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Abstract: We study the formation/dissolution of equilibrium droplets in finite sys-
tems at parameters corresponding to phase coexistence. Specifically, we consider the
2D Ising model in volumes of size?, inverse temperatur® > f. and overall mag-
netization conditioned to take the valweL? — 2m*v., where gz is the critical
temperaturem* = m*(p) is the spontaneous magnetization andis a sequence of
positive numbers. We find that the critical scaling for droplet formation/dissolution
is whenvf/zL‘2 tends to a definite limit. Specifically, we identify a dimensionless
parameterA, proportional to this limit, a non-trivial critical valu&; and a func-

tion 1 such that the following holds: Fokx < A, there are no droplets beyond lbg
scale, while forA > Ac, there is a single, Wulff-shaped droplet containing a frac-
tion 1o > Ac = 2/3 of the magnetization deficit and there are no other droplets beyond
the scale of lod.. Moreover,Ax andA are related via a universal equation that appar-
ently is independent of the details of the system.
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1. Introduction

1.1. Motivation. The connection between microscopic interactions and pure-phase (bulk)
thermodynamics has been understood at a mathematically sophisticated level for many
years. However, an analysis of systems at phase coexistence which contain droplets has
begun only recently. Over a century ago, Curie [25], Gibbs [33] and Wulff [55] de-
rived from surface-thermodynamical considerations that a single droplet of a particular
shape—th&Vulff shape—will appear in systems that are forced to exhibit a fixed excess

of a minority phase. A mathematical proof of this fact starting from a system defined
on the microscopic scale has been given in the context of percolation and Ising systems,
firstin dimensiord = 2 [4,27] and, more recently, in all dimensioths> 3 [13,21,22].

Other topics related to the droplet shape have intensively been studied: Fluctuations of
a contour line [3, 18-20, 26, 37], wetting phenomena [50] and Gaussian fields near a
“wall” [5,15,29]. See [14] for a summary of these results and comments on the (recent)
history of these developments.

The initial stages of the rigorous “Wulff construction” program have focused on
systems in which the droplet subsumes a finite fraction of the available volume. Of
no less interest is the situation when the excess represents only a vanishing fraction
of the total volume. In [28], substantial progress has been made on these questions in
the context of the Ising model at low temperatures. Subsequent developments [38, 39,
48, 49] have allowed the extension,dn= 2, of the aforementioned results up to the
critical point [40]. Specifically, what has so far been shown is as follows: For two-
dimensional volumesg\ | of sideL ando > O arbitrarily small, if the magnetization
deficit exceeds. ¥/3+9, then a Wulff droplet accounts, pretty much, for all the deficit,
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while if the magnetization deficit is bounded hy/3~9, there are no droplets beyond
the scale of lod.. The preceding are of course asymptotic statements that hold with
probability tending to one as — oo.

The focus of this paper is the intermediate regime, which has not yet received appro-
priate attention. Assuming the magnetization deficit divided By tends to a definite
limit, we define a dimensionless parameter, denoted pyhich is proportional to this
limit. (A precise definition ofA is provided in (1.10).) Our principal result is as follows:
There is a critical value\; such that forA < Ag, there are no large droplets (again,
nothing beyond lod. scale), while forA > A, there is a single, large droplet of a di-
ameter of the order?/3. However, in contrast to all situations that have previously been
analyzed, this large droplet only accounts for a finite fraction,< 1, of the magneti-
zation deficit, which, in addition, doe®ttend to zero aq\ | A¢! (Indeed,ia | Ac,
with 1¢c = 2/3.) Whenever the droplet appears, its interior is representative of the minus
phase, its shape is close to the optimal (Wulff) shape and its volume is tuned to contain
the 1 5-fraction of the deficit magnetization. Furthermore, for all valuea pthere is at
most one droplet of size?/3 and nothing else beyond the scale laght A = A the
situation is not completely resolved. However, there are only two possibilities: Either
there is one droplet of linear siz€/3 or no droplet at all.

The above transition is the result of a competition between two mechanisms for cop-
ing with a magnetization deficit in the system: Absorption of the deficit by the ambient
fluctuationsor the formation of alroplet The results obtained in [27,28] and [40] deal
with the situations when one of the two mechanisms completely dominates the other.
As is seen by a simple-minded comparison of the exponential costs of the two mecha-
nisms,L*3 is the only conceivable scaling of the magnetization deficit where these are
able to coexist. (This is the core of the heuristic approach outlined in [9, 46] and [7],
see also [8,11].) However, at the point where the droplets first appear, one can envision
alternate scenarios involving complicated fluctuations and/or a multitude of droplets
with effective interactions ranging across many scales. To rule out such possibilities it
is necessary to demonstrate the absence of these “intermediate-sized” droplets and the
insignificance—or absence—of large fluctuations. This was argued on a heuristic level
in [10] and will be proven rigorously here.

