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Abstract: We consider a variety of nearest-neighbor spin models defined on thed-
dimensional hypercubic latticeZd. Our essential assumption is that these models satisfy
the condition of reflection positivity. We prove that whenever the associated mean-field
theory predicts a discontinuous transition, the actual model also undergoes a discontin-
uous transition (which occurs near the mean-field transition temperature), provided the
dimension is sufficiently large or the first-order transition in the mean-field model is suf-
ficiently strong. As an application of our general theory, we show that ford sufficiently
large, the 3-state Potts ferromagnet onZd undergoes a first-order phase transition as
the temperature varies. Similar results are established for allq-state Potts models with
q ≥ 3, ther -component cubic models withr ≥ 4 and theO(N)-nematic liquid-crystal
models withN ≥ 3.
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1. Introduction

1.1. Motivation and outline.Mean-field theory has traditionally played a seminal role
for qualitative understanding of phase transitions. In fact, most practical studies of com-
plex physical systems begin (and sometimes end) with the analysis of the corresponding
mean field theory. The central idea of mean-field theory—dating back to [15, 53]—
is rather compelling: The ostensibly complicated interactions acting on a particular
element of the system are replaced by the action of an effective (ormean) external
field. This field causes a response at the point of question and its value has to be self-
consistently adjusted so that the response matches the effective field. The practical out-
come of this procedure is a set of equations, known as themean-field equations. In
contrast to the original, fully interacting system, the mean-field equations are suscepti-
ble to direct analytical or numerical methods.

There is a general consensus that mean-field predictions are qualitatively or even
quantitatively accurate. However, for short-range systems, a mathematical foundation of
this belief has not been presented in a general context. A number of rigorous results have
related various lattice systems to their mean-field counterparts, either in the form of
bounds on transition temperatures and critical exponents, see [19,20,52] and references
therein, or in terms of limits of the free energy [48] and the magnetization [12, 41] as
the dimension tends to infinity. In all of these results, the nature of the phase transition
is not addressed or the proofs require special symmetries which, as it turns out, ensure
that the transition is continuous. But, without special symmetries (or fine tuning) phase
transitions are typically discontinuous, so generic short-range systems have heretofore
proved elusive. (By contrast, substantial progress along these lines has been made for
systems where the range of the interaction plays the role of a large parameter. See,
e.g., [10,11,14,47].)

In this paper we demonstrate that for a certain class of nearest-neighbor spin sys-
tems, namely those that arereflection positive, mean-field theory indeed provides a
rigorous guideline for the order of the transition. In particular, we show that the actual
systems undergo a first-order transition whenever the associated mean-field model pre-
dicts this behavior, provided the spatial dimension is sufficiently high and/or the phase
transition is sufficiently strong. Furthermore, we give estimates on the difference be-
tween the values of parameters of the actual model and its mean-field counterpart at
their corresponding transitions and show that these differences tend to zero as the spa-
tial dimension tends to infinity. In short, mean field theory isquantitatively accurate
whenever the dimension is sufficiently large.
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The main driving force of our proofs is the availability of the so calledinfrared
bound[18,22–24], which we use for estimating the correlations between nearest-neigh-
bor spins. It is worth mentioning that the infrared bound is the principal focus of interest
in a class of rigorous results on mean-fieldcritical behavior of various combinatorial
models [13,30–32,37,39] and percolation [29,33–36,38,40] based on the technique of
the lace expansion. However, in contrast to these results (and to the hard work that they
require), our approach is more reminiscent of the earlier works on high-dimensional
systems [1–3], where the infrared bound is provided as aninput. In particular, for our
systems this input is a consequence of reflection positivity. (As such, some of our results
can also be extended to systems with long-range forces; the relevant modifications will
appear in a separate publication [9].)

The principal substance of this paper is organized as follows: We devote the remain-
der of Section 1 to a precise formulation of the general class of spin systems that we
consider, we then develop some general mean-field formalism and, finally, state our
main theorems. Section 2 contains a discussion of three eminent models—Potts, cu-
bic and nematic—with specific statements of theorems which underscore the first-order
(and mean-field) nature of the phase transitions for the large-d version of these models.
In Section 3 we develop and utilize the principal tools needed in this work and provide
proofs of all statements made in Section 1. In Section 4, we perform detailed analyses
and collect various known results on the mean-field theories for the specific models
mentioned above. When these systems are “sufficiently prepared,” we apply the Main
Theorem to prove all of the results stated in Section 2. Finally, in Section 5, we show
that for any model in the class considered, the mean-field theory can be realized by
defining the problem on the complete graph.

1.2. Models of interest.Throughout this paper, we will consider the following class of
spin systems on thed-dimensional hypercubic latticeZd: Thespins, denoted bySx, take
values in some fixed set�, which is a subset of a finite dimensional vector spaceE�. We
will use (· , ·) to denote the (positive-definite) inner product inE� and assume that�
is compact in the topology induced by this inner product. The spins are weighted ac-
cording to ana priori Borel probability measureµ whose support is�. An assignment
of a spin valueSx to each sitex ∈ Zd defines aspin configuration; we assume that the
a priori joint distribution of all spins onZd is i.i.d. Abusing the notation slightly, we
will useµ to denote the jointa priori measure on spin configurations and use〈−〉0 to
denote the expectation with respect toµ.

The interaction between the spins is described by the (formal) Hamiltonian

βH = −
J

2d

∑
〈x,y〉

(Sx,Sy)−

∑
x

(b,Sx). (1.1)

Here〈x, y〉 denotes a nearest-neighbor pair ofZd, the quantityb, playing the role of an
external field, is a vector fromE� andβ, the inverse temperature, has been incorporated
into the (normalized) coupling constantJ ≥ 0 and the field parameterb.

The interaction Hamiltonian gives rise to the concept of a Gibbs measure which is
defined as follows: Given a finite set3 ⊂ Zd, a configurationS = (Sx)x∈3 in 3 and a
boundary conditionS′

= (S′
x)x∈Zd\3 in Zd

\3, we letβH3(S|S′) be given by (1.1) with
the first sum on the right-hand side of (1.1) restricted to〈x, y〉 such that{x, y}∩3 6= ∅,
the second sum restricted tox ∈ 3, andSx for x 6∈ 3 replaced byS′

x. Then we define
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the measureν(S
′)

3 on configurationsS in 3 by the expression

ν
(S′)
3 (dS) =

e−βH3(S|S′)

Z3(S′)
µ(dS), (1.2)

whereZ3(S′) is the appropriate normalization constant which is called thepartition
function. The measure in (1.2) is thefinite-volume Gibbs measurecorresponding to the
interaction (1.1).

In statistical mechanics, the measure (1.2) describes the thermodynamic equilib-
rium of the spin system in3. To address the question of phase transitions, we have to
study the possible limits of these measures as3 expands to fill inZd. In accord with
the standard definitions, see [26], we say that the spin model undergoes afirst-order
phase transitionat parameter values(J,b) if there are at least two distinct infinite-
volume limits of the measure in (1.2) arising from different boundary conditions. We
will call these limiting objects either infinite-volume Gibbs measures or, in accordance
with mathematical-physics nomenclature,Gibbs states. We refer the reader to [26, 52]
for more details on the general properties of Gibbs states and phase transitions.

We remark that, while the entire class of models has been written so as to appear
identical, the physics will be quite different depending on the particulars of� andµ,
and the inner product. Indeed, the language of magnetic systems has been adapted only
for linguistic and notational convenience. The above framework can easily accommo-
date any number of other physically motivated interacting models such as lattice gases,
ferroelectrics, etc.

1.3. Mean-field formalism.Here we will develop the general formalism needed for
stating the principal mean-field bounds. The first object of interest is the logarithmic
moment generating function of the distributionµ,

G(h) = log
∫
�
µ(dS)e(S,h). (1.3)

Since� was assumed compact,G(h) is finite for all h ∈ E�. Moreover,h 7→ G(h) is
continuous and convex throughoutE�.

Every mean-field theory relies on a finite number of thermodynamic functions of
internal responses. For the systems with interaction (1.1), the object of principal interest
is themagnetization. In general, magnetization is a quantity taking values in the closed,
convex hull of�, here denoted by Conv(�). If m ∈ Conv(�), then themean-field
entropy functionis defined via a Legendre transform ofG(h),

S(m) = inf
h∈E�

{
G(h)− (m,h)

}
. (1.4)

(Strictly speaking, (1.4) makes sense even form 6∈ Conv(�) for which we simply get
S(m) = −∞.) In general,m 7→ S(m) is concave and we haveS(m) ≤ 0 for all
m ∈ Conv(�). From the perspective of the large-deviation theory (see [16, 19]), the
mean-field entropy function is (the negative of) the rate function for the probability that
the average of many spins is nearm.

To characterize the effect of the interaction, we have to introduce energy into the
game. For the quadratic Hamiltonian in (1.1), the(mean-field) energy functionis given
simply by

EJ,b(m) = −
1

2
J|m|

2
− (m,b), (1.5)
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where |m|
2

= (m,m). On the basis of physical considerations, a state of thermo-
dynamic equilibrium corresponds to a balance between the energy and the entropy.
The appropriate thermodynamic function characterizing this balance is the free en-
ergy. We therefore define themean-field free-energy functionby settingΦJ,b(m) =

EJ,b(m)− S(m), i.e.,

ΦJ,b(m) = −
1

2
J|m|

2
− (m,b)− S(m). (1.6)

The mean-field (Gibbs) free energyFMF(J,b) is defined by minimizingΦJ,b(m) over
all m ∈ Conv(�). Assuming a unique minimizer, this and (1.4-1.5) give us a definition
of the mean-field magnetization, entropy and energy. A more interesting situation oc-
curs when there is more than one minimizer ofΦJ,b. The latter cases are identified as
the points of phase coexistence while the former situation is identified as the unique-
ness region.

For the sake of completeness, it is interesting to observe that every minimizer of
ΦJ,b(m) (in fact, every stationary point) in the relative interior of Conv(�) is a solution
of the equation

m = ∇G(Jm + b), (1.7)

where∇ denotes the (canonical) gradient inE�. This is themean-field equationfor
the magnetization, which describes the self-consistency constraint that we alluded to in
Section 1.1. The relation between (1.7) and the stationarity ofΦJ,b is seen as follows:
∇ΦJ,b(m) = 0 implies thatJm + b + ∇S(m) = 0. Buth = −∇S(m) is equivalent to
m = ∇G(h), and stationarity therefore implies (1.7).

We conclude with a claim that an immediate connection of the above formalism
to somestatistical mechanics problem is possible. Indeed, if the Hamiltonian (1.1) is
redefined for the complete graph onN vertices, then the quantityΦJ,b(m) emerges as
the rate function in a large-deviation principle for magnetization and henceFMF(J,b)
is the free energy in this model. A precise statement and a proof will appear in the last
section (Theorem 5.1 in Section 5); special cases of this result have been known since
time immemorable, see e.g. [19].

1.4. Main results.Now we are in a position to state our general results. The basic idea is
simply to watch what happens when the value of the magnetization in an actual system
(governed by (1.1)) is inserted into the associated mean-field free-energy function. We
begin with a general bound which relies only on convexity:

Theorem 1.1.Consider the spin system onZd with the Hamiltonian(1.1)and letνJ,b
be an infinite-volume Gibbs measure corresponding to the parameters J≥ 0 and
b ∈ E� in (1.1). Suppose thatνJ,b is invariant under the group of translations and
rotations ofZd. Let〈−〉J,b denote the expectation with respect toνJ,b and letm? be the
magnetization of the stateνJ,b defined by

m? = 〈S0〉J,b, (1.8)

where0 denotes the origin inZd. Then

ΦJ,b(m?) ≤ inf
m∈Conv(�)

ΦJ,b(m)+
J

2

[〈
(S0,Sx)

〉
J,b − |m?|

2], (1.9)

where x denotes a nearest neighbor of the origin.
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Thus, whenever the fluctuations of nearest-neighbor spins have small correlations,
the physical magnetizationalmostminimizes the mean-field free energy. The bound
(1.9) immediately leads to the following observation, which, to the best of our knowl-
edge, does not appear in the literature:

Corollary 1.2. LetνJ,b and〈−〉J,b be as in Theorem 1.1 and letm? be as in(1.8). Then〈
(Sx,Sy)

〉
J,b ≥ |m?|

2 (1.10)

for any pair of nearest-neighbors x, y ∈ Zd. In particular, for any model with interac-
tion (1.1), the nearest-neighbor spins are positively correlated in any Gibbs state which
is invariant under the translations and rotations ofZd.

Our next goal is to characterize a class of Gibbs states for which the correlation term
on the right-hand side of (1.9) is demonstrably small. However, our proofs will make
some minimal demands on the Gibbs states themselves and it is therefore conceivable
that we may not be able to accessall the extremal magnetizations. To define those val-
ues of magnetization for which our proofs hold, letF(J,b) denote the infinite-volume
free energy per site of the system onZd, defined by taking the thermodynamic limit
of −

1
|3|

log Z3, see e.g. [50]. (Note that the existence of this limit follows automati-
cally by the compactness of�.) The functionF(J,b) is concave and, therefore, has all
directional derivatives. LetK?(J,b) be the set of all pairs [e?,m?] such that

F(J +1J,b +1b)− F(J,b) ≤ e?1J + (m?,1b) (1.11)

holds for all numbers1J and all vectors1b ∈ E�. By a well-known result (see the
discussion of the properties ofsubdifferentialon page 215 of [51]),K?(J,b) is a convex
set; we letM?(J,b) denote the set of all valuesm? such that [e?,m?] is an extreme
point of the setK?(J,b) for some valuee?.

Our Main Theorem is then as follows:

Main Theorem. Let d ≥ 3 and consider the spin system onZd with the Hamilto-
nian (1.1). Let n denote the dimension ofE�. For J ≥ 0 and b ∈ E�, let m? ∈

M?(J,b). Then

ΦJ,b(m?) ≤ inf
m∈Conv(�)

ΦJ,b(m)+ Jn
κ

2
Id, (1.12)

whereκ = maxS∈�(S,S) and

Id =

∫
[−π,π ]d

ddk

(2π)d
[1 − D̂(k)]2

D̂(k)
(1.13)

with D̂(k) = 1 −
1
d

∑d
j =1 cos(ky).

