.4). Moreover, the mean-field free-energy functigrime)
equals théw|2-multiple of the function

$3(m) = —%J m — s(m). (4.11)

The mean-field equation (1.7) in turn reads
m=g'(Jm). (4.12)

In this one-dimensional setting, we can easily decide about whether a solution to (4.12)
is a local minimum ofp; or not just by looking at the stability of the solutions under
iterations of (4.12):

Lemma 4.3.Let m be a solution t¢4.12)and supposé is twice continuously differ-
entiable in a neighborhood of m. If

Jg'Am) <1 (4.13)

then m is a local minimum af;. Informally, only “dynamically stable” solutions to
the (on-axis) mean-field equation can be local minima pof

We remark that the term “dynamically stable” stems from the attempt to find solu-
tions to (4.12) by running the iterative schemg,1 = g’'(Jmy).

Proof. Let h andm be such thag’(h) = m, which is equivalent tdy = s'(m). An easy
calculation then shows thgt'(h) = —(s”(m))~. Suppose now thah is a solution to
(4.12) such that (4.13) holds. Then= Jmand from (4.13) we have

s'(m) = —(g"(Im) " < =3, (4.14)

But that implies
im=-3—-5"(m>-3+J3=0, (4.15)
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and, using the second derivative test, we concludenthiata local minimum otp;. O

With Lemmas 4.1, 4.2 and 4.3 established, our account of the general properties is
concluded and we can start discussing particular models. What follows in the next three
subsections are the three respective models laid out in order of increasing difficulty.
Our repeated—and not particularly elegant—strategy will be to pound at the various
models using internal symmetry as the mallet. The upshot is inevitably that at most one
component becomes dominant while all other components act, among themselves, like
a system at high temperature. Thus all subdominant components are equivalent and the
full problem has been reduced to an effective scalar model. In short, there are some
parallels between the various treatments. However, somewhat to our disappointment,
we have not been able to find a unified derivation covering “all models of this sort.”

4.2. Potts modelln order to prove Theorem 2.1, we need to establish (rigorously) a
few detailed properties of the mean-field free-energy function (2.7). In the view of (2.6)
we will interchangeably use the notatiomsand(Xy, . . ., Xq) to denote the same value

of the magnetization.

Lemma 4.4.Consider the g-state Potts model with>g 3. Let @3 be the mean-field
free-energy function as defined(@ 7). If m € Con\Q) is a local minimum ofp; then

the correspondingx, . .., Xq) is @ permutation of the probability vectex, . .., X3)
such that
X] =X ==X (4.16)

Moreover, when X > x5, we also have
Ixg>1>3%. (4.17)

A complete proof of the claims in Lemma 4.4 was, to our best knowledge, first pro-
vided in [41]. (Strictly speaking, in [41] it was only shown that tilebalminima of®;
take the above form; however, the proof in [41] can be adapted to also accomnwedate
cal minima.) We will present a nearly identical proof but with a different interpretation
of the various steps. The advantage of our reinterpretation is that it is easily applied to
the other models of interest in this paper.

Proof of Lemma 4.4f m corresponds to the vectOxy, .. ., Xq), we Ietcbgm (X1, ..., Xq)

be the quantity®;(m). Suppose thafxy, ..., Xq) is a local minimum. It is easy to
verify that (xg, ..., Xq) cannot lie on the boundary of Co), soxx > 0 for all

k = 1,...,q. Pick any two coordinates—for simplicity we assume that our choice
is Xy andxo—and lety = 1 — (X3 + - - + Xq), Z1 = X1/y andzz = X2/y. (Note that

y = X1 + X2 and, in particulary > 0.) Then we have

1
digq}(xl, %) = —EJyz(zf +2%) + y(z1logzy + z2l0g 22) + qu)(X3, o Xg)s
(4.18)
where RSQ) (X3, ..., Xq) is independent of; andz,. Examining the form of the free

energy, we find that the first two terms are proportional to the mean-field free-energy
function of the Ising = 2) system with reduced couplindy:

DV (x1..... %) = y D) (21, 22) + RSV (¥, ..., Xq). (4.19)



Phase transitions and mean-field theory 27

Since the onlyz-dependence is in the first term, the péi, zo) must be a local
minimum of@% regardless of whatg, . . ., Xq look like. But this reduces the problem
to the Ising model, about which much is known and yet more can easily be derived. The
properties ofngz) (z1, z2) we will need are:

() Jo = 2 is the critical coupling. Fod < J, the free-energy functiomgz) (z1, 22)

is lowest wherez; = z,, while for J > J., the free-energy functioﬂﬁ52>(zl, 20) is
lowest wherp = |z1—27;| is the maximal (non-negative) solutiongo= tanr(%Jp).
(i) WheneverJ > J;, the maximal solution tp = tanr(%.]p) satisfiesJ (1 — p?) < 2,
which implies that eithedz; > 1 andJz < 1 orvice versa
(iii) For all J andz; > zp, the mean-field free-energy functi(mgz)(zl, Zp) monotoni-
cally decreases as= z; — zp moves towards the non-negative global minimum.