Thus, instead of blending into each other through a series of intermediate scales, the
droplet-dominated and the fluctuation-dominated regimes meet—literally—at a single
point. Furthermore, all essential system dependence is encoded into one dimension-
less parameteA and the transition between the Gaussian-dominated and the droplet-
dominated regimes is thus characterized hynaversalconstantAc. In addition, the
relative fractioni, of the deficit “stored” in the droplet depends anvia a univer-
sal equation which is apparently independent of the details of the system [10]. At this
point we would like to stress that, even though the rigorous results presented here are
restricted to the case of the two-dimensional Ising model, we expect that their validity
can be extended to a much larger class of models and the universality of the depen-
dence onA will become the subject of aathematicalstatement. Notwithstanding
the rigorous analysis, this universal setting offers the possibility of fitting experimen-
tal/numerical data from a variety of systems onto a single curve.

A practical understanding of how droplets disappear is by no means an esoteric issue.
Aside from the traditional, i.e., three-dimensional, setting, there are experimental real-
izations which are effectively two-dimensional (see [42] and references therein). More-
over, there are purported applications of Ising systems undergoing “fragmentation” in
such diverse areas as nuclear physics and adatom formation [36]. From the perspective
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of statistical physics, perhaps more important are the investigations of small systems at
parameter values corresponding to a first order transition in the bulk. In these situations,
non-convexities appear in finite-volume thermodynamic functions [36,43,44,51], which
naturally suggest the appearance of a droplet. Several papers have studied the disappear-
ance of droplets and reported intriguing finite-size characteristics [7,9,42,45,46,51,52].

It is hoped that the results established here will shed some light in these situations.

1.2. The modelThe primary goal of this paper is a detailed description of the above
droplet-formation phenomenon in the Ising model. In general dimension, this system is
defined by the formal Hamiltonian

H = — Z Ox0y, (11)
x.y)

where(x, y) denotes a nearest-neighbor pairZthand wheres, € {—1, +1} denotes
an Ising spin. To define the Hamiltonian in a finite volumec Z9, we usedA to
denote the external boundary &f 6A = {x ¢ A:there exists a bontk, y) with y e
A}, fix a collection of boundary spinga = (ox)xesa and restrict the sum in (1.1)
to bonds(x, y) such that{x, y} N A # @. We denote this finite-volume Hamiltonian
by o7, (oa, 05A). The special choices of the boundary configurations suchsthat
+1, resp.ox = —1 for all x € oA will be referred to as plus, resp., minus boundary
conditions.

The Hamitonian gives rise to the concept of a finite-voluBibbs measurdalso
known asGibbs stat@which is a measure assigning each configuration= (ox)xea €
{—1, +1}* the probability

e BHAN(on,000)
Z3N(P)

Heref > 0 denotes the inverse temperaturg, is an arbitrary boundary configuration
and Z* (B) is the partition function. Most of this work will concentrate on squares
of L x L sites, which we will denote by\|, and the plus boundary conditions. In
this case we denote the above probabilityFkgfﬂ (—) and the associated expectation

by (—)7. As the choice of the signs in (1.1-1.2) indicates, the meaBiré with
B > 0 tends to favor alignment of neighboring spins with an excess of plus spins over
minus spins.

P (o) = (1.2)

Remark 1As is well known, the Ising model is equivalent to a model of a lattice gas
where at most one patrticle is allowed to occupy each site. In our case, the sites occupied
by a particle are represented by minus spins, while the plus spins correspond to the
sites with no particles. In the particle distribution inducedFkgLrﬂ, the total number

of particles is not fixed; hence, we will occasionally refer to this measure as the “grand
canonical” ensemble. On the other hand, if the number of minus spins is fixed (by
conditioning on the total magnetization, see Section 1.3), the resulting measure will
sometimes be referred to as the “canonical” ensemble.

The Ising model has been studied very extensively by mathematical physicists in
the last 20-30 years and a lot of interesting facts have been rigorously established. We
proceed by listing the properties of theo-dimensionamodel which will ultimately
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be needed in this paper. For general overviews of various aspects mentioned below
we refer to, e.g., [14, 31, 32, 54]. The readers familiar with the background (and the
standard notation) should feel free to skip the remainder of this section and go directly
to Section 1.3 where we discuss the main results of the present paper.

e Bulk properties. For all § > 0, the measur@:“ﬁ has a unique infinite volume
(weak) limit P*-# which is a translation-invariant, ergodic, extremal Gibbs state for the
interaction (1.1). Let—)*-# denote the expectation with respectRd-#. The persis-
tence of the plus-bias in the thermodynamic limit, characterized bgntgnetization

m*(B) = (o0) ™7, (1.3)

marks the region of phase coexistence in this model. Indeed, there is a non-trivial critical
value fc € (0, oco)—known [1, 6, 41, 47] to satisfg?’c = 1 + /2—such that for