The bound (1.12) provides us with a powerful method for proving first-order phase
transitions on the basis of a comparison with the associated mean-field theory. The
key to our whole program is that the “error term”,Jnκ2 Id, vanishes in thed → ∞

limit; in fact,

Id =
1

2d

(
1 + o(1)

)
as d → ∞, (1.14)
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Fig. 1. The mean-field free energy as a function of a scalar magnetizationm(J) for the typical model under-
going a first-order phase transition. In an interval of values ofJ, there are two local minima which switch
their order atJ = JMF. If the “barrier” height1(J) always exceeds the error term from (1.12), there is a
forbidden interval of scalar magnetizations andm(J) has to jump asJ varies. The actual plot corresponds
to the 3-state Potts model forJ taking the values (a) 2.73, (b) 2.76, (c) 2.77 and (d) 2.8. See Section 2.1 for
more details.

see [12]. Ford sufficiently large, the bound (1.12) thus forces the magnetization of the
actual system to beneara value ofm thatnearlyminimizesΦJ,b(m). Now, recall a typ-
ical situation of the mean-field theory with a first-order phase transition: There is aJMF
such that, forJ nearJMF, the mean-field free-energy function has two nearly degen-
erate minima separated by a barrier of height1(J), see Figure 1. If the barrier1(J)
always exceeds the error term in (1.12), i.e., if1(J) > Jnκ2 Id, some intermediate
values of magnetization are forbidden and, asJ increases throughJMF, the physical
magnetization undergoes a jump at someJt nearJMF. See also Figure 2.

The Main Theorem is a direct consequence of Theorem 1.1 and the following lemma:

Key Estimate. Let J ≥ 0 andb ∈ E� and letm? ∈ M?(J,b). Let n,κ and Id be as
in the Main Theorem. Then there is an infinite-volume Gibbs stateνJ,b for interaction
(1.1)such that

m? = 〈S0〉J,b (1.15)

and 〈
(Sx,Sy)

〉
J,b − |m?|

2
≤ nκ Id, (1.16)

for any nearest-neighbor pair x, y ∈ Zd. Here 〈−〉J,b denotes the expectation with
respect toνJ,b.
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The Key Estimate follows readily under certain conditions; for instance, when the
parameter valuesJ andb are such that there is a unique Gibbs state. Under these cir-
cumstances, the bound (1.16) is a special case of the infrared bound which can be
derived using reflection positivity (see [18, 22–24]) and paying close attention to the
“zero mode.” Unfortunately, at the points of non-uniqueness, the bound in (1.16) is also
needed. The restriction to extreme magnetizations is thus dictated by the need to ap-
proximate the magnetizations (and the states which exhibit them) by states where the
standard “RP, IRB” technology can be employed.

The Key Estimate and Theorem 1.1 constitute a proof of the Main Theorem. Thus,
a first-order phase transition (ford � 1) can be established in any system of the form
(1.1) by detailed analysis of the full mean-field theory. Although this sounds easy in
principle, in practice there are cases where this can be quite a challenge. But, ultimately,
the Main Theorem reduces the proof of a phase transitions to a problem in advanced
calculus where (if desperate) one can employ computers to assist in the analysis.

1.5. Direct argument for mean-field equation.We have stated our main results in the
context of the mean-field free energy. However, many practical calculations focus im-
mediately on the mean-field equation for magnetization (1.7). As it turns out, a direct
study of the mean-field equation provides us with an alternative (albeit existential) ap-
proach to the results of this paper. The core of this approach is the variance bound for
the magnetization stated as follows:

Lemma 1.3.Let d ≥ 3 and consider the spin system onZd with the Hamiltonian(1.1).
Let n and Id be as in the Main Theorem. For J≥ 0 andb ∈ E�, let m? ∈ M?(J,b).
Then there is an infinite-volume Gibbs stateνJ,b for the interaction(1.1) such that
m? = 〈S0〉J,b and 〈∣∣∣ 1

2d

∑
x : |x|=1

Sx − m?

∣∣∣2〉
J,b

≤ n J−1Id, (1.17)

where〈−〉J,b denotes the expectation with respect toνJ,b.

Here is how the bound (1.17) can be used to prove that mean-field equations are
accurate in sufficiently large dimensions: Conditioning on the spin values at the neigh-
bors of the origin and recalling the definition ofG(h), the expectation〈S0〉J,b can be
written as

〈S0〉J,b =

〈
∇G

(
J

2d

∑
x : |x|=1

Sx + b
)〉

J,b
. (1.18)

Since the right-hand side of (1.17) tends to zero asd → ∞, the (spatial) average of the
spins neighboring the origin—namely12d

∑
x : |x|=1 Sx—is, with high probability, very

close tom?. Using this in (1.18), we thus find thatm? approximately satisfies the mean-
field equation (1.7). Thus, to demonstrate phase coexistence (ford � 1) it is sufficient
to show that, along some curve in the parameter space, the solutions to the mean-field
equations cannot be assembled into a continuous function. In many cases, this can be
done dramatically by perturbative arguments.

While this alternative approach has practical appeal for certain systems, the principal
drawback is that it provides no clue as to the location of the transition temperature.
Indeed, as mentioned in the paragraph following the Main Theorem, secondary minima
and other irrelevant solutions to the mean-field equations typically develop well below
J = JMF. Without the guidance of the free energy, there is no way of knowing which
solutions are physically relevant.
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J

m

Fig. 2. The solutions of the mean-field equation for the scalar order parameterm as a function ofJ for the
10-state Potts model. The solid lines indicate the local minima, the dashed lines show the other solutions
to the mean-field equation. The portions of these curves in the regions wherem is sufficiently close to zero
or one can be (rigorously) controlled using perturbative calculations. These alone prove that the mean-field
theory “does not admit continuous solutions” and, therefore, establish a first order transitions ford � 1.
The shaded regions show the set of allowed magnetizations for the system onZd when Id ≤ 0.002. In addi-
tion to manifestly proving a discontinuous transition, these provide tight numerical bounds on the transition
temperature and reasonable bounds on the size of the jump.

2. Results for specific models

In this section we adapt the previous general statements to three models: theq-state
Potts model, ther -component cubic model and theO(N)-nematic liquid crystal model.
For appropriate ranges of the parametersq, r andN and dimension sufficiently large,
we show that these models undergo a first-order phase transition asJ varies. The rele-
vant results appear as Theorems 2.1, 2.3 and 2.6.

2.1. Potts model.The Potts model, introduced in [49], is usually described as having a
discrete spin space withq states,σx ∈ {1,2, . . . ,q}, with the (formal) Hamiltonian

βH = −J
∑
〈x,y〉

δσx,σy . (2.1)

Hereδσxσy is the usual Kronecker delta andJ =
J

2d . To bring the interaction into the
form of (1.1), we use the so calledtetrahedralrepresentation, see [54]. In particular, we
let� = {v̂1, . . . , v̂q}, wherev̂α denote the vertices of a(q − 1)-dimensional hyperte-
trahedron, i.e.,̂vα ∈ Rq−1 with

v̂α · v̂β =

{
1, if α = β,

−
1

q−1, otherwise.
(2.2)

The inner product is proportional to the usual dot product inRq−1. Explicitly, if Sx ∈ �
corresponds toσx ∈ {1, . . . ,q}, then we have

(Sx,Sy) =
q − 1

q
Sx · Sy = δσx,σy −

1

q
. (2.3)
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(The reason for this rescaling the dot product is to maintain coherence with existing
treatments of the mean-field version of this model.) Thea priori measureµ gives a
uniform weight to allq states in�.

Let us summarize some of the existing rigorous results about theq-state Potts model.
Theq = 2 model is the Ising model, which in mean-field theory as well as real life has
a continuous transition. It is believed that the Potts model has a discontinuous transition
for all d ≥ 3 andq ≥ 3 (see, e.g., [54]). In anyd ≥ 2, it was first proved in [45]
that for q sufficiently large, the energy density has a region of forbidden values over
which it must jump discontinuously asJ increases. On the basis of FKG monotonicity
properties, see [4], this easily implies that the magnetization is also discontinuous. Such
results have been refined and improved; for instance in [44,46], Pirogov-Sinai type ex-
pansions have been used to show that there is a single point of discontinuity outside of
which all quantities are analytic. However, ford ≥ 3, the values ofq for which these
techniques work are “astronomical,” and, moreover, deteriorate exponentially with in-
creasing dimension.

Let m?(J) ande?(J) denote the the actual magnetization and energy density, respec-
tively. These quantities can be defined using one-sided derivatives of the physical free
energy:

m?(J) =
∂

∂b
F(J,bv̂1)

∣∣∣
b=0+

and e?(J) =
∂

∂J ′
F(J ′,0)

∣∣∣
J ′=J+

, (2.4)

or, equivalently, by optimizing the expectations〈(v̂1,S0)〉, resp.,12〈(S0,Sx)〉, where “0”
is the origin andx is its nearest neighbor, over all Gibbs states that are invariant under
the symmetries ofZd. Recalling the Fortuin-Kasteleyn representation [4,21,27,28], let
P∞(J) be the probability that, in the associated random cluster model with parameters
p = 1 − e−J/(2d) andq, the origin lies in an infinite cluster. Thenm?(J) and P∞(J)
are related by the equation

m?(J) =
q − 1

q
P∞(J). (2.5)

As a consequence, the magnetizationm?(J) is a non-decreasing and right-continuous
function of J. The energy densitye?(J) is non-decreasing inJ simply by concavity
of the free energy. The availability of the graphical representation allows us to make
general statements about the phase-structure of these systems. In particular, in anyd ≥

2 and for allq under consideration, there is aJc = Jc(q,d) ∈ (0,∞) such thatm?(J) >
0 for J > Jc while m?(J) = 0 for J < Jc, see [4, 28]. Wheneverm?(Jc) > 0 (which,
by the aforementioned results [44–46], is known forq � 1), there are at leastq + 1
distinct extremal, translation-invariant Gibbs states atJ = Jc.

The mean-field free energy for the model without external field is best written in
terms of components ofm: If (x1, . . . , xq) is a probability vector, we expressm as

m = x1v̂1 + · · · + xqv̂q. (2.6)

The interpretation of this relation is immediate:xk corresponds to the proportion of
spins in thek-th spin-state. In terms of the variables in (2.6), the mean-field free-energy
function is (to within a constant) given by

ΦJ(m) =

q∑
k=1

(
−

J
2 x2

k + xk logxk
)
. (2.7)
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In (2.7) we have for once and all set the external fieldb to zero and suppressed it from
the notation.

It is well-known (see [41,54] and also Lemma 4.4 of the present paper) that, for each
q ≥ 3, there is aJMF ∈ (2,q) such thatΦJ has a unique global minimizerm = 0 for
J < JMF, while for J > JMF, there areq global minimizers which are obtained by per-
mutations of single(x1, . . . , xq) with x1 > x2 = · · · = xq. To keep the correspondence
with m?(J), we define the scalar mean-field magnetizationmMF(J) as the maximal
Euclideannorm of all global minimizers of the mean-field free energyΦJ(m). (In this
parametrization, the asymmetric global maxima will be given byx1 =

1
q + mMF(J)

andx2 = · · · = xq =
1
q −

1
q−1mMF(J).) ThenmMF(J) is the maximal positive solution

to the equation

q

q − 1
m =

eJ q
q−1m

− 1

eJ q
q−1m

+ q − 1
. (2.8)

In particular,J 7→ mMF(J) is non-decreasing. We note that the explicit values of the
coupling constantJMF and the magnetizationmc = mMF(JMF) at the mean-field tran-
sition are known:

JMF = 2
q − 1

q − 2
log(q − 1) and mc =

q − 2

q
, (2.9)

see e.g. [54]. Thus, the mean-field transition is first-order for allq > 2.
Our main result about the Potts model is then as follows:

Theorem 2.1 (Potts model).Consider the q-state Potts model onZd and let m?(J) be
its scalar magnetization. For each q≥ 3, there exists a Jt = Jt(q,d) and two numbers
ε1 = ε1(d, J) > 0 and ε2 = ε2(d) > 0 satisfyingε1(d, J) → 0, uniformly on finite
intervals of J , andε2(d) → 0 as d→ ∞, such that the following holds:

m?(J) ≤ ε1 for J < Jt (2.10)

and
|m?(J)− mMF(J)| ≤ ε1 for J > Jt. (2.11)

Moreover,
|Jt − JMF| ≤ ε2. (2.12)

In particular, both the magnetization m?(J) and the energy density e?(J) undergo a
jump at J= Jt whenever d is sufficiently large.

The jump in the energy density atJt immediately implies the existence of at least
q+1 distinct extremal Gibbs measures atJ = Jt. However, the nature of our proofs does
not permit us to conclude thatm?(J) = 0 for J < Jt nor can we rule out thatm?(J)
undergoes further jumps forJ > Jt. (Nonetheless, the jumps forJ > Jt would have
to be smaller than 2ε1(d).) Unfortunately, we can say nothing about the continuous-q
variant of the Potts model—the random cluster model—for non-integerq. In this work,
the proofs lean too heavily on the spin representation. Furthermore, for non-integerq,
the use of our principal tool, reflection positivity, is forbidden; see [8].

We also concede that, despite physical intuition to the contrary, our best bounds
onε2(d) andε1(d, J) deteriorate with increasingq. This is an artifact of the occurrence
of the single-spin space dimension on the right-hand side of (1.12). (This sort of thing
seems to plague all existing estimates based on reflection positivity.) In particular, we
cannot yet produce a sufficiently large dimensiond for which the phase transition in all
(q ≥ 3)-state Potts models would be provably first order.
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2.2. Cubic model.Our second example of interest is ther -component cubic model.
Here the spinsSx are the unit vectors in the coordinate directions ofRr , i.e., if êk are
the standard unit vectors inRr , then

� = {±êk : k = 1, . . . , r }. (2.13)

The Hamiltonian is given by (1.1), with the inner product given by the usual dot product
in Rr and thea priori measure given by the uniform measure on�. As in the last
subsection, we setb = 0 and suppress anyb-dependence from the notation. We note
that ther = 1 case is the Ising model while the caser = 2 is equivalent to two
uncoupled Ising models.