All three claims are straightforward to derive, except perhaps (ii), which is established
by noting that, whenever > 0 satisfies the (Ising) mean-field equation, we have

J Jp

- = 4.20
2costi3dp)2  sinh(Jp) = (4.20)

1
ZJ(1 - p?
2( P°)

Hence, ifJ > J andz; > 7, thendz = 13(1 - p) < 33(1 - p?) < 1 and thus
Jzp > lbecausd(z1 +22) = J > J. = 2.

Based on (i-iii), we can draw the following conclusions for any pair of distinct in-
dicesxj andxk: If J(Xj + xx) < 2, thenxj; = Xk, because th¢k, j)-th Ising pair is
subcritical, while if J(xj + Xk) > 2 then, using our observation (ii), eithéwx, > 1
andJx; < 1 orvice versaBut then we cannot havéxc > 1 for more than one index
k, because il xc > 1 andJxj > 1, we would havel (xj; + xx) > 2 and the(k, j)-th
Ising pair would not be at a local minimum. All the other indices must then be equal be-
cause the associated two-component Ising systems are subcritical. Consequently, only
one index from(xy, ..., Xq) can take a larger value; the other indices are equal.

Proposition 4.5.Consider the g-state Potts model witheg3. Let®; be the mean-field
free-energy function as defined(2.7). There there existiJand b = q with J < X
such that

(1) m = 0is a local minimum ofp; provided J< Jp.
@m = x4+ --- + X3\71 with xj > x5 = - = xa is a local minimum of®;
provided that J> J; and X = % + m, where m is the maximal positive solution to

the equation(2.8).
(3) For all J > 0, there are no local minima except as specified in (1) and (2).

Moreover, if e is as in(2.9), then the unique global minimum df; is as in (1)
for 3 < Jur while for J > Jyr the function@j has q distinct global minimizers as
described in (2) .

Proof of Proposition 4.5Again, most of the above stated was proved in [41] but with-
out the leeway for local minima. (Of course, the formulas (2.8) and (2.9) date to an ear-
lier epoch, see e.g. [54].) What is not either easily derivable or already proved in [41]
amounts to showing thati is a “dynamically stable” solution to (2.8), the correspond-
ingm = XjV1 + - - - + X3V1 as described in (2) is a local minimum for the falh (m).

The rest of this proof is spent proving the latter claim.
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We first observe that for the set

UX) ={m=(X,X2,....Xq): I <1, k=2,...,q} (4.21)
the unique (strict) global minimum @b ; occurs at
me) = (x, &5, &%) (4.22)

Indeed, otherwise we could further lower the valuegfby bringing one of théj, k)-

th Ising pairs closer to its equilibrium, using the properties (ii-iii) above. Now, suppose
thatm satisfying (2.8) is “dynamically stable” in the sense of Lemma 4.3. By (4.17) we
have that the corresponding = % + m satisfiesJx; > 1 while the common value

of xg fork = 2,...,qis such that)x} < 1. Suppose that the correspondings not

a local minimum of the fulkb 3. Then there exists a sequen@ex) tending tom such
that@;(my) < @3(m). But then there is also a sequermog such thatd;(mj) <
@;(m) where eachm, now takes the form (4.22). This contradicts that the restriction
of @, to the “diagonal,” namely the functiap; (m), has a local minimum ah. 0O

Now we are ready to prove our main result aboutdkstate Potts model.

Proof of Theorem 2.1By well known facts from the FK representation of the Potts
model, the quantities,(J) andm,(J) arise from the paird?, m¥] corresponding to
the state with constant boundary conditions (theed state). Thereforegl’, m] is an
extreme point of the convex sef;(J) andmY e .#,(J) for all J. In particular, the
bound (1.12) fom¥ can be used without apology.