B > Be, we havem* () > 0 and there are multiple infinite-volume Gibbs states, while
for p < fc, the magnetization vanishes and there is a unique infinite-volume Gibbs state
for the interaction (1.1). Further, usir@\; B)*# to denote the truncated correlation
function (AB)+# — (A)HA(B)+# | the magnetisusceptibility defined by

x(B) =D {o0;0x)"F, (1.4)

xeZ?2

is finite for all 5 > f¢, see [24,53]. By the GHS or FKG inequalities, we hgyM@) >
1—m~(g)2 > Oforall g € [0, 00).

e Peierls’ contours.Our next requisite item is a description of the Ising configura-
tions in terms of Peierls’ contours. Given an Ising configuratiaf imith plus boundary
conditions, we consider the set of dual bonds intersecting direct bonds that connect a
plus spin with a minus spin. These dual bonds will be assembled into contours as fol-
lows: First we note that only an even number of dual bonds meet at each site of the
dual lattice. When two bonds meet at a single dual site, we simply connect them. When
four bonds are incident with one dual lattice site, we apply the rounding rule “south-
east/north-west” to resolve the “cross” into two curves “bouncing” off each other (see,
e.g., [27,49] or Figure 1). Using these rules consistently, the aforementioned set of dual
bonds decomposes into a set of non self-intersecting polygons with rounded corners.
These are oucontours

Each contouy is a boundary of a bounded subsef®3 which we denote by (y).

We will also need a symbol for the set of sites in the interiorpfve let V(y) =

V (y) N Z2. Thediameterof a contoury is defined as the diameter of the 8&ty) in

the £2-metric onR2. In the thermodynamic interpretation used in Section 1.1, contours
represent microscopic boundaries of droplets. The advantage of the contour language is
that it permits the identification of a sharp boundary between two phases; the disadvan-
tage is that, in order to study the typical shape (and other properties) of large droplets,
one has to first resum over small fluctuations of this boundary.

e Surface tensionln order to study droplet equilibrium, we need to introduce the
concept of microscopic surface tension. Following [4, 48] Z8rwe can conveniently
useduality. Given ag > S, let f* = 1logcothp denote thedual temperatureFor
any (ki, ko) € Z2 andk = (k2 + k3)¥2, letn = (ky/k, ko/K) € S1 = {x € R2: ||x|| =
1}. (Here||x|| is the Euclidean norm of.) Then the limit

oy L +.5°
tp(N) = N'[)noo NK log(ooonkn) ™", (1.5)
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Fig. 1. An example of an Ising spin configuration and its associated Peierls’ contours. In general, a contour
consists of a string of dual lattice bonds that bisect a direct bond between a plus spin and a minus spin. When
four such dual bonds meet at a single (dual) lattice site, an ambiguity is resolved by applying the south-
east/north-west rounding rule. (The remaining corners are rounded just for eesthetic reasons.) The shaded
areas correspond to the part\6€y) occupied by the minus spins.

where Nkn = (kiN, koN) e Z2, exists independently of what integets and ko

we chose to representand defines a function on a dense subse$oflt turns out

that this function can be continuously extended tonak S;. We call the resulting
quantity 74 (n) the surface tensiomn directionn at inverse temperaturg. As is well
known,n = 74 (n) is invariant under rotations afby integer multiples of; andrmin =
infhes; 7p(n) > 0O for all g > f¢ [48]. Informally, the quantityzz(n)N represents

the statistical-mechanical cost of a (fluctuating) contour line connecting two sites at
distanceN on a straight line with direction (or normal vectar)

Remark 20ur definition of the surface tension differs from the standard definition
by a factor of p~1. In particular, the physical units ofs are lengtht! rather than
energylength™. The present definition eliminates the need for an explicit occurrence
of f in many expressions throughout this paper and, as such, is notationally more con-
venient.

e Surface properties.On the level of macroscopic thermodynamics, it is obvious
that when a droplet of the minority phase is present in the system, it is pertinent to
minimize the total surface cost. By our previous discussion, the cost per unit length is
given by the surface tensiarg(n). Thus, one is naturally led to the functiorié (y)
that assigns the number

7400 = [ s (L.6)
Y

to each rectifiable, closed curye= (y,) in R?. Heren; denotes the normal vector gt
The goal of the resulting variational problem is to minimi#g(éD) over allD c R2
with rectifiable boundary subject to the constraint that the volum2 obincides with
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that of the droplet. The classic solution, due to Wulff [55], is t#a{(oD) is minimized
by the shape

Dw = {r e R%:r-n < 4(n), n € S1} (1.7)

rescaled to contain the appropriate volume. (Hera denotes the dot product iR?.)
We will use W to denote the shapBy scaled to have anit (Lebesgue) volume. It
follows from (1.7) thalW is a convex set iiR?. We define

w1(B) = #p(0OW) (1.8)

and note thatv1(8) > 0 oncef > fe.

Our preliminary arsenal is now complete and we are prepared to discuss the main
results.