The cubic model was introduced (and studied) in [42, 43] as a model of the mag-
netism in rare-earth compounds with a cubic crystal symmetry. There it was noted that
the associated mean-field theory has a discontinuous transition forr ≥ 4, while the
transition is continuous forr = 1, 2 and 3. The mean field theory is best expressed in
terms of the collection of parametersȳ = (y1, . . . , yr ) andµ̄ = (µ1, . . . , µr ), whereyk
stands for the fraction of spins that take the values±êk andµkyk is the magnetization
in the direction̂ek. In this language, the magnetization vector can be written as

m = y1µ1ê1 + · · · + yrµr êr . (2.14)

To describe the mean-field free-energy function, we define

K (r )
J (ȳ, µ̄) =

r∑
k=1

(
yk log yk + ykΘ2J yk(µk)

)
, (2.15)

whereΘJ(µ) denotes the standard Ising mean-field free energy with biasµ; i.e., the
quantity in (2.7) withq = 2, x1 =

1
2(1+µ) andx2 =

1
2(1−µ). ThenΦJ(m) is found

by minimizing K (r )
J (ȳ, µ̄) over all allowed pairs(ȳ, µ̄) such that (2.14) holds.

As in the case of the Potts model, the global minimizer ofΦJ(m) will be a permu-
tation of a highly-symmetric state. However, this time the result is not so well known,
so we state it as a separate proposition:

Proposition 2.2.Consider the r-component cubic model. For each J≥ 0, the only
local minima ofΦJ arem = 0 or m = ±mMF êk, k = 1, . . . , r , where mMF = mMF(J)
is the maximal positive solution to the equation

m =
sinhJm

r − 1 + coshJm
. (2.16)

Furthermore, there is a JMF ∈ (0,∞) such that the only global minimizers ofΦJ(m)
are m = 0 for J < JMF andm = ±mMF(J)êk, k = 1, . . . , r , (with mMF(J) > 0) for
J > JMF.

For a system onZd, the scalar magnetization is most conveniently defined as the
norm of 〈S0〉J , optimized over all translation-invariant Gibbs states for the coupling
constantJ. The energy densitye?(J) is defined using the same formula as for the Potts
model, see (2.4).

Our main result about the cubic model is then as follows:
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Theorem 2.3 (Cubic model).Consider the r-state cubic model onZd and let m?(J)
be its scalar magnetization. Then for every r≥ 4, there exists a Jt = Jt(q,d) and two
numbersε1 = ε1(d, J) > 0 andε2 = ε2(d) > 0 satisfyingε1(d, J) → 0, uniformly on
finite intervals of J , andε2(d) → 0 as d→ ∞, such that the following holds:

m?(J) ≤ ε1 for J < Jt (2.17)

and
|m?(J)− mMF(J)| ≤ ε1 for J > Jt. (2.18)

Moreover,
|Jt − JMF| ≤ ε2. (2.19)

In particular, both the magnetization m?(J) and the energy density e?(J) undergo a
jump at J= Jt whenever d is sufficiently large.

As in the case of the Potts model, our technique does not allow us to conclude thatJt
is the only value ofJ where the magnetization undergoes a jump. In this case, we do
not even know that the magnetization is a monotone function ofJ; the conclusions
(2.17–2.18) can be made because we know that the energy density is close to1

2m?(J)2

and is (as always) a non-decreasing function ofJ. Finally, we also cannot prove that,
in the state with large magnetization in the directionê1, there will be no additional
symmetry breaking in the other directions. Further analysis, based perhaps on graphical
representations, is needed.

2.3. Nematic liquid-crystal model.The nematic models are designed to study the be-
havior of liquid crystals, see the monograph [25] for more background on the sub-
ject. In the simplest cases, a liquid crystal may be regarded as a suspension of rod-like
molecules which, for all intents and purposes, are symmetric around their midpoint.
For the models of direct physical relevance, each rod (or a small collection of rods)
is described by an three-dimensional spin and one considers only interactions that are
(globally) O(3)-invariant and invariant under the (local) reversal of any spin. The sim-
plest latticized version of such a system is described by the Hamiltonian

βH(s) = −
J

2d

∑
〈x,y〉

(sx · sy)
2, (2.20)

with sx a unit vector inR3 andx ∈ Zd with d = 2 or d = 3. We will study the above
Hamiltonian, but we will consider general dimensionsd (providedd ≥ 3) and spins
that are unit vectors in anyRN (providedN ≥ 3).

The Hamiltonian (2.20) can be rewritten into the form (1.1) as follows [25]: LetE�
be the space of all tracelessN × N matrices with real coefficients and let� be the set
of those matricesQ = (Qα,β) ∈ E� for which there is a unit vector inv = (vα) ∈ RN

such that

Qαβ = vαvβ −
1

N
δαβ , α, β = 1, . . . , N. (2.21)

Writing Qx for the matrix arising from the spinsx via (2.21), the interaction term be-
comes

(sx · sy)
2

= Tr(QxQy)+
1

N
. (2.22)
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Now E� is a finite-dimensional vector space and(Q,Q′) = Tr(QQ′) is an inner prod-
uct onE�, so (2.20) indeed takes the desired form (1.1), up to a constant that has no
relevance for physics.

The a priori measure on� is a pull-back of the uniform distribution on the unit
sphere inRN . More precisely, ifv is uniformly distributed on the unit sphere inRN ,
thenQ ∈ � is a random variable arising fromv via (2.21). As a consequence, thea
priori distribution is invariant under the action of the Lee groupO(N,R) given by

Qx 7→ g−1Qxg, g ∈ O(N,R). (2.23)

The parameter signaling the phase transition, the so calledorder parameter, is “tensor”
valued. In particular, it corresponds to the expectation ofQ0. The order parameter can
always be diagonalized. The diagonal form is not unique; however, we can find an
orthogonal transformation that puts the eigenvalues in a decreasing order. Thus the order
parameter is effectively anN-vectorλλλλλλλλλλλλλλ = (λ1, . . . , λN) such thatλ1 ≥ λ2 ≥ · · · ≥ λN .
We note that, since eachQx is traceless, we have

∑
k λk = 0.

The previous discussion suggests the following definition of thescalarorder param-
eter: ForJ ≥ 0, we letλ?(J) be the value of the largest non-negative eigenvalue of
the matrix〈Q0〉J , optimized over all translation-invariant Gibbs states for the coupling
constantJ. As far as rigorous results about the quantityλ?(J) are concerned, we know
from [6] that (in d ≥ 3) λ?(J) > 0 onceJ is sufficiently large. On the other hand,
standard high-temperature techniques (see e.g. [5, 7, 17]) show that ifJ is sufficiently
small then there is a unique Gibbs state. In particular, since this state is then invariant
under the action (2.23) of the fullO(N,R) group, this necessitates thatλ?(J) ≡ 0 for J
small enough. The goal of this section is to show thatλ?(J) actually undergoes ajump
asJ varies.

The mean-field theory of the nematic model is formidable. Indeed, for any partic-
ular N it does not seem possible to obtain a workable expression forΦJ(λλλλλλλλλλλλλλ), even if
we allow that the components ofλλλλλλλλλλλλλλ have only two distinct values (which is usually as-
sumed without apology in the physics literature). Notwithstanding, this simple form of
the vector minimizer and at least some of the anticipated properties can be established:

Proposition 2.4.Consider the O(N)-nematic model for N≥ 3. Then every local min-
imum ofΦJ(λλλλλλλλλλλλλλ) is an orthogonal transformation of the matrix

λλλλλλλλλλλλλλ = diag
(
λ,−

λ

N − 1
, . . . ,−

λ

N − 1

)
(2.24)

whereλ is a non-negative solution to the equation

λ =

∫ 1

0
dx (1 − x2)

N−3
2 e

J Nλ
N−1 x2(

x2
−

1
N

)
∫ 1

0
dx (1 − x2)

N−3
2 e

J Nλ
N−1 x2

. (2.25)

In particular, there is an increasing and right-continuous function J7→ λMF(J) such
that the unique minimizer ofΦJ(λλλλλλλλλλλλλλ) is λλλλλλλλλλλλλλ = 0 for J < JMF, while for any J> JMF, the
functionΦJ(λλλλλλλλλλλλλλ) is minimized by the orthogonal transformations of

λλλλλλλλλλλλλλ = diag
(
λMF(J),−

λMF(J)

N − 1
, . . . ,−

λMF(J)

N − 1

)
. (2.26)

At the continuity points ofλMF : (JMF,∞) → [0,1], these are the only global minimiz-
ers ofΦJ .
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Based on the pictorial solution of the problem by physicists, see e.g. [25], we would
expect thatJ 7→ λMF(J) is continuous on its domain and, in fact, corresponds to the
maximal positive solution to (2.25). (This boils down to showing certain convexity-
concavity property of the function on the right-hand side of (2.25).) While we could not
establish this fact for allN ≥ 3, we were successful at least forN sufficiently large.
The results of the large-N analysis are summarized as follows:

Proposition 2.5.Consider the O(N)-nematic model for N≥ 3 and letλ(N)MF (J) be the
maximal positive solution to(2.25). Then there exists an N0 ≥ 3 and, for each N≥ N0,
a number JMF = JMF(N) ∈ (0,∞) such that for each N≥ N0, the unique minimizer
of ΦJ(λλλλλλλλλλλλλλ) is λλλλλλλλλλλλλλ = 0 for J < JMF, while for any J > JMF, the functionΦJ(λλλλλλλλλλλλλλ) is
minimized only by the orthogonal transformations of(2.26), with λMF(J) > 0.

The function J7→ λ
(N)
MF (J) is continuous and strictly increasing on its domain and

has the following large-N asymptotic: For all J≥ 2,

lim
N→∞

λ
(N)
MF (J N) =

1

2

(
1 +

√
1 − 4J−2

)
. (2.27)

Moreover, there exists a J(∞)
MF (with J(∞)

MF ≈ 2.455) such that

lim
N→∞

JMF(N)

N
= J(∞)

MF . (2.28)

Now we are ready to state our main theorem concerningO(N)-nematics. As can be
gleaned from acarefulreading, our conclusions are not quite as strong as in the previous
cases (due the intractability of the associated mean-field theory). Nevertheless, abona
fidefirst-order transition is established for these systems.

Theorem 2.6 (Nematic model).Consider the O(N)-nematic model with the Hamil-
tonian (2.20) and J ≥ 0. For each N ≥ 3, there exists a non-negative function
J 7→ λ?MF(J), a constant Jt = Jt(N,d) and two numbersε1 = ε1(d, J) > 0 and
ε2 = ε2(d) > 0 satisfyingε1(d, J) → 0, uniformly on finite intervals of J , and
ε2(d) → 0 as d→ ∞, such that the following holds:

For all J ≥ 0, the matrixλλλλλλλλλλλλλλ = diag(λ?MF(J),−
λ?MF(J)

N−1 , . . . ,−
λ?MF(J)

N−1 ) is a local
minimum ofΦJ . Moreover, we have the bounds

λ?(J) ≤ ε1 for J < Jt (2.29)

and
|λ?(J)− λ?MF(J)| ≤ ε1 for J > Jt. (2.30)

Furthermore,
|Jt − JMF| ≤ ε2. (2.31)

In particular, λ?(J) ≥ κ > 0 for all J > Jt and all N ≥ 3 and both the order param-
eter and the energy density e?(J) undergo a jump at J= Jt, provided the dimension is
sufficiently large.

The upshot of the previous theorem is that the high-temperature region withλλλλλλλλλλλλλλ = 0
and the low-temperature region withλλλλλλλλλλλλλλ 6= 0 (whose existence was proved in [6]) are
separated by a first-order transition. However, as with the other models, our techniques
are not sufficient to prove thatλλλλλλλλλλλλλλ is exactly zero for allJ < Jt, nor, for J > Jt, that all
states are devoid of some other additional breakdown of symmetry. Notwithstanding,
general theorems about Gibbs measures guarantee that, a jump ofJ 7→ λ?(J) at J = Jt
implies the coexistence of a “high-temperature” state with various symmetry-broken
“low-temperature” states.
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3. Proofs of mean-field bounds

3.1. Convexity estimates.In order to prove Theorem 1.1, we need to recall a few stan-
dard notions from convexity theory and prove a simple lemma. LetA ⊂ Rn be a convex
set. Then we define theaffine hullof A by the formula

aff A =
{
λx + (1 − λ)y : x, y ∈ A , λ ∈ R

}
. (3.1)

(Alternatively, affA is an smallest affine subset ofRn containingA .) This concept
allows us to define therelative interior, ri A , of A as the set of allx ∈ A for which
there exists anε > 0 such that

y ∈ aff A & |y − x| ≤ ε ⇒ y ∈ A . (3.2)

It is noted that this definition of relative interior differs from the standard topological
definition. For us it is important that the standard (topological) closure of riA is simply
the standard closure ofA . We refer to [51] for more details.

Lemma 3.1.For eachm ∈ ri {m′
∈ E� : S(m′) > −∞}, there exists a vectorh ∈ E�

such that∇G(h) = m.

Results of this sort are quite well known; e.g., with some effort this can be gleaned
from Lemma 2.2.12 in [16] combined with the fact that the so called exposed points
of S(m) can be realized as∇G(h) for someh. For completeness, we provide a full
derivation which exploits the particulars of the setup at hand.