Letdy be the part of the error bound in (1.12) which does not deperid Bmplicitly,
we havedy = %(q—l)zld, because = (q—1)/qganddimEg = q—1. Sincely — 0
asd — oo, we havedg — 0 asd — oo. Let us define

e1=-e€1(d,J)= sup Dy (JIdg), (4.23)
0<J'<J

whereDj isasin (4.1). Itis easy to check that the Uniformity Property holds. Lemma 4.1
then guarantees that every (extremal) physical magnetizatios .#,(J) has to lie
within €1 from a local minimuma@ ;. Since the asymmetric minima exist only for

J > J1 > 0 whilem = 0is a local minimum only forJ < J = g, we have
m,(J) < ¢ for J < Jp, while Im,(J) — mye(J)| < €1 for 3 > Jp. But from the

FKG properties of the random cluster representation we knowdthat m,(J) is non-
decreasing so there must be a poihte (J1, Jo], such that (2.10-2.11) hold.

It remains to show thatk — Jur| tends to zero ad — oo. ForJ € (J1, Jo), let
ps(J), resp.,pa(J) denote the value ob; at the symmetric, resp., asymmetric local
minima. The magnetization corresponding to the asymmetric local minimum exceeds
somesc > 0 throughout(J;, Jo). Integrating (4.5) with respect td and using that
os(IvF) = va(IuF) then gives us the bound

1
l95(3) = 9a(D)| = 513 = Juel. (4.24)
However, in thes1-neighborhood/s(¢1) of the symmetric minimum, we will have
|@3(m) — ps(J)| < 1K, (4.25)

whereK is a uniform bound on the derivative d@fj(m) for m € Us(e1) andJ €
(J1, J2). Since the asymmetric minima are well separated from the boundary of @pnv
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for J € (J1, J2), a similar bound holds for thg -neighborhood of the asymmetric min-
imum. Comparing (4.24-4.25) and (1.12), we find that if

1
E%2|J — JvEel = 261K > Jdq, (4.26)

no value of magnetization in the -neighborhood of the local minima with a larger
value of@j is allowed. In particulanJ — Jur| < €2 whereez = €2(d) tends to zero
asd - co. O

4.3. Cubic model.Our first goal is to prove Proposition 2.2. We will begin by showing

that the local minima of 3 andKSr) are in one-to-one correspondence. Let us introduce
the notation

r
X={(>‘/,ﬁ):|m|§1, y,—zO,Zy,:l} (4.27)
j=1
and letX (m) denote the subspace Bfwherem = yiu1 + - - + Vr ity

Lemma 4.6.Letm € Con\Q) be a local minimum o ;. Then there exists @, i) €
X (m) which is a local minimum of 5{) (as defined ir{2.15).

Proof.Letm be a local minimum o ;. SinceX (m) is compact an¢K§r) is continuous
on X, the infimum (
o;my= inf Ky, & 4.28
am = it K@) (4.28)
is attained at somgy, i) € X(m). We claim that thigy, i) is alocal minimum oKS’).
Indeed, if the opposite is true, there is a sequdiygeiik) € X converging to(y, i)
such that

KS Gk iin) < K, 1) = g(m). (4.29)

Now, (Y, i) was an absolute minimum dﬁgr) on X(m), so(Vk, i) & X(m) and the
magnetizationmy corresponding t@yk, i) Is different fromm for all k. Noting that

@3(mi) < K (T, i) (4.30)

and combining (4.29-4.30), we thus hafg(my) < @3(m) for all k. But mg tends
to m in ConuQ), which contradicts the fact that is a local minimum of®;. 0O

Lemma 4.6 allows us to analyze the local minima in a bigger, simpler space:

Lemma 4.7.Let Kg”(y, i) be the quantity in(2.15) Then each local minimum of

Kgr)(y, 1) is an index-permutation of a stat§, i) with y; > y» = --- = y; and
w2 =---= ur = 0. Moreover, if y > Yy, thenuj # 0.

Proof. Let (Y, i) be a local minimum oKSr) such thaty; > y» > --- > y; and fix ak
between 1 and. We abbreviate/ = yk + Yk+1 and introduce the variables = yk/y,
22 = Yk+1/Y, v1 = pk andvz = uk41. Then

KOG, 1) =yKH@ 1) +R, (4.31)
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WhereKS? (z, v) is the mean-field free energy of an= 2 cubic model with coupling
constantly, andR is a quantity independent @z, V). As was mentioned previously,
ther = 2 cubic model is equivalent to two decoupled Ising models. Thus,

2o -
K2)(@.5) = @3y(p1) + Oay(p2). (4.32)
wherep; andp; are related tay, z,, v1 andv; via the equations

z1 = 35(1+ p1p2), zv1 = 3(p1+ p2),

(4.33)
22 = 3(1— p1p2), Zov2 = 3(p1— p2).