1.3. Main results.Recall the notatiom\ | for a square oL x L sites inZ2. Consider
the Ising model in volume\ | with plus boundary condition and inverse temperagiire
Let us define the total magnetization (of a configuratipin A by the formula

ML= D> ox. (1.9)

XeAL

Let (v)L>1 be a sequence of positive numbers, with - oo asL — oo, such
thatm* |[AL|—2m* v is an allowed value o forall L > 1. Our first result concerns
the decay rate of the probability thisty, = m* |A| —2m* o in the “grand canonical”

ensembIeP:“ﬁ:
Theorem 1.1.Letf > pcand letnf = m*(f), y = x(B), andwi = w1(p) be as
above. Suppose that the limit

<\ 2 3/2
=M iy
xw1 Looo [AL]

A

(1.10)
exists withA € (0, co). Then

. 1 .
lim —— log Pf’ﬁ(ML =m'|AL|—2m'o ) = —w10|r)1f 1<DA(,1), (1.11)
<i<

L—oo /UL

where
OAa(W)=vVAi+AL-21% 0<i<l (1.12)

The proof of Theorem 1.1 is a direct consequence of Theorems 3.1 and 4.1; the
actual proof comes in Section 5. We proceed with some remarks:

Remark 3Note that, by our choice of the deviation scale, the tem(s)|A| can be

replaced by the mean value/IL)f_”ﬂ in all formulas; see Lemma 2.9 below. The mo-
tivation for introducing the factor ‘@*” on the left-hand-side of (1.11) is that thep
represents the volume of a droplet that must be created in order to achieve the required
value of the overall magnetization (provided the magnetization outside, resp., inside the
droplet ism*, resp.,—m*).
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Remark 4The quantity4 that appears in (1.11-1.12) representdtia¢fraction of the
deficit magnetization which might go into a large-scale droplet. (So, by our conven-
tion, the volume of such a droplet is just; .) The core of the proof of Theorem 1.1,
roughly speaking, is that the probability of seeing a droplet of this size tends to zero
as exg—w1./oLPa(4)}. Evidently, a large deviation principle for the size of such a
droplet is satisfied with rate2/3 and a rate function proportional tb, . However, we

will not attempt to make this statement mathematically rigorous.

Next we shall formulate our main result on the asymptotic form of typical configura-
tions in the “canonical” ensemble described by the conditional me&{[r/fe(- ML =

m*|AL| — 2m* v, ). For any two setdA, B c R?, let dy(A, B) denote the Hausdorff
distance betweeA andB,

dH(A, B) = max{supdist(x, B), supdist(y, A)}, (1.13)
yeB

xeA

where dis(x, A) is the Euclidean distance g&fand A.
Our second main theorem is then as follows:

Theorem 1.2.Let 8 > fc and suppose that the limit in (1.10) exists withe (0, co).
Recall that W denotes the Wulff shape of a unit volume. Givgs) L € (0, c0),
let A,.s,L be the event that any external contgufor which diamy > s must also
satisfydiamy > s,/vL. Next, for eacke > 0, let B s be the event that there is at
most one external contogg in A with diamyg > s and, whenever such a contoyy
exists, it satisfies the conditions

ilr]g2 A (V(70), Z+ VIV ()| W) < Jeor (1.14)
ze
and

D0V (o)) < OJ?LchAu’) +e. (1.15)

In addition, the evenB3, s, also requires that the magnetization insiglg obeys the

constraint
Z (ox +m")
xeV(yg)

< evL. (1.16)

There exists a constanty > 0 such that for eacls > 0 and eache > 0 there exist
numbers K < oo and Ly < oo such that

PP (Asest NBest|ML=m A ] —2m o) > 1—L~¢ (1.17)
holds provided« < spand s= K logL with K > Kgand L > Lo, .

Thus, simply put, whenever there is a large droplet in the system, its shape rarely
deviates from that of the Wulff shape and its volume (in units dfis almost always
given by a value of nearly minimizing® . Moreover, all other droplets in the system
are at most of a logarithmic size.

Most of the physically interesting behavior of this system is simply a consequence
of where®, achieves its minimum and how this minimum depends\oihe upshot,
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which is stated concisely in Proposition 2.1 below, is that there is a critical valiie of

given by
1,/3\3/2
Ac = 5(5) , (1.18)
such that ifA < Ag, then®, has the unique minimizer dt= 0, while for A > Ag,
the unique minimizer o » is nontrivial. More explicitly, forA # A, the function®
is minimized by

0 if A < Ac
In=17 : 1.1
A {/1+(A), if A> Ag, (1.19)

wherel, (A) is the maximal positive solution to the equation
AAVI(L—2) =1 (1.20)

The reason for the changeover is that,Aasncreases through, a local minimum
becomes a global minimum, see the proof of Proposition 2.1. As a consequence, the
minimizing fraction1 doesnottend to zero aq\ | Ag; in particular, it tends td; =
2/3.