Proof. Let C abbreviate{m′
∈ E� : S(m′) > −∞} and letm ∈ ri C . Let us define

the setV = {m′
− m : m′

∈ aff C }. It is easy to see thatV is in fact the affine hull of
the shifted setC − m and, since0 ∈ V, it is a closed linear subspace ofE�. First we
claim that the infimum in (1.4) can be restricted toh ∈ V. Indeed, ifh,a ∈ E�, then
the convexity ofh 7→ G(h) gives

G(h + a)− (h + a,m) ≥ G(h)− (h,m)+
(
a,∇G(h)− m

)
(3.3)

for any m. This implies that∇G(h) has a finite entropy, i.e.,∇G(h) ∈ C for any
h ∈ E�. Now letm be as above anda ∈ V⊥. Then an inspection of the definition ofV
shows that the last term in (3.3) identically vanishes. Consequently, for the infimum
(1.4), we will always be better off withh ∈ V.

Let hk ∈ V be a minimizing sequence forS(m); i.e., G(hk) − (hk,m) → S(m) as
k → ∞. We claim thathk contains a subsequence tending to a finite limit. Indeed, if
on the contraryhk = |hk| → ∞ we letττττττττττττττ k be defined byhk = hkττττττττττττττ k and suppose that
ττττττττττττττ k → ττττττττττττττ (at least along a subsequence), where|ττττττττττττττ | = 1. Now sincem ∈ ri C andττττττττττττττ ∈ V,
we havem+εττττττττττττττ ∈ aff C for all ε and, by (3.2),m+εττττττττττττττ ∈ C for someε > 0 sufficiently
small. But we also have

G(hk)− (hk,m + εττττττττττττττ) = G(hk)− (hk,m)− εhk(ττττττττττττττ k, ττττττττττττττ), (3.4)

which tends to the negative infinity because(ττττττττττττττ k, ττττττττττττττ) → 1 andhk → ∞. But then
S(m + εττττττττττττττ) = −∞, which contradicts thatm + εττττττττττττττ ∈ C . Thushk contains a converging
subsequence,hk j → h. Using thath is an actual minimizer ofG(h)− (h,m), it follows
that∇G(h) = m. ut

Now we are ready to prove our principal convexity bound:
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Proof of Theorem 1.1.Recall thatFMF(J,b) denotes the infimum ofΦJ,b(m) over all
m ∈ Conv(�). As a first step, we will prove that there is a constantC < ∞ such that
for any finite3 ⊂ Zd and any boundary conditionS′

∂3, the partition function obeys the
bound

Z3(S′

∂3) ≥ e−|3|FMF(J,b)−C|∂3|, (3.5)

where|3| denotes the number of sites in3 and|∂3| denotes the number of bonds ofZd

with one end in3 and the other inZd
\3. (This is an explicit form of the well known

fact that the free energy is always lower than the associated mean-field free energy,
see [19,52].)

To prove (3.5), letM3 denote the total magnetization in3,

M3 =

∑
x∈3

Sx, (3.6)

and let〈−〉
(3)
0,h be thea priori state in3 tilted with a uniform magnetic fieldh, i.e., for

any measurable functionf of the configurations in3,

〈 f 〉
(3)
0,h = e−|3|G(h)

〈 f e(h,M3)〉0. (3.7)

Fix anh ∈ E� and letmh = ∇G(h). By inspection,∇G(h) = 〈Sx〉
(3)
0,h for all x ∈ 3.

Then
Z3(S′

∂3) = e|3|G(h)〈e−(h,M3)−βH3(S3|S′
∂3)

〉(3)
0,h , (3.8)

which using Jensen’s inequality gives

Z3(S′

∂3) ≥ exp
{
|3|

(
G(h)− (h,mh)

)
−

〈
βH(S3|S′

∂3)
〉
0,h

}
. (3.9)

To estimate the expectation ofβH(S3|S′

∂3), we first discard (through a bound) the
boundary terms and then evaluate the contribution of the interior bonds. Since the num-
ber of interior bonds in3 is more thand|3| − |∂3|, this gets us

−
〈
βH(S3|S′

∂3)
〉
0,h ≥ −

J

2
|mh|

2
− C|∂3|. (3.10)

Now G(h) − (h,mh) ≥ S(mh), so we haveZ3(S′

∂3) ≥ e−|3|ΦJ,b(mh)−C|∂3|. But
Lemma 3.1 guarantees that eachm with S(m) > −∞ can be approximated by a se-
quence ofmh with h ∈ E�, so the bound (3.5) follows by optimizing overh ∈ E�.

Next, letνJ,b be an infinite volume Gibbs state and let〈−〉J,b denote expectation
with respect toνJ,b. Then we claim that

e|3|G(h)
=

〈
e(h,M3)+βH3(S3|S∂3)Z3(S∂3)

〉
J,b. (3.11)

(HereS3, resp.S∂3 denote the part of thesameconfigurationS inside, resp., outside3.
Note that the relation looks trivial forh = 0.) Indeed, the conditional distribution inνJ,b

given that the configuration outside3 equalsS′ is ν(S
′)

3 , as defined in (1.2). But then
(1.2) tells us that∫

e(h,M3)+βH3(S3|S′)Z3(S′) ν
(S′)
3 (dS3) =

∫
e(h,M3)µ(dS3) = e|3|G(h). (3.12)
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The expectation over the boundary conditionS′ then becomes irrelevant and (3.11) is
proved.

Now suppose thatνJ,b is theZd-translation and rotation invariant Gibbs measure
in question and recall thatm? = 〈S0〉J,b, where〈−〉J,b denotes the expectation with
respect toνJ,b. To prove our desired estimate, we use (3.5) on the right-hand side of
(3.11) and apply Jensen’s inequality to get

e|3|G(h)
≥ exp

{〈
(h,M3)+ βH3

〉
J,b

}
e−|3|FMF(J,b)−C|∂3|. (3.13)

Using the invariance of the stateνJ,b with respect to the translations and rotations of
Zd, we have 〈

(h,M3)
〉
J,b = |3|(h,m?) (3.14)

while

〈βH3〉J,b ≥ −|3|
J

2

〈
(S0,Sx)

〉
J,b − |3|(b,m?)− C′

|∂3|, (3.15)

whereC′ is a constant that bounds the worst-case boundary term and wherex stands
for any neighbor of the origin. By plugging these bounds back into (3.13) and passing
to the thermodynamic limit, we conclude that

−G(h)+ (h − b,m?)−
J

2

〈
(S0,Sx)

〉
J,b ≤ FMF(J,b). (3.16)

Now optimizing the left-hand side overh ∈ E� allows us to replace−G(h)+ (h,m?)

by −S(m?). Then the bound (1.9) follows by adding and subtracting the termJ
2 |m?|

2

on the left-hand side. ut

3.2. Infrared bound.Our proof of the Key Estimate (and hence the Main Theorem)
requires the use of theinfrared bounds, which in turn are derived from reflection posi-
tivity. The connection between infrared bounds and reflection positivity dates back (at
least) to [18, 22–24]. However, the present formulation (essentially already contained
in [12,24,41]) emphasizes more explicitly the role of the “k = 0” Fourier mode of the
two-point correlation function by subtracting the square of the background average.

Reflection positivity is greatly facilitated by first considering finite systems with
periodic boundary conditions. If it happens that there is auniqueGibbs state for pa-
rameter valuesJ andb then the proof of the Key Estimate is straightforward—there
is no difficulty with putting the system on a torus and taking the limit. In particular,
the Key Estimate amounts (more or less) to Corollary 2.5 in [24]. But when there are
several infinite-volume Gibbs states, we can anticipate trouble with the naive limits of
the finite-volume torus states. Fortunately, Gibbsian uniqueness is not essential to our
arguments. Below we list two properties of Gibbs states which allow a straightforward
proof of the desired infrared bound. Then we show that in general we can obtain the
infrared bound for states of interest by an approximation argument.

Property 1. An infinite-volume Gibbs measureνJ,b (not necessarily extremal) for the
interaction(1.1)is called atorus stateif it can be obtained by a (possibly subsequential)
weak limit as L→ ∞ of the Gibbs states in volume[−L , L]d∩Zd, for the interaction
(1.1)with periodic boundary conditions.
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Given J andb, we letM (J,b) denote the subset of Conv(�) containing all mag-
netizations achieved by infinite-volume translation-invariant Gibbs states for the inter-
action (1.1). Next, recall the notationM3 from (3.6) for the average magnetization in
3 ⊂ Zd.

Property 2. An infinite-volume Gibbs measureνJ,b (not necessarily extremal) for the
interaction(1.1) is said to haveblock-average magnetizationm if

lim
3↗Zd

M3

|3|
= m, νJ,b-almost surely. (3.17)

Here the convergence3 ↗ Zd is along the net of all the finite boxes3 ⊂ Zd with
partial order induced by set inclusion. (See [26] for more details.)

Our first goal is to show that every torus state with a deterministic block-average
magnetization satisfies the infrared bound. Supposed ≥ 3 and letD−1 denote the
Fourier transform of the inverse lattice Laplacian with Dirichlet boundary condition. In
lattice coordinates,D−1 has the representation

D−1(x, y) =

∫
[−π,π ]d

ddk

(2π)d
1

D̂(k)
eik(x−y), x, y ∈ Zd, (3.18)

whereD̂(k) = 1−
1
d

∑d
j =1 cos(k j ). Note that the integral converges by our assumption

thatd ≥ 3.

Lemma 3.2.Let d ≥ 3 and suppose thatνJ,b is a Gibbs state for interaction(1.1)
satisfying Properties 1 and 2. Let〈−〉J,b denote the expectation with respect toνJ,b
and letm denote the value of magnetization inνJ,b. Then for all(vx)x∈Zd such that
vx ∈ R and

∑
x∈Zd |vx| < ∞,∑

x,y∈Zd

vxvy
〈
(Sx − m,Sy − m)

〉
J,b ≤ n J−1

∑
x,y∈Zd

vxvy D−1(x, y). (3.19)

Here n denotes the dimension ofE�.

Proof.Let3L = [−L , L]d∩Zd and letν(L)J,b be the finite-volume Gibbs state in3L for
the interaction (1.1) with periodic boundary conditions. Let

3?L =

{( 2π

2L + 1
n1, . . . ,

2π

2L + 1
nd

)
: − L ≤ ni ≤ L

}
(3.20)

denote the reciprocal lattice. Let(wx)x∈3L be a collection of vectors fromE� satisfying
thatwx 6= 0 for only a finite number ofx ∈ Zd and

∑
x∈3L

wx = 0. Let 〈−〉
(L)
J,b denote

the expectation with respect toν(L)J,b . Then we have the infrared bound [22–24],∑
x,y∈3L

〈
(wx,Sx)(wy,Sy)

〉(L)
J,b ≤ J−1

∑
x,y∈3L

(wx,wy) D−1
L (x, y) (3.21)

where

D−1
L (x, y) =

1

|3?L |

∑
k∈3?Lr{0}

1

D̂(k)
eik(x−y). (3.22)
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Now, let ê1, . . . , ên be an orthogonal basis inE� and choosewx = wx ề , where
(wx)x∈Zd is such thatwx 6= 0 only for a finite number ofx ∈ Zd and∑

x∈Zd

wx = 0. (3.23)

Passing to the limitL → ∞ in such a way thatν(L)J,b converges to the stateνJ,b, and
then summing over̀ = 1, . . . ,n gets us the bound∑

x,y∈Zd

wxwy
〈
(Sx,Sy)

〉
J,b ≤ n J−1

∑
x,y∈Zd

wxwy D−1(x, y). (3.24)

So far we have (3.24) only for(wx) with a finite support. But, using that fact that both
quantitiesD−1(x, y) and〈(Sx,Sy)〉J,b are uniformly bounded, (3.24) is easily extended
to all absolutely-summable(wx)x∈Zd (i.e., those satisfying

∑
x∈Zd |wx| < ∞) which

obey the constraint (3.23).
Let (vx) be as specified in the statement of the Lemma and leta =

∑
x∈Zd vx. Fix K ,

let3K be as above and define(w(K )x ) by

w(K )x = vx −
a

|3K |
1{x∈3K }. (3.25)

Clearly, these(w(K )x ) obey the constraint (3.23). Our goal is to recover (3.19) from
(3.24) in theK → ∞ limit. Indeed, plugging this particular(w(K )x ) into (3.24), the
left hand side opens into four terms. The first of these is the sum ofvxvy〈(Sx,Sy)〉J,b,
which is part of what we want in (3.19). The second and the third terms are of the same
form and both amount to

a
∑
x,y

vx1{x∈3K }

〈
(Sx,Sy)

〉
J,b = a

〈∑
x

vx

(
Sx,

1

|3K |

∑
y∈3K

Sy

)〉
J,b
. (3.26)

By our assumption of a sharp block-average magnetization inνJ,b, the average of the
spins in3K can be replaced, in theK → ∞ limit, by m. Similarly, we claim that

lim
K→∞

1

|3K |2

∑
x,y∈3K

〈
(Sx,Sy)

〉
J,b = |m|

2, (3.27)

so, recalling the definition ofa, the left hand side is in a good shape.
As for the right-hand side of (3.24) with(wx) = (w

(K )
x ), here we invoke the fact

that (ford ≥ 3)

lim
K→∞

1

|3K |

∑
x∈3L

D−1(x, y) = 0, (3.28)

uniformly in y ∈ Zd. The claim therefore follows. ut

Next we show that for any parametersJ andb, and anym? ∈ M?(J,b), we can
always find a state with magnetizationm? that is a limit of states satisfying Properties 1
and 2.
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Lemma 3.3.For all J > 0, all b ∈ E� and all m? ∈ M?(J,b), there are sequences
(Jk), (bk) and (mk) with Jk → J , bk → b, mk → m? and M (Jk,bk) = {mk}.
In particular, there is a sequence(νJk,bk) of infinite-volume Gibbs measures satisfying
Properties 1 and 2, which weakly converge (possibly along a subsequence) to a measure
νJ,b with magnetizationm?.