Now, the local minima of j(p) occur atp = +p(J), wherep(J) is the largest non-
negative solution to the equatign = tanr(%Jp). Moreover, by the properties (i-iii)
from the proof of Lemma 4.4 we know thatJ) = 0forJ < 2 WhiIe%J(l—p(J)z) <
1 onceJ > 2. From these observations we learn thakif= yk+1, thenJy < 2 and
ftk = ptk1 = 0. On the other hand, iic > ki1, thendy > 2, vk = 2y(1+ p(Jy)?)
andyyy1 = %y(l — p(Jy)®) so, in particularJ yik > 1 > Jyi,1. However, that forces
thatk = 1, because otherwise we would also hdwg_1 > 1 andJ(Yk—1 + Y«k) > 2,
implying that(y, i) is not a local minimum ngr) in the (k — 1, k)-th sector. Hence,
Yo =--- =Yy andupz = --- = ur = 0, while if y; > y», then we haveu; =
+p(J)/z1 #0. O

The proof of Lemma 4.7 gives us the following useful observation:

Corollary 4.8. Letm = (m1, m, ..., m;) be contained irCon\ Q) and suppose that
my, my # 0. Then one of the four vectors

(ml :I: m2’ 03 m33 sy mr), (03 m2 :l: mla m33 ey mr) (4'34)

corresponds to a magnetizatiom € ConQ) with @3(m’) < @3(m).

Proof. Sincem is in the interior of ConyQ), there existyy, i) where the infimum
(4.28) is achieved. Let1, 7o, v1 andvy be related toy, yo, u1 anduz as in (4.31—
4.33). Now by (4.32) the free energy of the corresponding sect¢y,qf) equals the
sum of the free energies of two decoupled Ising models with biesaad p,. Without
loss of generality, suppose that > p> > 0. Recalling the property (iii) from the proof
of Lemma 4.4p — ©;(p) decreases whem > 0 gets closer to the non-negative local
minimum. Thus, ifp1 is nearer to the local minimum @ ;y than p,, by increasing
p2 we lower the free energy by a non-trivial amount. Similarlypifis the one that is
closer, we decreass .

By inspection of (4.33), the former operation produces a new quadeipi&, v}
andvy, with v5, = 0 andzjv; = p1. But that corresponds to the magnetization vector
(m}, m,, ms, ..., my), where

m;=piy=mi+mp and m, =0, (4.35)

which is what we stated above. The other situations are handled analogansly.

Now we are finally ready to establish the claim about local/global minimaof
Proof of Proposition 2.2By Lemma 4.6, every local minimum @b corresponds to
a local minimum ofKS'). Thus, using Lemma 4.7 we know that all local minimma
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of @3 will have at most one non-zero component. Writiag= (1,0, ...,0), h = he
andm = me, we can use the formalism from Section 4.1. In particular, the on-axis
moment generating functiog(h) is given by

g(h) = —log(2r) + log(r — 1 + coshh). (4.36)

Differentiating this expression, (4.12) shows that every local minimuhas to satisfy
the equation (2.16). Now, far > 2, a little work shows that — g’(h) is convex for

(r —1)%>—( —1)coshh+2> 0 (4.37)

and concave otherwise. In particular, for 3, the equation (2.16) has either one non-
negative solutioom = 0 or three non-negative solution®, = 0, m = m_(J) and

m = my(J), where 0< m_(J) < m4(J). Howeverm,(J) is “dynamically stable”
and, using Lemma 4.3n_(J) never corresponds to a local minimum.

To finish the proof we need to show that= (m4.(J), 0, ..., 0) is a local minimum
of the full @;. If the contrary were true, we would have a sequemggending tom
such thad ;(mg) < @3(m). Then an — 1)-fold use of Corollary 4.8 combined with
the symmetry ofp; implies the existence of a sequemog = (m, 0, ..., 0) tending
to m and satisfying®;(m;) < @3(mg) for all k. But that contradicts thamn. (J)
is a local minimum of the on-axis mean-field free energy functionnSeas a local
minimum of @3 after all. The existence of a unique mean-field transition pajpt is
a consequence of Lemma 4.2 and the facttinat O ceases to be a local minimum for
J>r. O

Proof of Theorem 2.3 he proof is basically identical to that of Theorem 2.1, so we will
be rather sketchy. First we note that(J) is achieved at some extremal translation-
invariant state whose magnetization, is an element of#,(J). Letdy = %rld and
definee; as in (4.23). Them, has to be withire1 from a local minimum ot 3. While

this time we cannot proclaim thak — m,(J) is non-decreasing, all the benefits of
monotonicity can be achieved by using the monotonicity of the energy dexsity.
Indeed,J — e,(J) is non-decreasing and, by Corollary 1.2 and the Key Estimate, we
have