Using the information about the unique minimizer®d§ for A £ A, it is worth-
while to reformulate Theorem 1.2 as follows:

Corollary 1.3. Let 8 > B¢ and suppose that the limit in (1.10) exists withe (0, o).

Let Ac and A5 be as in (1.18) and (1.19), respectively. Let K be sufficiently large
(i.e., K > Ko, where kg is as in Theorem 1.2). Considering the conditional distribu-
tion P:“ﬁ(~ ML = m*|AL| —2m* v, ), the following holds with probability tending to
one as L— oc:

(1) If A < Ac, then all contours in A| satisfydiamy < K logL.

(2) If A > A, then there is exactly one external contgymwith diamy, > K logL and
all other external contours satisfydiamy < K log L. Moreover, the unique “large”
external contouryy asymptotically satisfies the bounds (1.14-1.16) foe all 0. In
particular, |V (yg)| = v (A4 + 0(1)) with probability tending to one as b oo.

We remark that although the situation at= A is not fully resolved, we must
have either a single large droplet or no droplet at all; i.e., the outcome must mimic the
caseA > Acor A < Ac. A better understanding of the cage= A will certainly
require a more refined analysis; e.g., the second-order large-deviation behavior of the

measureP ™’ ().

Remark 5We note that in the course of this work, the phrage>* g.” appears in three
disparate meanings. First, f@r > S, the magnetization is positive, second, for>

S, the surface tension is positive and third, for> S, truncated correlations decay
exponentially. The facts that the transition temperatures associated with these properties
all coincideand that . is given by the self-dual condition plays no essential role in
our arguments. Nor are any other particulars of the square lattice really used. Thus,
we believe that our results could be extended to other planar lattices without much
modification. However, in the cases where the coincidence has not yet been (or cannot
be) established, we would need to defig™so as to satisfy all three criteria.



10 M. Biskup, L. Chayes and R. Kotegk

1.4. Discussion and outlineThe mechanism which drives the droplet formation/disso-
lution phenomenon described in the above theorems is not difficult to understand on
a heuristic level. This heuristic derivation (which applies to all dimensins 2)
has been discussed in detail elsewhere [10], so we will be correspondingly brief. The
main ideas are best explained in the context of the large-deviation theory for the “grand
canonical” distribution and, as a matter of fact, the actual proof also follows this path.
Consider the Ising model in the bok, and suppose we wish to observe a mag-
netization deficiencyM = 2m*p_ from the nominal value ofm*|A|. Of course,
this can be achieved in one shot by the formation of a Wulff droplet at the cost of
about exp—w1.,/vL}. Alternatively, if we demand that this deficiency emerges out of
the background fluctuations, we might guess on the basis of fluctuation-dissipation ar-
guments that the cost would be of the order

(6M)?
_2Var(ML)}

~
~

xp{—ZM}, (1.21)

XIAL

wherey is the susceptibility and V&M ) = (¥ + o(1))|AL| is the variance oM in
distribution P:“ﬂ. Obviously, the former mechanism dominates wiyeén « vf/|AL [,

i.e., wherv| > L*3, while the latter dominates under the opposite extreme conditions,
i.e., wheno, <« L%3. (These are exactly the regions previously treated in [28, 40]
where the corresponding statements have been established in full rigor.) In the case
wheno /L% tends to a finite limit we now find that the two terms are comparable.
This is the basis of our paramet&rdefined in (1.10).

Assumingvf/2/|AL| is essentially at its limit, let us instead try a droplet of vol-
umeio, where 0< 1 < 1. The droplet cost is now reduced to

exp{—w1v/oL }, (1.22)

but we still need to account for the remaining fraction of the deficiency. Assuming the
fluctuation-dissipation reasoning can still be applied, this is now

(m*op)?
XIALI

Putting these together we find that the total cost of achieving the deficiEvicy=
2m*v | using a droplet of volumeo, is given in the leading order by

exp{—w1®4 (1) /o). (1.24)

An optimal droplet size is then found by minimizidgs (1) over 1. This is exactly the
content of Theorem 1.1. We remark that even on the level of heuristic understanding,
some justification is required for the decoupling of these two mechanisms. In [10], we
have argued this case on a heuristic level; in the present work, we simply provide a
complete proof.

The pathway of the proof is as follows: The approximate equalities (1.22—-1.24) must
be proved in the form of upper and lower bounds which agree ih the oo limit. (Of
course, we never actually have to go through the trouble of establishing the formulas
involving @A (1) for non-optimal values of.) For the lower bound (see Theorem 3.1)
we simply shoot for the minimum ab A (1): We produce a near-Wulff droplet of the
desired area and, on the complementary region, allow the background fluctuations to

exp[—z (1- 1)2] = exp{—w1v/or (1 — 1)2A}. (1.23)
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account for the rest. Here, as a bound, we are permitted to use a contour ensemble with

restriction to contours dbgarithmicsize which ensures the desired Gaussian behavior.
The upper bound requires considerably more effort. The key step is to show that,

with probability close to one, there are no droplets at any scale larger thandog

smaller than,/o. Notwithstanding the technical difficulties, the result (Theorem 4.1)

is of independent interest because it applies fona#t (0, co), including the cas& =

A¢. Once the absence of these “intermediate” contour scales has been established, the

proof of the main results directly follow.