Proof. The proof uses a little more of the convexity theory, let us recapitulate the nec-
essary background. Letf : Rn

→ (−∞,∞) be a convex and continuous function. Let
(·, ·) denote the inner product inRn. For eachx ∈ Rn, let S(x) be the set of all possible
limits of the gradients∇ f (xk) for sequencesxk ∈ Rn such thatxk → x ask → ∞.
Then Theorem 25.6 of [51] says that the set of all subgradients∂ f (x) of f at x,

∂ f (x) =
{
a ∈ Rn : f (y)− f (x) ≥ (y − x,a), y ∈ Rn}, (3.29)

can be written as
∂ f (x) = Conv(S(x)) (3.30)

where Conv(S(x)) is the closed, convex hull ofS(x). (Here we noted that since the
domain of f is all of Rn, the so called normal cone is empty at allx ∈ Rn.) But S(x) is
closed and thus Conv(S(x)) is simply the convex hull ofS(x). Now, by Corollary 18.3.1
of [51], we also know that ifS ⊂ Rn is a bounded set of points andC is its convex hull
(no closure), then every extreme point ofC is a point fromS. Thus, we conclude:every
extreme point of∂ f (x) lies in S(x).

Now we can apply the above general facts to our situation. LetF(J,b) be the
infinite-volume free energy of the model in (1.1). Noting thatF(J,b) is defined for
all J ∈ R and allb ∈ E�, the domain ofF is R × E�. By well known arguments,F
is continuous and concave. Moreover, a comparison of (1.11) and (3.30) shows that
K?(J,b) is—up to a sign change—the subdifferential ofF at (J,b). As a conse-
quence of the previous paragraph, every extreme point [e?,m?]∈ K?(J,b) is given
by a limit limk→∞[ek,mk], where [ek,mk] are such thatK?(Jk,bk) = {[ek,mk]} for
someJk → J andbk → b. But m? ∈ M?(J,b) implies that [e?,m?] is an extreme
point ofK?(J,b) for somee?, so the first part of the claim follows.

To prove the second part, note that any infinite-volume limit of the finite-volume
Gibbs state with periodic boundary condition and parametersJk andbk must necessar-
ily have energy densityek and magnetizationmk. By compactness of the set of all Gibbs
states (which is ensured by compactness of�), there is at least one (subsequential) limit
〈−〉J,b of the torus states asJk → J andbk → b, which is then a translation-invariant
Gibbs state with parametersJ andb such that

e? =
〈
(Sx,Sy)

〉
J,b and m? = 〈Sx〉J,b, (3.31)

wherex andy is any pair of nearest neighbors ofZd. However, the block-average val-
ues of both quantities must be constant almost-surely, because otherwise〈−〉J,b could
have been decomposed into at least two ergodic states with distinct values of energy-
density/magnetization pair, which would in turn contradict that [e?,m?] is an extreme
point ofK?(J,b). ut

We note that the limiting measure is automaticallyZd-translation and rotation in-
variant and, in addition, satisfies the block-average property. But, in the cases that are
of specific interest to the present work (i.e., whenM?(J,b) contains several elements),
there is little hope that such a state is a torus state. Nevertheless, we can prove:
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Corollary 3.4. Let J ≥ 0 and b ∈ E�. Then for anym? ∈ M?(J,b), there exists a
stateνJ,b with (block-average) magnetizationm? for which the infrared bound(3.19)
holds. Moreover, the stateνJ,b is Zd-translation and rotation invariant.

Proof.For J = 0 we have a unique Gibbs state and the claim trivially holds. Otherwise,
all of this follows from the weak convergence of theνJk,bk discussed above.ut

3.3. Proof of Main Theorem.Now we have all the ingredients ready to prove Lemma 1.3:

Proof of Lemma 1.3.Fix m? ∈ M?(J,b) and letνJ,b be the state described in Corol-
lary 3.4. To prove our claim, it just remains to choose(vx) as follows:

vx =

{ 1
2d , if |x| = 1,

0, otherwise,
(3.32)

and recall the definition ofId from (1.13). ut

Having established Lemma 1.3, we are ready to give the proof of the Key Estimate:

Proof of Key Estimate.Let J ≥ 0 andb ∈ E�. Let m? ∈ M?(J,b) and let〈−〉J,b be
the state satisfying (1.15) and (1.17). Our goal is to prove the bound (1.16). To that end,
let m0 = m0(S) denote the spatially averaged magnetization of the neighbors of the
origin. The rotation symmetry of the state〈−〉J,b then implies〈

(Sx,S0)
〉
J,b =

〈
(m0,S0)

〉
J,b. (3.33)

Next, conditioning on the spin configuration in the neighborhood of the origin, we use
the DLR condition for the state〈−〉J,b which results in〈

(m0,S0)
〉
J,b =

〈
(m0,∇G(Jm0 + b))

〉
J,b. (3.34)

Finally, a simple calculation, which uses the fact thatm? = 〈S0〉J,b = 〈m0〉J,b =

〈∇G(Jm0 + b)〉J,b, allows us to conclude that〈
(m0,∇G(Jm0 + b))

〉
J,b − |m?|

2

=

〈(
m0 − m?,∇G(Jm0 + b)− ∇G(Jm? + b)

)〉
J,b
. (3.35)

To proceed with our estimates, we need to understand the structure of the double
gradient of functionG(h). Recall the notation〈−〉0,h for the single-spin state tilted
by the external fieldh. Explicitly, for each measurable functionf on �, we have
〈 f (S)〉0,h = e−G(h)

〈 f (S)e(h,S)〉0. Then the components of the double gradient corre-
spond to the components of the covariance matrix of the vector-valued random variable
S. In formal vector notation, for anya ∈ E�,

(a,∇)2G(h) =
〈
(a,S− 〈S〉0,h)

2〉
0,h. (3.36)

Pickh0,h1 ∈ E�. Then we can write

(
h1 − h0,∇G(h1)− ∇G(h0)

)
=

∫ 1

0
dλ

〈(
h1 − h0,S− 〈S〉0,hλ

)2
〉
0,hλ

, (3.37)
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wherehλ = (1 − λ)h0 + λh1. But the inner product on the right-hand side can be
bounded using the Cauchy-Schwarz inequality, and since〈

|S− 〈S〉0,hλ |
2〉

0,hλ
≤ max

S∈�
(S,S) = κ, (3.38)

we easily derive that(
h1 − h0,∇G(h1)− ∇G(h0)

)
≤ κ|h1 − h0|

2. (3.39)

This estimate shows that the right-hand side of (3.35) can by bounded byκ J〈|m0 −

m?|
2
〉J,b. But for this we have the bound from Lemma 1.3:〈|m0 −m?|

2
〉J,b ≤ n J−1Id.

Putting all the previous arguments together, (1.16) follows.ut

Proof of Main Theorem.This now follows directly by plugging (1.16) into (1.9).ut

4. Proofs of results for specific models

By and large, this section is devoted to the specifics of the three models described in
Section 2. Throughout the entire section, we will assume thatb = 0 and henceforth
omit b from the notation. We begin with some elementary observations which will be
needed in all three cases of interest but which are also of some general applicability.

4.1. General considerations.

4.1.1. Uniform closeness to global minima.We start by showing that, for the systems
under study, the magnetization isuniformly close to a mean-field magnetization. Let
MMF(J) denote the set of all local minima ofΦJ . Obviously, if we know that the
actual magnetization comes close to minimizing the mean-field free energy, in must be
close to a minimum or a “near-minimum” of this function. A useful measure of this
closeness is the following: ForJ ∈ [0,∞] andϑ > 0, we let

DJ(ϑ) = sup
{
dist

(
m,MMF(J)

) ∣∣∣ m ∈ Conv(�), ΦJ(m) < FMF(J)+ ϑ
}
, (4.1)

whereFMF(J) denotes the absolute minimum ofΦJ . However, to control the “close-
ness” we will have to make some assumptions about the behavior of the (local) minima
of ΦJ . An important property ensuring the desired uniformity in all three models under
study is as follows:

Uniformity Property. If J ≥ 0 and if m ∈ Conv(�) is a global minimum ofΦJ , then
there is anε > 0 and a continuous functionm] : [ J − ε, J + ε]→ Conv(�) such that
lim J′→J m](J ′) = m andm](J ′) is a local minimum ofΦJ′ for all J ′

∈ [ J −ε, J +ε].

In simple terms, the Uniformity Property states that every global minimum can be
extended into a one-parameter family of local minima. Based on the Uniformity Prop-
erty, we can state a lemma concerning the limit ofDJ(ϑ) asϑ ↓ 0:

Lemma 4.1.Suppose thatΦJ satisfies the above Uniformity Property. Then for all
J0 > 0,

lim
ϑ↓0

sup
0≤J≤J0

DJ(ϑ) = 0. (4.2)
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Proof.This is essentially an undergraduate exercise in compactness. Indeed, if the above
fails, then for someε > 0, we could produce a sequenceϑk ↓ 0 and Jk ∈ [0, J0]
such that

DJk(ϑk) ≥ 6ε. (4.3)

This, in turn, implies the existence ofmk ∈ Conv(�) such that

dist
(
mk,MMF(Jk)

)
≥ 3ε while ΦJk(mk) < FMF(Jk)+ ϑk. (4.4)

Let us useJ andm to denote the (subsequential) limits of the above sequences. Using
the continuity ofΦJ(m), to the right of thewhile we would haveΦJ(m) = FMF(J)
andm is thus a global minimum ofΦJ . By our hypothesis, for eachk sufficiently large,
there is a local minimumm](Jk) ofΦJk with m](Jk) converging tom ask → ∞. Since
mk is also converging tom, the sequencesmk andm](Jk) will eventually be arbitrary
close. But that contradicts the bound to the left of thewhile. ut

4.1.2. Monotonicity of mean-field magnetization.For spin systems with an internal
symmetry (which, arguably, receive an inordinate share of attention), the magnetiza-
tion usually serves as an order parameter. In the context of mean-field theory, what
would typically be observed is an interval [0, JMF] wherem = 0 is the global min-
imizer of ΦJ , while for J > JMF, the functionΦJ is minimized by a non-zerom.
This is the case for all three models under consideration. (It turns out that whenever
〈S〉0 = 0, the unique global minimum ofΦJ for J sufficiently small ism = 0.)

In order to prove the existence of a symmetry-breaking transition, we need to prove
that the models under considerations have a unique point where the local minimum
m = 0 ceases the status of a global minimum. This amounts to showing that, once the
minimizer ofΦJ has been different from zero, it will never jump back tom = 0. In the
mean-field theory with interaction (1.1), this can be proved using the monotonicity of
the energy density; an analogous argument can be used to achieve the same goal for the
corresponding systems onZd.

Lemma 4.2.Let J1 < J2 and letm1 be a global minimizer ofΦJ1 andm2 a global min-
imizer ofΦJ2. Then|m1| ≤ |m2|. Moreover, if J 7→ m(J) is a differentiable trajectory
of local minima, then

d

dJ
ΦJ

(
m(J)

)
= −

1

2

∣∣m(J)∣∣2. (4.5)

Proof. The identity (4.5) is a simple consequence of the fact that, ifm is a local mini-
mum ofΦJ , then∇ΦJ(m) = 0. To prove the first part of the claim, letJ, J ′

≥ 0 and let
m be a minimizer ofΦJ . Let FMF(J) be the mean-field free energy. First we claim that

FMF(J)− FMF(J
′) ≥ −

J − J ′

2
|m|

2. (4.6)

Indeed, sinceFMF(J) = ΦJ(m), we have from the definition ofΦJ that

FMF(J) = −
J − J ′

2
|m|

2
+ΦJ′(m). (4.7)

Then the above follows using thatΦJ′(m) ≥ FMF(J ′). Let J1 < J2 andm1 andm2 be
as stated. Then (4.6) for the choiceJ = J2, J ′

= J1 andm = m2 gives

FMF(J2)− FMF(J1)

J2 − J1
≥ −

1

2
|m2|

2. (4.8)
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while (4.6) for the choiceJ = J1, J ′
= J2 andm = m1 gives

FMF(J1)− FMF(J2)

J1 − J2
≤ −

1

2
|m1|

2. (4.9)

Combining these two bounds, we have|m1| ≤ |m2| as stated. ut

4.1.3. One-component mean-field problems.Often enough, the presence of symmetry
brings along a convenient property that the multicomponent mean-field equation (1.7)
can be reduced to a one-component problem. Since this holds for all cases under consid-
eration and we certainly intend to use this fact, let us spend a few minutes formalizing
the situation.

Suppose that there is a non-zero vectorωωωωωωωωωωωωωω ∈ E� such that∇G(hωωωωωωωωωωωωωω) is colinear withωωωωωωωωωωωωωω
(and not-identically zero) for allh. As it turns out, then also∇S(mωωωωωωωωωωωωωω) is colinear withωωωωωωωωωωωωωω,
providedmωωωωωωωωωωωωωω ∈ Conv(�). Under these conditions, let us restrict bothh andm to scalar
multiples ofωωωωωωωωωωωωωω and introduce the functions

g(h) = |ωωωωωωωωωωωωωω|
−2G(hωωωωωωωωωωωωωω) and s(m) = |ωωωωωωωωωωωωωω|

−2S(mωωωωωωωωωωωωωω). (4.10)

The normalization by|ωωωωωωωωωωωωωω|
−2 ensures thats(m) is given by the Legendre transform of

g(h) via the formula (1.4). Moreover, the mean-field free-energy functionΦJ(mωωωωωωωωωωωωωω)
equals the|ωωωωωωωωωωωωωω|

2-multiple of the function

φJ(m) = −
1

2
Jm2

− s(m). (4.11)

The mean-field equation (1.7) in turn reads

m = g′(Jm). (4.12)

In this one-dimensional setting, we can easily decide about whether a solution to (4.12)
is a local minimum ofφJ or not just by looking at the stability of the solutions under
iterations of (4.12):

Lemma 4.3.Let m be a solution to(4.12)and supposeφJ is twice continuously differ-
entiable in a neighborhood of m. If

Jg′′(Jm) < 1 (4.13)

then m is a local minimum ofφJ . Informally, only “dynamically stable” solutions to
the (on-axis) mean-field equation can be local minima ofφJ .

We remark that the term “dynamically stable” stems from the attempt to find solu-
tions to (4.12) by running the iterative schememk+1 = g′(Jmk).