1 J
‘ek(J) —5m.(9?) < Srla = Jau. (4.38)

But thene,(J) must undergo a unique large jump at sodp&om valuese, (J) < 2Jdg

to values nea%m,\/”:(\])2 by less than 2d4. Som,(J) has to jump atl = J; as well,

in order to obey (4.38). The width of the “transition region” is controlled exactly as in
the case of the Potts modelo

4.4. Nematic modelThe nematic models present us with the difficulty that an explicit
formula for @;(m) seems impossible to derive. However, the situation improves in
the dual Legendre variables. Indeed, examining (1.4—-1.6), it is seen that the stationary
points of @;(m) are in one-to-one correspondence with the stationary points of the
(Gibbs) free-energy function

1
¥3(h) = 5|h|2 - G(h), (4.39)



32 Marek Biskup and Lincoln Chayes

via the relatiorh = Jm. (In the case at handi, takes values ifEg which was defined
as the space of aNl x N traceless matrices.) Moreovernif = VG(h), then we have

1
¥3(h) — @3(m) = 5|h —JmJ? (4.40)

so the value;(m) and @;(h) at the corresponding stationary points are the same.
Furthermore, some juggling with Legendre transforms shows tmatéfa local mini-
mum of @, thenh = Jm is a local minimum of¥;. Similarly for local maxima and
saddle points o ;.

Lemma 4.9.Each stationary point of?;(h) onEg, is a traceless Nx N matrixh with
eigenvalues that can be reordered to the forprehhy = - -« = hy.

Proof. The claim is trivial forN = 2 so letN > 3. Without loss of generality, we can
restrict ourselves to diagonal, traceless matriedset h = diag(hs, ..., hn) be such
thatd> ', h, = 0andlet,, witha =1,..., N, be the components a unit vectorRr .
Let (—)o be the expectation with respect to theriori measure: on Q and let(—)p
be the state o tilted by h. Explicitly, we have

N
(Fn =00 [ i) ) exp| 3 huo) (@.41)
a=1

for any measurable functiof on the unit sphere iiN.

As in the case of the Potts and cubic models, the proof will be reduced to the two-
component problem. Lét be a stationary point 0¥ ; and leta and$ be two distinct
indices between 1 and. The relevant properties ¢f ), are then as follows:

@i If J(vi —I—vg)h > 3, thenh, # hg.
(i) If hy > hg, thend (v > 3 > Jwhin.

The proof of these facts involves a non-trivial adventure with modified Bessel functions,
In(X), wheren is any non-negative integer angd(x) = %fg do ¥ cogng). To

keep the computations succinct, we introduce the polar coordingtes,r cosf and

vg = rsind, whered € [0, 2z) andr > 0. Let(-), s denote the expectation with
respect to the-marginal of the staté—),, whereh’ = diag(h/, ..., hy) is related to
hviahl, = hig = %(ha + hp), while b}, = h, for y # a, §. Explicitly, if f(r,0)
corresponds td (v,, v4) via the above change of coordinates, then

(J&r dpe*aeou) £, 0))

(f (0as 0p))y, = o (4.42)

(5" apeacosn)

whereA = 1(h, — hp).

We begin by deriving several identities involving modified Bessel functions. First, a
straightforward calculation shows that

(Z = v5h = Agp(A) (r2|1(r2A))aﬂ, (4.43)
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whereA,z(A)~1 = (19(r2A)),z. Similarly we get
(gui)n = Aug () (gr(lo(r?a) — 12(r?4))) - (4.44)
But Ig(X) — l12(X) = (2/x)11(X), whereby we have the identity
2(hy — hp)(0Zv5h = (7 — vF)n. (4.45)
A similar calculation using trigonometric formulas shows that

(vghh = Agp(A) r*(31o(r?A) + 31102 A) + §12(r%4))), 4 (4.46)
(0ih = Ags(A) [r*(§10(r?A) = 311(r2A) + §12(r?4))), ;- (4.47)

In particular, sincdo(0) = 1 while I1(0) = 12(0) = 0, we have
ha=hs = (3= Hn = 3W;05)n. (4.48)

The identities (4.44—4.48) will now allow us to prove (i-ii).