We finish with a brief outline of the remainder of this paper. In the next section we
collect the necessary technical statements needed for the proof of both the upper and
lower bound. Specifically, in Section 2.1 we discuss in detail the minimizeds\gfn
Section 2.2 we introduce the concept of skeletons and in Section 2.3 we list the needed
properties of the logarithmic contour ensemble. Section 3 contains the proof of the
lower bound, while Section 4 establishes the absence of contour on scales between log
and the anticipated droplet size. Section 5 assembles these ingredients together into the
proofs of the main results.

2. Technical ingredients

This section contains three subsections: Section 2.1 presents the solution of the vari-
ational problem for functionb, on the right-hand side of (1.12), while Sections 2.2
and 2.3 collect the necessary technical lemmas concerning the skeleton calculus and
the small-contour ensemble. We remark that a variety of closely related results have
appeared in literature; in particular, in [40] (and the earlier [27, 28, 48]). For complete-
ness, we will provide proofs, but keep them as brief as possible. Readers familiar with
these topics (or who are otherwise uninterested) are invited to skip the entire section
on a preliminary run-through, referring back only for definitions when reading through
Sections 3-5.

2.1. Variational problem.Here we investigate the global minima of the functidn

that was introduced in (1.12). Since the general picture is presumably applicable in
higher dimensions as well (certainly at the level of heuristic arguments, see [10]), we
might as well carry out the analysis in the case of a general dimedsier2. For the
purpose of this subsection, let

DA =AT +A1-2)2 0<i<Ll 2.1)
We define
Dh = Oi'gfslq)A(i) (2.2)

and note thatb’, > 0 onceA > 0. Let us introduce the-dimensional version of

(1.18),
d+1

o)

The minimizers ofb 4 are then characterized as follows:

Proposition 2.1.Let d > 2 and, for anyA > 0, let 9t denote the set of all global
minimizers ofd, on [0, 1]. Then we have:
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(1) If A < Ag, then9i, = {0}.
(2) If A = A¢, thenMip = {0, A¢}, where

2

e = ——. 2.4
T d+1 (2.4)
() If A > Ac, then?ip = {40}, wherelg is the maximal positive solution to the
equation
2d 1
——Ald(A-2)=1 2.5
10— (2.5)

In particular, A9 > Ac.

Proof. A simple calculation shows thdt = 0 is always a (one-sided) local minimum
of A > ®x (1), while A = 1 is always a (one-sided) local maximum. Moreover, the
stationary points ofb 5 in (0, 1) have to satisfy (2.5). Consider the quantity

q(l) = %(1 — &Y, (1) = dz—_dlzl/d(l -2, (2.6)

i.e.,q(1) is essentially the left-hand side of (2.5). A simple calculation showxtigt
achieves its maximal value on,[0] at A = Zq = g7, Where itequals\ ;' = 2d2(d?—

1)~1(d+1)~Y/9 and s strictly increasing for < A4 and strictly decreasing for > 4.
On the basis of these observations, it is easy to verify the following facts:

(1) For A < Ag, we haveAq(4) < 1 forall 2 € [0, 1] (except perhaps & = Aq
when A equalsAg). Consequentlyl — ®x(4) is strictly increasing through-
out [0, 1]. In particular,A = 0 is the unique global minimum @b (1) in [0, 1].

(2) ForA > Ay, (2.5), resp.Aq(4) = 1 has two distinct solutions in [@]. Conse-
quently,A — @ (1) has two local extrema 0, 1): A local maximum atl =
A—(A) and a local minimum at = 1 (A), wherel_(A) andi4(A) are the mini-
mal and maximal positive solutions to (2.5), respectively.

As a simple calculation shows, the functian— 1, (A) is strictly increasing on its
domain withZ;.(A) ~ 1— &1L asA — co.

In order to decide which of the two previously described local miniina 0 or 1 =
A+ (A)) gives rise to the global minimum, we first note that, whilg (0) = A tends
to infinity asA — oo, the above asymptotics af, (A) shows thatb (14 (A)) —» 1
asA — oo. Hence, 4 (A) is the unique global minimum @b, onceA is sufficiently
large. Thus, it remains to show that the two local minima interchange their roles-at

Ac. To that end we compute

d
Gr®a(he(8) = %@A(M(A)) =(1-41 (M) <1, 2.7)

where we used thdt, (A) is a stationary point ob 5 to derive the first equality. Com-
paring this withadz DA (0) =1, we see thah — D, (44(A)) increases with\ strictly
slower thanA — @, (0) on any finite interval ofA’s. Hence, there must be a unique
value of A for which ® 4 (0) and® A (14 (A)) are exactly equal. An elementary com-
putation shows that this happensfat= Ac, whereAc is given by (2.3). This finishes

the proof of (1) and (3); in order to show that also (2) holds, we just need to note
that1, (Ac) is exactlyic as givenin (2.4). O