Proof.Let h andm be such thatg′(h) = m, which is equivalent toh = s′(m). An easy
calculation then shows thatg′′(h) = −(s′′(m))−1. Suppose now thatm is a solution to
(4.12) such that (4.13) holds. Thenh = Jm and from (4.13) we have

s′′(m) = −
(
g′′(Jm)

)−1
< −J. (4.14)

But that implies
φ′′

J(m) = −J − s′′(m) > −J + J = 0, (4.15)
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and, using the second derivative test, we conclude thatm is a local minimum ofφJ . ut

With Lemmas 4.1, 4.2 and 4.3 established, our account of the general properties is
concluded and we can start discussing particular models. What follows in the next three
subsections are the three respective models laid out in order of increasing difficulty.
Our repeated—and not particularly elegant—strategy will be to pound at the various
models using internal symmetry as the mallet. The upshot is inevitably that at most one
component becomes dominant while all other components act, among themselves, like
a system at high temperature. Thus all subdominant components are equivalent and the
full problem has been reduced to an effective scalar model. In short, there are some
parallels between the various treatments. However, somewhat to our disappointment,
we have not been able to find a unified derivation covering “all models of this sort.”

4.2. Potts model.In order to prove Theorem 2.1, we need to establish (rigorously) a
few detailed properties of the mean-field free-energy function (2.7). In the view of (2.6)
we will interchangeably use the notationsm and(x1, . . . , xq) to denote the same value
of the magnetization.

Lemma 4.4.Consider the q-state Potts model with q≥ 3. LetΦJ be the mean-field
free-energy function as defined in(2.7). If m ∈ Conv(�) is a local minimum ofΦJ then
the corresponding(x1, . . . , xq) is a permutation of the probability vector(x?1, . . . , x?q)
such that

x?1 ≥ x?2 = · · · = x?q. (4.16)

Moreover, when x?1 > x?2, we also have

J x?1 > 1> J x?2. (4.17)

A complete proof of the claims in Lemma 4.4 was, to our best knowledge, first pro-
vided in [41]. (Strictly speaking, in [41] it was only shown that theglobalminima ofΦJ
take the above form; however, the proof in [41] can be adapted to also accommodatelo-
cal minima.) We will present a nearly identical proof but with a different interpretation
of the various steps. The advantage of our reinterpretation is that it is easily applied to
the other models of interest in this paper.

Proof of Lemma 4.4.If m corresponds to the vector(x1, . . . , xq), we letΦ(q)J (x1, . . . , xq)
be the quantityΦJ(m). Suppose that(x1, . . . , xq) is a local minimum. It is easy to
verify that (x1, . . . , xq) cannot lie on the boundary of Conv(�), so xk > 0 for all
k = 1, . . . ,q. Pick any two coordinates—for simplicity we assume that our choice
is x1 andx2—and lety = 1 − (x3 + · · · + xq), z1 = x1/y andz2 = x2/y. (Note that
y = x1 + x2 and, in particular,y > 0.) Then we have

Φ
(q)
J (x1, . . . , xq) = −

1

2
J y2(z2

1 + z2
2)+ y(z1 logz1 + z2 logz2)+ R(q)J (x3, . . . , xq),

(4.18)
where R(q)J (x3, . . . , xq) is independent ofz1 andz2. Examining the form of the free
energy, we find that the first two terms are proportional to the mean-field free-energy
function of the Ising (q = 2) system with reduced couplingJ y:

Φ
(q)
J (x1, . . . , xq) = yΦ(2)J y (z1, z2)+ R(q)J (x3, . . . , xq). (4.19)
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Since the onlyz-dependence is in the first term, the pair(z1, z2) must be a local
minimum ofΦ(2)J y regardless of whatx3, . . . , xq look like. But this reduces the problem
to the Ising model, about which much is known and yet more can easily be derived. The
properties ofΦ(2)J (z1, z2) we will need are:

(i) Jc = 2 is the critical coupling. ForJ ≤ Jc, the free-energy functionΦ(2)J (z1, z2)

is lowest whenz1 = z2, while for J > Jc, the free-energy functionΦ(2)J (z1, z2) is
lowest whenρ = |z1−z2| is the maximal (non-negative) solution toρ = tanh(1

2 Jρ).
(ii) WheneverJ > Jc, the maximal solution toρ = tanh(1

2 Jρ) satisfiesJ(1− ρ2) < 2,
which implies that eitherJz1 > 1 andJz2 < 1 orvice versa.

(iii) For all J andz1 ≥ z2, the mean-field free-energy functionΦ(2)J (z1, z2) monotoni-
cally decreases asρ = z1 − z2 moves towards the non-negative global minimum.

All three claims are straightforward to derive, except perhaps (ii), which is established
by noting that, wheneverρ > 0 satisfies the (Ising) mean-field equation, we have

1

2
J(1 − ρ2) =

J

2 cosh(1
2 Jρ)2

=
Jρ

sinh(Jρ)
< 1. (4.20)

Hence, if J > Jc andz1 > z2, then Jz2 =
1
2 J(1 − ρ) < 1

2 J(1 − ρ2) < 1 and thus
Jz1 > 1 becauseJ(z1 + z2) = J > Jc = 2.

Based on (i-iii), we can draw the following conclusions for any pair of distinct in-
dicesx j andxk: If J(x j + xk) ≤ 2, thenx j = xk, because the(k, j )-th Ising pair is
subcritical, while if J(x j + xk) > 2 then, using our observation (ii), eitherJ xk > 1
andJ xj < 1 or vice versa. But then we cannot haveJ xk > 1 for more than one index
k, because ifJ xk > 1 andJ xj > 1, we would haveJ(x j + xk) > 2 and the(k, j )-th
Ising pair would not be at a local minimum. All the other indices must then be equal be-
cause the associated two-component Ising systems are subcritical. Consequently, only
one index from(x1, . . . , xq) can take a larger value; the other indices are equal.ut

Proposition 4.5.Consider the q-state Potts model with q≥ 3. LetΦJ be the mean-field
free-energy function as defined in(2.7). There there exist J1 and J2 = q with J1 < J2
such that

(1) m = 0 is a local minimum ofΦJ provided J< J2.
(2) m = x?1v̂1 + · · · + x?qv̂1 with x?1 > x?2 = · · · = x?q is a local minimum ofΦJ

provided that J> J1 and x?1 =
1
q + m, where m is the maximal positive solution to

the equation(2.8).
(3) For all J ≥ 0, there are no local minima except as specified in (1) and (2).

Moreover, if JMF is as in (2.9), then the unique global minimum ofΦJ is as in (1)
for J < JMF while for J > JMF the functionΦJ has q distinct global minimizers as
described in (2) .

Proof of Proposition 4.5.Again, most of the above stated was proved in [41] but with-
out the leeway for local minima. (Of course, the formulas (2.8) and (2.9) date to an ear-
lier epoch, see e.g. [54].) What is not either easily derivable or already proved in [41]
amounts to showing that ifm is a “dynamically stable” solution to (2.8), the correspond-
ing m = x?1v̂1 + · · · + x?qv̂1 as described in (2) is a local minimum for the fullΦJ(m).
The rest of this proof is spent proving the latter claim.
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We first observe that for the set

U(x) =
{
m = (x, x2, . . . , xq) : J xk ≤ 1, k = 2, . . . ,q

}
(4.21)

the unique (strict) global minimum ofΦJ occurs at

m(x) =
(
x, 1−x

q−1, . . . ,
1−x
q−1

)
. (4.22)

Indeed, otherwise we could further lower the value ofΦJ by bringing one of the( j, k)-
th Ising pairs closer to its equilibrium, using the properties (ii-iii) above. Now, suppose
thatm satisfying (2.8) is “dynamically stable” in the sense of Lemma 4.3. By (4.17) we
have that the correspondingx?1 =

1
q + m satisfiesJ x?1 > 1 while the common value

of x?k for k = 2, . . . ,q is such thatJ x?k < 1. Suppose that the correspondingm is not
a local minimum of the fullΦJ . Then there exists a sequence(mk) tending tom such
thatΦJ(mk) < ΦJ(m). But then there is also a sequencem′

k such thatΦJ(m′

k) <
ΦJ(m) where eachm′

k now takes the form (4.22). This contradicts that the restriction
of ΦJ to the “diagonal,” namely the functionφJ(m), has a local minimum atm. ut

Now we are ready to prove our main result about theq-state Potts model.

Proof of Theorem 2.1.By well known facts from the FK representation of the Potts
model, the quantitiese?(J) andm?(J) arise from the pair [ew

? ,m
w
? ] corresponding to

the state with constant boundary conditions (thewired state). Therefore, [ew
? ,m

w
? ] is an

extreme point of the convex setK?(J) andmw
? ∈ M?(J) for all J. In particular, the

bound (1.12) formw
? can be used without apology.

Let δd be the part of the error bound in (1.12) which does not depend onJ. Explicitly,
we haveδd =

1
2q (q−1)2Id, becauseκ = (q−1)/q and dimE� = q−1. SinceId → 0

asd → ∞, we haveδd → 0 asd → ∞. Let us define

ε1 = ε1(d, J) = sup
0≤J′≤J

DJ ′(Jδd), (4.23)

whereDJ is as in (4.1). It is easy to check that the Uniformity Property holds. Lemma 4.1
then guarantees that every (extremal) physical magnetizationm? ∈ M?(J) has to lie
within ε1 from a local minimumΦJ . Since the asymmetric minima exist only for
J > J1 > 0 while m = 0 is a local minimum only forJ < J2 = q, we have
m?(J) ≤ ε1 for J ≤ J1, while |m?(J) − mMF(J)| ≤ ε1 for J > J2. But from the
FKG properties of the random cluster representation we know thatJ 7→ m?(J) is non-
decreasing so there must be a point,Jt ∈ (J1, J2], such that (2.10–2.11) hold.

It remains to show that|Jt − JMF| tends to zero asd → ∞. For J ∈ (J1, J2), let
ϕS(J), resp.,ϕA(J) denote the value ofΦJ at the symmetric, resp., asymmetric local
minima. The magnetization corresponding to the asymmetric local minimum exceeds
someκ > 0 throughout(J1, J2). Integrating (4.5) with respect toJ and using that
ϕS(JMF) = ϕA(JMF) then gives us the bound∣∣ϕS(J)− ϕA(J)

∣∣ ≥
1

2
κ2

|J − JMF|. (4.24)

However, in theε1-neighborhoodUS(ε1) of the symmetric minimum, we will have∣∣ΦJ(m)− ϕS(J)
∣∣ ≤ ε1K , (4.25)

where K is a uniform bound on the derivative ofΦJ(m) for m ∈ US(ε1) and J ∈

(J1, J2). Since the asymmetric minima are well separated from the boundary of Conv(�)
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for J ∈ (J1, J2), a similar bound holds for theε1-neighborhood of the asymmetric min-
imum. Comparing (4.24–4.25) and (1.12), we find that if

1

2
κ2

|J − JMF| − 2ε1K > Jδd, (4.26)

no value of magnetization in theε1-neighborhood of the local minima with a larger
value ofΦJ is allowed. In particular,|Jt − JMF| ≤ ε2 whereε2 = ε2(d) tends to zero
asd → ∞. ut

4.3. Cubic model.Our first goal is to prove Proposition 2.2. We will begin by showing
that the local minima ofΦJ andK (r )

J are in one-to-one correspondence. Let us introduce
the notation

X =

{
(ȳ, µ̄) : |µ j | ≤ 1, y j ≥ 0,

r∑
j =1

y j = 1
}

(4.27)

and letX(m) denote the subspace ofX wherem = y1µ1 + · · · + yrµr .

Lemma 4.6.Letm ∈ Conv(�) be a local minimum ofΦJ . Then there exists a(ȳ, µ̄) ∈

X(m) which is a local minimum of K(r )J (as defined in(2.15)).

Proof.Let m be a local minimum ofΦJ . SinceX(m) is compact andK (r )
J is continuous

on X, the infimum
ΦJ(m) = inf

(ȳ,µ̄)∈X(m)
K (r )

J (ȳ, µ̄) (4.28)

is attained at some(ȳ, µ̄) ∈ X(m). We claim that this(ȳ, µ̄) is a local minimum ofK (r )
J .

Indeed, if the opposite is true, there is a sequence(ȳk, µ̄k) ∈ X converging to(ȳ, µ̄)
such that

K (r )
J (ȳk, µ̄k) < K (r )

J (ȳ, µ̄) = ΦJ(m). (4.29)

Now, (ȳ, µ̄) was an absolute minimum ofK (r )
J on X(m), so(ȳk, µ̄k) 6∈ X(m) and the

magnetizationmk corresponding to(ȳk, µ̄k) is different fromm for all k. Noting that

ΦJ(mk) ≤ K (r )
J (ȳk, µ̄k) (4.30)

and combining (4.29–4.30), we thus haveΦJ(mk) < ΦJ(m) for all k. But mk tends
to m in Conv(�), which contradicts the fact thatm is a local minimum ofΦJ . ut

Lemma 4.6 allows us to analyze the local minima in a bigger, simpler space:

Lemma 4.7.Let K(r )J (ȳ, µ̄) be the quantity in(2.15). Then each local minimum of

K (r )
J (ȳ, µ̄) is an index-permutation of a state(ȳ, µ̄) with y1 ≥ y2 = · · · = yr and

µ2 = · · · = µr = 0. Moreover, if y1 > y2, thenµ1 6= 0.

Proof.Let (ȳ, µ̄) be a local minimum ofK (r )
J such thaty1 ≥ y2 ≥ · · · ≥ yr and fix ak

between 1 andr . We abbreviatey = yk + yk+1 and introduce the variablesz1 = yk/y,
z2 = yk+1/y, ν1 = µk andν2 = µk+1. Then

K (r )
J (ȳ, µ̄) = y K(2)

J y (z̄, ν̄)+ R, (4.31)
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whereK (2)
J y (z̄, ν̄) is the mean-field free energy of anr = 2 cubic model with coupling

constantJ y, andR is a quantity independent of(z̄, ν̄). As was mentioned previously,
ther = 2 cubic model is equivalent to two decoupled Ising models. Thus,

K (2)
J y (z̄, ν̄) = ΘJ y(ρ1)+ΘJ y(ρ2), (4.32)

whereρ1 andρ2 are related toz1, z2, ν1 andν2 via the equations

z1 =
1
2(1 + ρ1ρ2), z1ν1 =

1
2(ρ1 + ρ2),

z2 =
1
2(1 − ρ1ρ2), z2ν2 =

1
2(ρ1 − ρ2).