First we note that he fact thhtwas a stationary point d¥; implies thath, — h,, =
Jw2 - uf,)h for all y, = 1,..., N. Using this in (4.45), we have the following
dichotomy

either h, =hg or 2J(wZv5n =1 (4.49)

To establish (i), suppose thdtv? + v;})h > 3 buth, = hg. Then (4.48) gives us

2J(vZv%)n > 1,in contradiction with (4.49). Hence, (i) must hold. To prove (ii), assume
thath, > hg and note that thems > 0. Applying thatl;(x) > 0 andl>(x) > O
for x > 01in (4.46), we easily show using (4.46) thaf,1 h > 3 vﬁ)h Similarly, the

boundl1(x) > I2(x) for x > 0, applied in (4.47), shows thatﬂ)h < 3(1) vﬁ>h. From
here (ii) follows by invoking (4.49).

Now we are ready to prove the desired claim. héte a stationary point. First let us
prove that there are no three componenth etich thah, > hz > h,. Indeed, if that
would be the case, (i-ii) leads to a contradiction, becdise hgz would require that

J(uj})h < 3/2 whilehg > h, would stipulate that (vé)h > 3/2! Thus, any stationary
pointh of ¥; can only have two values fap})n. However, if (say) bothv?)n and
(v3)n take on the larger value (implying thag = hy), thenJ(vf + 05)n > 3 andh
cannot be a stationary point. From here the claim follows.

The symmetry of the problem at hand allows us to restrict ourselves to the on-axis
formalism from Section 4.1. In particular, we let = diag(1, N— 1 =)
h = he andA = Aw and define the functiong(h), s(1) and¢;(1) as in (4 10 4 11)
Lemma 4.9 in turn guarantees that all local minimizer@gfappear within the domain
of ¢3. What remains to be proved is the converse. This can be done using some of the
items established above.

Lemma 4.10.Suppose that is a stationary point of the scalar free energy which
satisfies J§(J2) < 1. Thend = e, withe = diag(l, — g1y, ..., —=7), is a local
minimizer ofd}.
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Proof. To simplify the exposition, we will exploit th®© (N)-symmetry of the problem:
If g e O(N, R)isanyN x N orthogonal matrix, then

®D3(m) = d3(g"myg), (4.50)

with similar considerations applying t#;(h). Thus, for all intents and purposes, we
may assume that the arguments of these functions are already in the diagonal form and
regard the diagonal as é&ftcomponent vector. (Indeed, we will transfer back and forth
between the vector and matrix language without further ado.)

Again we are forced to work with the dual variables. To that endylgth) be the
quantity || ~2¥; (hw). Clearly, the relation between; and¢; is as for¥; and®;.
First, let us demonstrate that every stationary point of the scalar free epgngpre-
sents a stationary point of the full. Indeed, letk be the orthogonal complement of
vectore in RN. As a simple computation shows, akye K has a zero first component.
If Kk =(0,ko,...,kn) € Kis small, then

G(ho + k) = G(he) + <Z K u§>h +O(k), (4.51)
(]
B
where(—)p is as in (4.41). Now(v§>h,,, is the same for alp = 2,..., N, and in the

view of the fact tha_; ks = 0, the expectation vanishes. Hen8&/; (hw) has all
components corresponding to the subspgBoequal to zero. Now ih is a stationary
point of w3, we know thatlw, V¥; (hw)) = 0 and thusV ¥; (hw) = 0 as claimed.

To prove the desired claim, it now suffices to show that the Hessi#j & positive
definite ath = h*@ whenh* satisfiesJg”’(h*) < 1. (Recall that the corresponding
stationary points ofy3 and¢j are related byr = JA.) This in turn amounts to show-
ing thatV VG (he) is dominated by thed ~1-multiple of the unit matrix. Although we
must confine ourselves g, it is convenient to consider the Hessian@th) in a
larger space which contains the constant vector and restrict our directional probes to
vectors fromEq. In general, the entries of the Hessian are given in terms of truncated
correlation functions:

(Hes$G)),,, = (0Z05n — W2 (05 ). (4.52)

For the problem at hand, there are only four distinct entries:

AB ... ... B
BC D D
Hes¢G)=| :p . . : |. (4.53)
Sl ¢
BD... D C

Clearly,m itself is an eigenvector of He@S) with the eigenvalue — B. On the other
hand, ifk € K, then the first row and column of H&€%) are irrelevant. Writing the
remaining(N — 1) x (N — 1) block in the form(c — D)1 + CS, whereS is the matrix
with all entries equal to one, it follows easily that allléfis an eigenspace of H&$3)
with eigenvaluec — D.
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It remains to show that these eigenvalues are strictly smallerXhariThe first one,
namely,A — B is less thand~! by our assumption thatg’(h*) < 1. As to the other
eigenvaluec — D, we note that

0%, a>p>1 (4.54)