Proposition 2.1 allows us to define a quaniity by formula (1.19), where now, (A)
is the maximal positive solution to (2.5). Since kign,A1a = Ac > 0, the function
A — Aa undergoes a jump atc.
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2.2. Skeleton estimaten this section we introduce coarse-grained versions of con-
tours calledskeletonsThese objects will be extremely useful whenever an upper bound
on the probability of large contours is needed. Indeed, the introduction of skeletons will
permit us to effectively integrate out small fluctuations of contour lines and thus ex-
press the contour weights directly in terms of the surface tension. Skeletons were first
introduced in [4,27]; here we use a modified version of the definition from [40].

2.2.1. Definition and geometric propertie&iven a scales > 0, ans-skeletoris ann-
tuple (x4, . . ., Xn) Of points on the dual latticeg € (Z2)*, such thah > 1 and

S<IXiq1 =Xl <2, i=1...,n (2.8)

Here| - || denotes thé?-distance orR? andxn, 1 is identified withx;. Given a skele-
ton S, let P(S) be the closegbolygonal curven R? induced byS. We will use|P(S)|
to denote the total length &f(S), in accord with our general notation for the length of
curves.

A contoury is calledcompatiblewith ans-skeletonS = (x1, . . ., Xn), if

(1) 7y, viewed as a simple closed path BA, passes through all sites, i = 1,...,n
in the corresponding order.
(2) du(y, P(9) < s, wheredy is the Hausdorff distance (1.13).

We writey ~ Sif y andSare compatible. For each configuratigrwe letI's(c) be the
set of alls-large contoursy in o; namely ally in o for which there is as-skeletonSsuch
thaty ~ S. Given a set oé-skeletonss = (S, ..., Sn), we say that a configuration
is compatiblewith &, if T's(o) = (y1, ..., 7y @andy, ~ S forallk =1,...,m. We
will write ¢ ~ & to denote that and& are compatible.

It is easy to see thdis(o) actually consists of all contoussof the configurations
such that diam > s. Indeed, diamy > s for everyy e I's(s) by the conditions (1)
and (2.8) above. On the other hand, for anyith diamy > s, we will construct ars-
skeleton by the following procedure: Regards a closed non-self-intersecting curve,
y = (yt)o<t<1, Whereyg is chosen so that syp, X — yoll > s. Then we letx; = yq
andxz = y,, wheret, = inf{t > 0: |ly; — yoll > s}. Similarly, if tj has been defined
andxj = 7, We letxj 1 = Vtjsrr wheretj 1 = inf{t e (tj, 1]: |ly; — 7, I > s}.
Note that this definition ensures that (2.8) as well as the conditions (1) and (2) hold.
The consequence of this construction is that, via the equivalence refatiofi, the set
of all skeletons inducesa@veringof the set of all spin configurations.

Remark 6.The reader familiar with [27, 40] will notice that we explicitly keep the
stronger condition (1) from [27]. Without the requirement that contours pass through
the skeleton points in the given order, Lemma 2.3 and, more importantly, Lemma 2.4
below would fail to hold.

Next we will discuss some subtleties of the geometry of the skeletons stemming from
the fact that the corresponding polygons (unlike contours) may have self-intersections.
We will stay rather brief; a detailed account of the topic can be found in [27].

We commence with a few geometric definitions: gt= {P4, ..., Pk} denote a
finite collection of polygonal curves. Consider a smooth self-avoiding fafitom a
point x to oo that is generic with respect to the polygons frghi.e., the pathC has
a finite number of intersections with eah and this number does not change under
small perturbations of). Let #£ N P;) be the number of intersections Gfwith Pj.
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Then wedefine (®B) c R? to be the set of points e R? such that the total number
of intersectionszrj‘:1 #(L£ N Pj), is odd for any pathC from x to co with the above
properties. We will usé¢V (3)| to denote the area of (3).

If B happens to be a collection of skeletofis= &, the relevant set will b¥/ (S).
If B happens to be a collection of Ising contou}s,= T', the associate® (I') can
be thought of as a union of plaquettes centered at sité&pive will use V(I') =
V(') N Z? to denote the relevant set of sites. It is clear thaf iire the contours
associated with a spin configuratienin A and the plus boundary condition @,
thenV(I") are exactly the sites € A wheresyx = —1. We proceed by listing a few
important estimates concerning compatible collections of contours and their associated
skeletons:

Lemma 2.2.There is a finite geometric constant guch that ifl" is a collection of
contours andsS is a collection of s-skeletons with~ &, then

> i< ais D [P 2.9)
SeS

yel

In particular, if diamy < s forall y € T, then we also have, for some finite constant g

V(D) < g2 D_[P(S)]. (2.10)
Se&

Proof. Immediate from the definition od-skeletons. O

Lemma 2.2 will be useful because of the following observation: &ebe a col-
lection of s-skeletons and recall that the minimal value of the surface tensign—=
infnes, 75(N) is strictly positive,rmin > 0. Then

> #p(P(9) = min O_|P(9)]. (2.11)

Se6 Se6

Thus the bounds in (2.9—-2.10) will allow us to convert a lower bound on the overall con-
tour surface area/volume into a lower bound on the Wulff functional of the associated
skeletons.