(4.33)

Now, the local minima ofΘJ(ρ) occur atρ = ±ρ(J), whereρ(J) is the largest non-
negative solution to the equationρ = tanh(1

2 Jρ). Moreover, by the properties (i-iii)
from the proof of Lemma 4.4 we know thatρ(J) = 0 for J ≤ 2 while 1

2 J(1−ρ(J)2) <
1 onceJ > 2. From these observations we learn that ifyk = yk+1, then J y ≤ 2 and
µk = µk+1 = 0. On the other hand, ifyk > yk+1, thenJ y> 2, yk =

1
2 y(1 + ρ(J y)2)

andyk+1 =
1
2 y(1 − ρ(J y)2) so, in particular,J yk > 1 > J yk+1. However, that forces

thatk = 1, because otherwise we would also haveJ yk−1 > 1 andJ(yk−1 + yk) > 2,
implying that(ȳ, µ̄) is not a local minimum ofK (r )

J in the(k − 1, k)-th sector. Hence,
y2 = · · · = yr andµ2 = · · · = µr = 0, while if y1 > y2, then we haveµ1 =

±ρ(J)/z1 6= 0. ut

The proof of Lemma 4.7 gives us the following useful observation:

Corollary 4.8. Let m = (m1,m2, . . . ,mr ) be contained inConv(�) and suppose that
m1,m2 6= 0. Then one of the four vectors

(m1 ± m2,0,m3, . . . ,mr ), (0,m2 ± m1,m3, . . . ,mr ) (4.34)

corresponds to a magnetizationm′
∈ Conv(�) withΦJ(m′) < ΦJ(m).

Proof. Sincem is in the interior of Conv(�), there exists(ȳ, µ̄) where the infimum
(4.28) is achieved. Letz1, z2, ν1 andν2 be related toy1, y2, µ1 andµ2 as in (4.31–
4.33). Now by (4.32) the free energy of the corresponding sector of(ȳ, µ̄) equals the
sum of the free energies of two decoupled Ising models with biasesρ1 andρ2. Without
loss of generality, suppose thatρ1 > ρ2 ≥ 0. Recalling the property (iii) from the proof
of Lemma 4.4,ρ 7→ ΘJ(ρ) decreases whenρ ≥ 0 gets closer to the non-negative local
minimum. Thus, ifρ1 is nearer to the local minimum ofΘJ y thanρ2, by increasing
ρ2 we lower the free energy by a non-trivial amount. Similarly, ifρ2 is the one that is
closer, we decreaseρ1.

By inspection of (4.33), the former operation produces a new quadruplez′

1, z′

2, ν′

1
andν′

2, with ν′

2 = 0 andz′

1ν
′

1 = ρ1. But that corresponds to the magnetization vector
(m′

1,m
′

2,m3, . . . ,mr ), where

m′

1 = ρ1y = m1 + m2 and m′

2 = 0, (4.35)

which is what we stated above. The other situations are handled analogously.ut

Now we are finally ready to establish the claim about local/global minima ofΦJ :

Proof of Proposition 2.2.By Lemma 4.6, every local minimum ofΦJ corresponds to
a local minimum ofK (r )

J . Thus, using Lemma 4.7 we know that all local minimam
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of ΦJ will have at most one non-zero component. Writingωωωωωωωωωωωωωω = (1,0, . . . ,0), h = hωωωωωωωωωωωωωω
andm = mωωωωωωωωωωωωωω, we can use the formalism from Section 4.1. In particular, the on-axis
moment generating functiong(h) is given by

g(h) = − log(2r )+ log(r − 1 + coshh). (4.36)

Differentiating this expression, (4.12) shows that every local minimumm has to satisfy
the equation (2.16). Now, forr > 2, a little work shows thath 7→ g′(h) is convex for

(r − 1)2 − (r − 1) coshh + 2> 0 (4.37)

and concave otherwise. In particular, forr > 3, the equation (2.16) has either one non-
negative solutionm = 0 or three non-negative solutions,m = 0, m = m−(J) and
m = m+(J), where 0≤ m−(J) ≤ m+(J). However,m+(J) is “dynamically stable”
and, using Lemma 4.3,m−(J) never corresponds to a local minimum.

To finish the proof we need to show thatm = (m+(J),0, . . . ,0) is a local minimum
of the full ΦJ . If the contrary were true, we would have a sequencemk tending tom
such thatΦJ(mk) < ΦJ(m). Then an (r − 1)-fold use of Corollary 4.8 combined with
the symmetry ofΦJ implies the existence of a sequencem′

k = (mk,0, . . . ,0) tending
to m and satisfyingΦJ(m′

k) ≤ ΦJ(mk) for all k. But that contradicts thatm+(J)
is a local minimum of the on-axis mean-field free energy function. Som was a local
minimum ofΦJ after all. The existence of a unique mean-field transition pointJMF is
a consequence of Lemma 4.2 and the fact thatm = 0 ceases to be a local minimum for
J ≥ r . ut

Proof of Theorem 2.3.The proof is basically identical to that of Theorem 2.1, so we will
be rather sketchy. First we note thatm?(J) is achieved at some extremal translation-
invariant state whose magnetizationm? is an element ofM?(J). Let δd =

1
2r Id and

defineε1 as in (4.23). Thenm? has to be withinε1 from a local minimum ofΦJ . While
this time we cannot proclaim thatJ 7→ m?(J) is non-decreasing, all the benefits of
monotonicity can be achieved by using the monotonicity of the energy densitye?(J).
Indeed,J 7→ e?(J) is non-decreasing and, by Corollary 1.2 and the Key Estimate, we
have ∣∣∣ e?(J)−

1

2
m?(J)

2
∣∣∣ ≤

J

2
r Id = Jδd. (4.38)

But thene?(J)must undergo a unique large jump at someJt from valuese?(J) ≤ 2Jδd
to values near12mMF(J)2 by less than 2Jδd. Som?(J) has to jump atJ = Jt as well,
in order to obey (4.38). The width of the “transition region” is controlled exactly as in
the case of the Potts model.ut

4.4. Nematic model.The nematic models present us with the difficulty that an explicit
formula forΦJ(m) seems impossible to derive. However, the situation improves in
the dual Legendre variables. Indeed, examining (1.4–1.6), it is seen that the stationary
points ofΦJ(m) are in one-to-one correspondence with the stationary points of the
(Gibbs) free-energy function

ΨJ(h) =
1

2J
|h|

2
− G(h), (4.39)
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via the relationh = Jm. (In the case at hand,h takes values inE� which was defined
as the space of allN × N traceless matrices.) Moreover, ifm = ∇G(h), then we have

ΨJ(h)−ΦJ(m) =
1

2J
|h − Jm|

2 (4.40)

so the valuesΨJ(m) andΦJ(h) at the corresponding stationary points are the same.
Furthermore, some juggling with Legendre transforms shows that ifm is a local mini-
mum ofΦJ , thenh = Jm is a local minimum ofΨJ . Similarly for local maxima and
saddle points ofΦJ .

Lemma 4.9.Each stationary point ofΨJ(h) onE� is a traceless N× N matrixh with
eigenvalues that can be reordered to the form h1 ≥ h2 = · · · = hN .

Proof. The claim is trivial forN = 2 so letN ≥ 3. Without loss of generality, we can
restrict ourselves to diagonal, traceless matricesh. Let h = diag(h1, . . . , hN) be such
that

∑
α hα = 0 and letvα, with α = 1, . . . , N, be the components a unit vector inRN .

Let 〈−〉0 be the expectation with respect to thea priori measureµ on� and let〈−〉h
be the state on� tilted byh. Explicitly, we have

〈 f 〉h = e−G(h)
∫
µ(dv) f (v)exp

{ N∑
α=1

hαv
2
α

}
(4.41)

for any measurable functionf on the unit sphere inRN .
As in the case of the Potts and cubic models, the proof will be reduced to the two-

component problem. Leth be a stationary point of9J and letα andβ be two distinct
indices between 1 andN. The relevant properties of〈−〉h are then as follows:

(i) If J〈v4
α + v4

β〉h > 3, thenhα 6= hβ .

(ii) If hα > hβ , thenJ〈v4
α〉h >

3
2 > J〈v4

β〉h.

The proof of these facts involves a non-trivial adventure with modified Bessel functions,
In(x), wheren is any non-negative integer andIn(x) =

1
π

∫ π
0 dθ ex cosθ cos(nθ). To

keep the computations succinct, we introduce the polar coordinates,vα = r cosθ and
vβ = r sinθ , whereθ ∈ [0,2π) andr ≥ 0. Let 〈−〉α,β denote the expectation with
respect to ther -marginal of the state〈−〉h′ whereh′

= diag(h′

1, . . . , h
′

N) is related to
h via h′

α = h′
β =

1
2(hα + hβ), while h′

γ = hγ for γ 6= α, β. Explicitly, if f̄ (r, θ)
corresponds tof (vα, vβ) via the above change of coordinates, then

〈
f (vα, vβ)

〉
h =

〈∫ 2π
0 dθ er 21 cos(2θ) f̄ (r, θ)

〉
αβ〈∫ 2π

0 dθ er 21 cos(2θ)
〉
αβ

, (4.42)

where1 =
1
2(hα − hβ).

We begin by deriving several identities involving modified Bessel functions. First, a
straightforward calculation shows that

〈v2
α − v2

β〉h = Aαβ(1)
〈
r 2I1(r

21)
〉
αβ
, (4.43)
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whereAαβ(1)−1
= 〈I0(r 21)〉αβ . Similarly we get

〈v2
αv

2
β〉h = Aαβ(1)

〈1
8r 4(I0(r

21)− I2(r
21)

)〉
αβ
. (4.44)

But I0(x)− I2(x) = (2/x)I1(x), whereby we have the identity

2(hα − hβ)〈v
2
αv

2
β〉h = 〈v2

α − v2
β〉h. (4.45)

A similar calculation using trigonometric formulas shows that

〈v4
α〉h = Aαβ(1)

〈
r 4(3

8 I0(r
21)+

1
2 I1(r

21)+
1
8 I2(r

21)
)〉
αβ
, (4.46)

〈v4
β〉h = Aαβ(1)

〈
r 4(3

8 I0(r
21)−

1
2 I1(r

21)+
1
8 I2(r

21)
)〉
αβ
. (4.47)

In particular, sinceI0(0) = 1 while I1(0) = I2(0) = 0, we have

hα = hβ ⇒ 〈v4
α〉h = 〈v4

β〉h = 3〈v2
αv

2
β〉h. (4.48)

The identities (4.44–4.48) will now allow us to prove (i-ii).
First we note that he fact thath was a stationary point ofΨJ implies thathγ − hγ′ =

J〈v2
γ − v2

γ′〉h for all γ, γ′
= 1, . . . , N. Using this in (4.45), we have the following

dichotomy

either hα = hβ or 2J〈v2
αv

2
β〉h = 1. (4.49)

To establish (i), suppose thatJ〈v4
α + v4

β〉h > 3 but hα = hβ . Then (4.48) gives us

2J〈v2
αv

2
β〉h > 1, in contradiction with (4.49). Hence, (i) must hold. To prove (ii), assume

that hα > hβ and note that then1 > 0. Applying that I1(x) > 0 and I2(x) > 0
for x > 0 in (4.46), we easily show using (4.46) that〈v4

α〉h > 3〈v2
αv

2
β〉h. Similarly, the

boundI1(x) > I2(x) for x > 0, applied in (4.47), shows that〈v4
β〉h < 3〈v2

αv
2
β〉h. From

here (ii) follows by invoking (4.49).
Now we are ready to prove the desired claim. Leth be a stationary point. First let us

prove that there are no three components ofh such thathα > hβ > hγ. Indeed, if that
would be the case, (i-ii) leads to a contradiction, becausehα > hβ would require that
J〈v4

β〉h < 3/2 while hβ > hγ would stipulate thatJ〈v4
β〉h > 3/2! Thus, any stationary

point h of ΨJ can only have two values for〈v4
α〉h. However, if (say) both〈v4

1〉h and
〈v4

2〉h take on the larger value (implying thath1 = h2), then J〈v4
1 + v4

2〉h > 3 andh
cannot be a stationary point. From here the claim follows.ut

The symmetry of the problem at hand allows us to restrict ourselves to the on-axis
formalism from Section 4.1. In particular, we letωωωωωωωωωωωωωω = diag(1,− 1

N−1, . . . ,−
1

N−1),
h = hωωωωωωωωωωωωωω andλλλλλλλλλλλλλλ = λωωωωωωωωωωωωωω and define the functionsg(h), s(λ) andφJ(λ) as in (4.10–4.11).
Lemma 4.9 in turn guarantees that all local minimizers ofΦJ appear within the domain
of φJ . What remains to be proved is the converse. This can be done using some of the
items established above.

Lemma 4.10.Suppose thatλ is a stationary point of the scalar free energyφJ which
satisfies Jg′′(Jλ) < 1. Thenλλλλλλλλλλλλλλ = λωωωωωωωωωωωωωω, withωωωωωωωωωωωωωω = diag(1,− 1

N−1, . . . ,−
1

N−1), is a local
minimizer ofΦJ .
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Proof.To simplify the exposition, we will exploit theO(N)-symmetry of the problem:
If g ∈ O(N,R) is anyN × N orthogonal matrix, then

ΦJ(m) = ΦJ(g−1m g), (4.50)

with similar considerations applying toΨJ(h). Thus, for all intents and purposes, we
may assume that the arguments of these functions are already in the diagonal form and
regard the diagonal as anN-component vector. (Indeed, we will transfer back and forth
between the vector and matrix language without further ado.)