Now, equation (4.48) tells us that, under our conditidngy?)n )h equals3 (v4)n. So we

need tha% Yhis lessthan). But sinceh; = h* > h,,, that is exactly the condition (ii)
derived in the proof of Lemma 4.9.0

Now we are ready to establish our claims concerning the local minindg of

Proof of Proposition 2.4Letw be as above and note tHat|> = N/(N — 1). Then the
on-axis moment generating function from (4.10) becomes

g(h) =

_1
log / 7 (dv) R R (4.55)

wherery is the uniform probability measure on the unit spher&thando; is the first
component of7. An argument involving thé\-dimensional spherical coordinates then
shows that

N (o1 € dx) = C(N) (1 — x?) 2 dx, (4.56)

whereC(N) is the ratio of the surfaces of the unit sphereRM1 andRN. By substi-
tuting this into (4.55) and applying (4.12), we easily find that, in ordedfes o to
be a local minimum ofb 3, the scalarl has to satisfy the equation (2.25).

A simple analysis of (2.25) shows that fdr « 1, the only solution to (2.25) is
4 = 0, while for J > N2, the solution = 0 is no longer perturbatively stable. Since
Lemma 4.2 guarantees that the norm of all global minimizers increaseswittere
must be a uniquéyr € (0, o) and a non-decreasing functidn— Amge(J) such that
Amr(J) solves (2.25) and that every global minimizerd®dj at anyJ > Jyrg which
is a continuity point ofJ — Ame(J) corresponds td = Ame(J). (At any possible
point of discontinuity of] — Amp(J), the A corresponding to any global minimizer is
sandwiched between lign 3 Amr(J") and limy/4 3 Ame(J).) The claim is proved. O

In order to prove the larg®t part of our statements concerning the mean-field theory
of the nematic model, we will need to establish the following scaling property:

Lemma 4.11. LetqD(N) denote the free- energy function of thé \D-nematic Hamilto-

nian. Introduce the matrig = diag(1, — N oo _ﬁ) and define the normalized
mean-field free-energy function

1
oM () = N|a)|_2(155'\,1\l)(/la)), A <1 (4.57)

Then, as N— oo, the functiondA — ¢>(N)(/1) converges, along with all of its deriva-
tives, to the function

P = — Iog —— (4.58)
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Proof. The proof is a straightforward application of Laplace’s method to the measure on
the right-hand side of (2.25). Indeed, for @my 0, consider the measupg N on [0, 1]
defined by

1- X2)¥ehNX2
Jdx (1 —x2) 2 N

ph.N(dX) = (4.59)

Noting that the functiox — (1 — xz)%ehx2 has a unique maximum at= xp, where

1
X2 = max{O, 1- %], (4.60)
we easily conclude that
lim pn,N() = dx, (), (4.61)
N— oo

whereda(-) denotes the Dirac point mass»at= a. Here the limit taken in the sense
of weak convergence on the space of all bounded continuous functions Hin The
proof of this amounts to standard estimates for the Laplace method; we leave the details
to the reader.

Let gn (h) denote the functiog(h N) whereg is as in (4.55). Since any derivative of
gn (h) can be expressed as a truncated correlation function of meagwreve easily
conclude thah — gy (h) converges, along with all of its derivatives, to the function

gso(h) = fim gu(h) = max{o, h— % _ %Iog(Zh)}, (4.62)

for all h > 0. Now, the functiorsy (1) = %|w|—28(/1m)—where8(-) is the entropy of
the O(N)-nematic model—is the Legendre transfornggf, so we also get

So(4) = NIi_r)noo sn(d) = —} log % (4.63)

(Again, the convergence extends to all derivatives, provitled 1.) From here the
claim follows by noting that;SSN)(/l) = —%/12 — sn(4), which tends togﬁgoo) (A1) inthe
desired sense.O

Proof of Proposition 2.5By Lemma 4.11, the scaled mean-field free-energy func-

tion ¢(JN) is, along with any finite number of its derivatives, uniformly closeﬁfﬁ)
on compact subsets of [0), providedN is sufficiently large. Now the local minima

of ¢Soo) will again satisfy a mean-field equation, this time involving the functign
from (4.62). Since

1 ; 1
0, otherwise

there are at most two perturbatively stable solutions to the mean-field equation: One at

A = 0 and the other at 1
A= §(1+\/1—4J—2). (4.65)

Moreover, these local minima interchange the role of the global minimum at some

finite and non-zero],\(,lo,?), which is a solution of a particular transcendental equation.
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ForJ nearJ,\(,l";’), the second derivative @ﬁ‘f,oo) is uniformly positive around both local

minima.