Again we are forced to work with the dual variables. To that end, letψJ(h) be the
quantity|ωωωωωωωωωωωωωω|

−2ΨJ(hωωωωωωωωωωωωωω). Clearly, the relation betweenψJ andφJ is as forΨJ andΦJ .
First, let us demonstrate that every stationary point of the scalar free energyψJ repre-
sents a stationary point of the fullΨJ . Indeed, letK be the orthogonal complement of
vectorωωωωωωωωωωωωωω in RN . As a simple computation shows, anyk ∈ K has a zero first component.
If k = (0, k2, . . . , kN) ∈ K is small, then

G(hωωωωωωωωωωωωωω + k) = G(hωωωωωωωωωωωωωω)+

〈∑
β

kβ v
2
β

〉
hωωωωωωωωωωωωωω

+ O
(
|k|

2), (4.51)

where〈−〉h is as in (4.41). Now〈v2
β〉hωωωωωωωωωωωωωω is the same for allβ = 2, . . . , N, and in the

view of the fact that
∑
β kβ = 0, the expectation vanishes. Hence,∇ΨJ(hωωωωωωωωωωωωωω) has all

components corresponding to the subspaceK equal to zero. Now ifh is a stationary
point ofψJ , we know that(ωωωωωωωωωωωωωω,∇ΨJ(hωωωωωωωωωωωωωω)) = 0 and thus∇ΨJ(hωωωωωωωωωωωωωω) = 0 as claimed.

To prove the desired claim, it now suffices to show that the Hessian ofΨJ is positive
definite ath = h?ωωωωωωωωωωωωωω whenh? satisfiesJg′′(h?) < 1. (Recall that the corresponding
stationary points ofψJ andφJ are related byh = Jλ.) This in turn amounts to show-
ing that∇∇G(hωωωωωωωωωωωωωω) is dominated by theJ−1-multiple of the unit matrix. Although we
must confine ourselves toE�, it is convenient to consider the Hessian ofG(h) in a
larger space which contains the constant vector and restrict our directional probes to
vectors fromE�. In general, the entries of the Hessian are given in terms of truncated
correlation functions: (

Hess(G)
)
αβ

= 〈v2
αv

2
β〉h − 〈v2

α〉h〈v2
β〉h. (4.52)

For the problem at hand, there are only four distinct entries:

Hess(G) =


A B . . . . . . B

B C D . . . D
... D

. . .
. . .

...
...
...
. . . C D

B D . . . D C

 . (4.53)

Clearly,ωωωωωωωωωωωωωω itself is an eigenvector of Hess(G) with the eigenvalueA − B. On the other
hand, ifk ∈ K, then the first row and column of Hess(G) are irrelevant. Writing the
remaining(N − 1)× (N − 1) block in the form(C − D)1 + CS, whereS is the matrix
with all entries equal to one, it follows easily that all ofK is an eigenspace of Hess(G)
with eigenvalueC − D.
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It remains to show that these eigenvalues are strictly smaller thanJ−1. The first one,
namely,A − B is less thanJ−1 by our assumption thatJg′′(h?) < 1. As to the other
eigenvalue,C − D, we note that

C − D = 〈v4
α〉h − 〈v2

αv
2
β〉h, α > β > 1. (4.54)

Now, equation (4.48) tells us that, under our conditions,〈v2
αv

2
β〉h equals1

3〈v4
α〉h. So we

need that23〈v4
α〉h is less thanJ. But sinceh1 = h? > hα, that is exactly the condition (ii)

derived in the proof of Lemma 4.9.ut

Now we are ready to establish our claims concerning the local minima ofΦJ :

Proof of Proposition 2.4.Letωωωωωωωωωωωωωω be as above and note that|ωωωωωωωωωωωωωω|
2

= N/(N − 1). Then the
on-axis moment generating function from (4.10) becomes

g(h) =
N − 1

N
log

∫
πN(dv)eh N

N−1 (v
2
1−

1
N ), (4.55)

whereπN is the uniform probability measure on the unit sphere inRN andv1 is the first
component ofv. An argument involving theN-dimensional spherical coordinates then
shows that

πN(v1 ∈ dx) = C(N) (1 − x2)
N−3

2 dx, (4.56)

whereC(N) is the ratio of the surfaces of the unit spheres inRN−1 andRN . By substi-
tuting this into (4.55) and applying (4.12), we easily find that, in order forλλλλλλλλλλλλλλ = λωωωωωωωωωωωωωω to
be a local minimum ofΦJ , the scalarλ has to satisfy the equation (2.25).

A simple analysis of (2.25) shows that forJ � 1, the only solution to (2.25) is
λ = 0, while for J & N2, the solutionλ = 0 is no longer perturbatively stable. Since
Lemma 4.2 guarantees that the norm of all global minimizers increases withJ, there
must be a uniqueJMF ∈ (0,∞) and a non-decreasing functionJ 7→ λMF(J) such that
λMF(J) solves (2.25) and that every global minimizer ofΦJ at any J > JMF which
is a continuity point ofJ 7→ λMF(J) corresponds toλ = λMF(J). (At any possible
point of discontinuity ofJ 7→ λMF(J), theλ corresponding to any global minimizer is
sandwiched between limJ ′↑J λMF(J ′) and limJ′↑J λMF(J ′).) The claim is proved. ut

In order to prove the large-N part of our statements concerning the mean-field theory
of the nematic model, we will need to establish the following scaling property:

Lemma 4.11.LetΦ(N)J denote the free-energy function of the O(N)-nematic Hamilto-
nian. Introduce the matrixωωωωωωωωωωωωωω = diag(1,− 1

N−1, . . . ,−
1

N−1) and define the normalized
mean-field free-energy function

φ
(N)
J (λ) =

1

N
|ωωωωωωωωωωωωωω|

−2Φ
(N)
J N (λωωωωωωωωωωωωωω), λ < 1. (4.57)

Then, as N→ ∞, the functionλ 7→ φ
(N)
J (λ) converges, along with all of its deriva-

tives, to the function

φ
(∞)
J (λ) = −

J

2
λ2

+
1

2
log

1

1 − λ
. (4.58)



36 Marek Biskup and Lincoln Chayes

Proof.The proof is a straightforward application of Laplace’s method to the measure on
the right-hand side of (2.25). Indeed, for anyh ≥ 0, consider the measureρh,N on [0,1]
defined by

ρh,N(dx) =
(1 − x2)

N−3
2 ehN x2∫ 1

0 dx (1 − x2)
N−3

2 ehN x2
dx. (4.59)

Noting that the functionx 7→ (1 − x2)
1
2 ehx2

has a unique maximum atx = xh, where

x2
h = max

{
0,1 −

1

2h

}
, (4.60)

we easily conclude that
lim

N→∞
ρh,N(·) = δxh(·), (4.61)

whereδa(·) denotes the Dirac point mass atx = a. Here the limit taken in the sense
of weak convergence on the space of all bounded continuous functions on [0,1]. The
proof of this amounts to standard estimates for the Laplace method; we leave the details
to the reader.

Let gN(h) denote the functiong(hN) whereg is as in (4.55). Since any derivative of
gN(h) can be expressed as a truncated correlation function of measureρh,N , we easily
conclude thath 7→ gN(h) converges, along with all of its derivatives, to the function

g∞(h) = lim
N→∞

gN(h) = max
{
0, h −

1

2
−

1

2
log(2h)

}
, (4.62)

for all h ≥ 0. Now, the functionsN(λ) =
1
N |ωωωωωωωωωωωωωω|

−2S(λωωωωωωωωωωωωωω)—whereS(·) is the entropy of
the O(N)-nematic model—is the Legendre transform ofgN , so we also get

s∞(λ) = lim
N→∞

sN(λ) = −
1

2
log

1

1 − λ
. (4.63)

(Again, the convergence extends to all derivatives, providedλ < 1.) From here the
claim follows by noting thatφ(N)J (λ) = −

J
2λ

2
− sN(λ), which tends toφ(∞)

J (λ) in the
desired sense.ut

Proof of Proposition 2.5.By Lemma 4.11, the scaled mean-field free-energy func-
tion φ(N)J is, along with any finite number of its derivatives, uniformly close toφ(∞)

J
on compact subsets of [0,1), providedN is sufficiently large. Now the local minima
of φ(∞)

J will again satisfy a mean-field equation, this time involving the functiong∞

from (4.62). Since

g′(h) =

{
1 −

1
2h , if h > 1

2,

0, otherwise,
(4.64)

there are at most two perturbatively stable solutions to the mean-field equation: One at
λ = 0 and the other at

λ =
1

2

(
1 +

√
1 − 4J−2

)
. (4.65)

Moreover, these local minima interchange the role of the global minimum at some
finite and non-zeroJ(∞)

MF , which is a solution of a particular transcendental equation.
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For J nearJ(∞)
MF , the second derivative ofφ(∞)

J is uniformly positive around both local
minima.

The convergence stated in Lemma 4.11 ensures that all of the previously listed facts
will be (at least qualitatively) satisfied byφ(N)J for N large as well. Thus,φ(N)J has at

most one positive local minimum, which immediately implies thatJ 7→ λ
(N)
MF (J) is

continuous whenever it is defined. Moreover, since the local minima ofφ
(N)
J converge

to those ofφ(∞)
J , we also easily recover the asymptotic statements (2.27–2.28). This

finishes the proof. ut

Proof of Theorem 2.6.The proof is similar to that of the Potts and cubic models; the
only extra impediment is that now we cannot take for granted that there is only one
non-zero local minimum. As before, most of the difficulties will be resolved by invok-
ing the monotonicity of the energy densitye?(J), which is defined e.g. by optimizing
1
2〈(Q0,Qx)〉J over all Gibbs states invariant under the lattice translations and rotations.

In the present case,κ andn in the Main Theorem are given byκ = (N − 1)/N and
n =

1
2 N(N − 1). Thus, lettingδd =

1
4(N − 1)2Id, the quantityJδd is the correspond-

ing error term on the right-hand side of (1.12). Defineε1 by the formula (4.23). Then
Lemma 4.9 guarantees that the diagonal formλλλλλλλλλλλλλλ of 〈Q0〉J for any Gibbs state is an index
permutation of a vector of the type(

λ+ a1,−
λ

N − 1
+ a2, . . . ,−

λ

N − 1
+ aN

)
, (4.66)

where
∑

i ai = 0,
∑

i a2
i ≤ ε2

1 andλ corresponds to a local minimum ofΦJ . If λλλλλλλλλλλλλλ is the
physical magnetization giving rise toλ?(J), we letλ?MF(J) be a value ofλ, correspond-
ing to a local minimum ofΦJ , for whichλλλλλλλλλλλλλλ takes the form (4.66). Then Corollary 1.2
and the Key Estimate give∣∣∣e?(J)−

1

2

N

N − 1
λ?MF(J)

2
∣∣∣ ≤ 2Jδd. (4.67)

Now for J ≤ J0 � 1, we know the only local minimum is forλ?MF(J) = 0, while for
J ≥ J1 & N2, the zero vector is no longer a local minimum and henceλ?MF(J) exceeds
someκ′ > 0. But J 7→ e?(J) is non-decreasing so there must be aJt ∈ [ J0, J1]
wheree?(J) jumps by at leastκ′

− 2Jtδd, which is positive onced is sufficiently large.
The fact thatJt must be close toJMF for large enoughd is proved exactly as for the
Potts and cubic models.ut

5. Mean-field theory and complete-graph models

Here we will show that the mean-field formalism developed in Section 1.2 has a very
natural interpretation for the model on a complete graph. An important reason for the
complete graph picture is to provide a tangible physical system to motivate some of the
physical arguments. The forthcoming derivation is a rather standard exercise in large-
deviation theory [16,19], so we will keep it rather brief.

We will begin by a precise definition of the problem. LetGN be a complete graph
on N vertices and consider a spin system onGN with single-spin space� and the
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Hamiltonian

βHN(S) = −
J

N

∑
1≤x<y≤N

(Sx,Sy)−

N∑
x=1

(b,Sx). (5.1)

(Recall that� is a compact subset of a finite-dimensional vector spaceE� with inner
product denoted as in the previous formula.) Letµ denote thea priori spin measure and
let 〈−〉0 denote the corresponding expectation. For each configurationS, introduce the
empirical magnetization by the formula

mN(S) =
1

N

N∑
x=1

Sx. (5.2)

If m ∈ Conv(�) andε > 0, letUε(m) denote theε-neighborhood ofm in Conv(�) in
the metric induced by the inner product onE�. Then we have:

Theorem 5.1.For eachm ∈ Conv(�),

lim
ε↓0

lim
N→∞

1

N
log

〈
e−βHN (S)1{mN (S)∈Uε(m)}

〉
0

= −ΦJ,b(m), (5.3)

whereΦJ,b(m) is as defined in Section 1.2. Moreover, ifνN denotes the Gibbs measure
obtained by normalizing e−βHN (S) and if FMF(J,b) denotes the infimum ofΦJ,b(m)
overm ∈ Conv(�), then

lim
N→∞

νN
(
ΦJ,b(mN(S)) ≥ FMF(J,b)+ ε

)
= 0 (5.4)

for everyε > 0.

Proof. By our assumption,E� is a finite-dimensional vector space. Moreover,� is
compact and thus the logarithmic generating functionG(h) defined in (1.3) exists for
all h ∈ E�. As a consequence of Cramér’s Theorem for i.i.d. random variables onRn,
see Theorem 2.2.30 in [16], the measures

µN(·) = µ
(
mN(S) ∈ ·

)
(5.5)

satisfy a large-deviation principle onRd with rate function (1.4). In particular,

lim
ε↓0

lim
N→∞

1

N
logµN

(
Uε(m)

)
= S(m), m ∈ Conv(�). (5.6)

Now βHN can be written as follows

βHN = N EJ,b
(
mN(S)

)
−

J

N

∑
x=1

(Sx,Sx). (5.7)

Since the second term is bounded by a non-random constant almost surely and since
m 7→ EJ,b(m) is uniformly continuous throughout Conv(�), (5.3) follows by inspect-
ing the definition ofΦJ,b(m). ut
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