The convergence stated in Lemma 4.11 ensures that all of the previously listed facts
will be (at least qualitatively) satisfied b;ySN) for N large as well. Thus¢gN) has at
most one positive local minimum, which immediately implies tat> i,(\ANF)(J) is
continuous whenever it is defined. Moreover, since the local mininz;eg'\chonverge

to those of¢5°°), we also easily recover the asymptotic statements (2.27-2.28). This

finishes the proof. O

Proof of Theorem 2.6The proof is similar to that of the Potts and cubic models; the

only extra impediment is that now we cannot take for granted that there is only one

non-zero local minimum. As before, most of the difficulties will be resolved by invok-

ing the monotonicity of the energy densiy(J), which is defined e.g. by optimizing

%((QO, Q,)) 1 over all Gibbs states invariant under the lattice translations and rotations.
In the present case,andn in the Main Theorem are given by= (N — 1)/N and

n= 3N(N — 1). Thus, lettingdy = 3(N — 1)?lg, the quantityJdq is the correspond-

ing error term on the right-hand side of (1.12). Defineby the formula (4.23). Then

Lemma 4.9 guarantees that the diagonal fdraf (Q) ; for any Gibbs state is an index

permutation of a vector of the type

A A
(/1+a1,—m+a2,...,—m+aN), (466)

where} ;a5 =0, ai2 < ef and corresponds to a local minimum df;. If 4 is the
physical magnetization giving rise fQ(J), we let/i},-(J) be a value ofi, correspond-
ing to a local minimum of® 3, for which 4 takes the form (4.66). Then Corollary 1.2
and the Key Estimate give

1
() -5 aE(D)?] < 2344 (4.67)

N-1
Now for J < Jp <« 1, we know the only local minimum is foty,-(J) = 0, while for
J > J1 > N2, the zero vector is no longer a local minimum and heijge(J) exceeds
somes’ > 0. ButJ — e(J) is non-decreasing so there must b&ae [Jy, J1]
wheree, (J) jumps by at least’ — 2Jd4, which is positive oncé is sufficiently large.
The fact that); must be close tadur for large enoughd is proved exactly as for the
Potts and cubic models.o

5. Mean-field theory and complete-graph models

Here we will show that the mean-field formalism developed in Section 1.2 has a very
natural interpretation for the model on a complete graph. An important reason for the
complete graph picture is to provide a tangible physical system to motivate some of the
physical arguments. The forthcoming derivation is a rather standard exercise in large-
deviation theory [16, 19], so we will keep it rather brief.

We will begin by a precise definition of the problem. I@& be a complete graph
on N vertices and consider a spin system @q with single-spin spac€ and the
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Hamiltonian

N
PINE =3 D 58— 0.5, (5.1)
x=1

1<x<y<N

(Recall thatQ is a compact subset of a finite-dimensional vector sfiagavith inner
product denoted as in the previous formula.) Letenote the priori spin measure and
let (—)o denote the corresponding expectation. For each configur&timroduce the
empirical magnetization by the formula

N
1
mN(S) = 5 D Sc. (52)
x=1
If m e ConMQ) ande > 0, letld. (m) denote the-neighborhood ofn in Con\ Q) in
the metric induced by the inner product 8n. Then we have:

Theorem 5.1.For eachm € ConvQ),

R ST
Igirg) Jim = Iog<e AHNC )1{mN(S)eL{((m)}>O = —®jp(M), (5.3)

wheredj ,(m) is as defined in Section 1.2. Moreoveg)if denotes the Gibbs measure
obtained by normalizing®HN® and if Ryur(J, b) denotes the infimum ab; (M)
overm € ConvQ), then

lim vn(@ap(MN(S) = Fur(Jd,b) +¢) =0 (5.4)
N— oo
for everye > 0.
Proof. By our assumptionEg, is a finite-dimensional vector space. Moreower,is
compact and thus the logarithmic generating functsy) defined in (1.3) exists for

all h € Eq. As a consequence of Crans Theorem for i.i.d. random variables &,
see Theorem 2.2.30 in [16], the measures

unG) = p(Mn(S) € ) (5.5)
satisfy a large-deviation principle @& with rate function (1.4). In particular,
- 1
IET(]J NIinOo N log uun (Ue (M) = S(m), m e ConMQ). (5.6)
Now S Hy can be written as follows

J
HN = NEgp(mn(S) — 5 (S0 S (5.7)
x=1

Since the second term is bounded by a non-random constant almost surely and since
m — Ejp(m) is uniformly continuous throughout Co(), (5.3) follows by inspect-
ing the definition of®; y(m). O
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