A little less trivial is the estimate on the difference between the volumas(dh
andV (6):

Lemma 2.3.There is a finite geometric constang guch that ifl" is a collection of
contours andS is a collection of s-skeletons with~ &, then

‘|V(r)| - |V(G)|’ < [VIDAV®)| < gss S [P(S)]- (2.12)
SeS

Here V(I')AV (&) denotes the symmetric difference dffy and V(5).

Proof. Follows by the same arguments as used in the proof of Theorem 5.13 in [27].
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2.2.2. Probabilistic estimatesThe main reason why skeletons are useful is the avail-
ability of the so calledskeleton upper boundriginally due to Pfister [48]. Recall
that, for eachA c Z?, we usePZ’ﬁ to denote the probability distribution on spins
in A with plus boundary condition on the boundary/AfGiven a set of skeletons, we
let P}/ (&) = PY’({o: 0 ~ &}) be the probability that is a skeleton osome
configuration inA. Then we have:

Lemma 2.4 (Skeleton upper bound)For all g > S, all finite A c Z?, all scales s
and all collectionsS of s-skeletons in A, we have

PP (&) < exp[—75()), (2.13)
where
Pp(&) =D #p(P(9). (2.14)
SeS

Proof. This is exactly Eq. (1.3.1) in [40]. The proof goes back to [48], Lemma 6.7. For
our purposes, the key “splitting” argument is provided in Lemma 5.4 of [49]. A special
case of the key estimate appears in Eq. (5.51) from Lemma 5.5 of [49] with the correct
interpretation of the left-hand sideo

The bound (2.13) will be used in several ways: First, to show thaKthag L -large
contours in a box of side-length are improbable, provideH is large enough; this is
a consequence of Lemma 2.5 below. The absence of such contours will be wielded to
rule out the likelihood of other improbable scenarios. Finally, after all atypical situa-
tions have been dispensed with, the skeleton upper bound will deliver the contribution
corresponding to the terriZ in (1.11).

An important consequence of the skeleton upper bound is the following generaliza-
tion of the Peierls estimate, which will be useful at several steps of the proof of our
main theorems.

Lemma 2.5.Let s= K logL and let.#] k denote the set of all s-skeletons that arise
from contours inA . For eachf > f.anda > O, thereis a ky = Ko(a, ) < oo,
such that
> exp{-ap(©)} <1 (2.15)
GCYL,K

for (all L and) all K > K.

Proof. Let YE’K be the set of allK log L-skeletonsS such thatS = (X, ..., Xk)
with x; = 0. By translation invariance,

T e Z(Lz 3 e—aW/;(P(S)))n’ (2.16)

SCA Kk N>l ses?,

where the prefactdr? accounts for the translation entropy of each skeleton within

The latter sum can be estimated by mimicking the proof of Peierls’ bound, where con-
tour entropy was bounded by that of the simple random walkorindeed, each skele-

ton can be thought of as a sequence of steps with step-length entropy at rsgst 32
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wheres = KlogL, and with each step weighted by a factor not exceedirfginS.
This and (2.11) yield

> e PO < " (32527 mmins) ™, (2.17)
Se.0 ¢ m>1

By choosingKg sufficiently large, the right-hand side is less t@n_2 forall K > Kp.
Using this in (2.16), the claim follows. O

Lemmas 2.4 and 2.5 will be used in the form of the following corollary:

Corollary 2.6. Let 8 > S, L > 1andx > 0 be fixed, and letd be the set of of
configurationse such that?(&) > « for at least one collection of s-skeleto@s
satisfyingS ~ o. Leta € (0, 1), and let Ky(a, p) be asin Lemma 2.5. If s KlogL
with K > Kg(a, B), then

PP (A) < ek, (2.18)
Proof. By the assumptions of the Lemma, we have
PP < > pHe), (2.19)
&k,

Wp(S)=x

where we used the notatid®” (&) = P’ ({o: o ~ &}). Lemma 2.4 then implies

Pl A < D O cear (g ai®), (2.20)
Sc..L ScHk.L
Wp(S)>k

Here we wrote™7#(®) = e=¢73(®)g=1-0)7}(®) gnd then invoked to bourit; (&) >

x to estimates~1-74(®) py g=(1-0)*_Finally, we dropped the constraint# (&) >

x in the last sum. Since = K logL with K > Kq(a, ), the last sum is less than one
by Lemma 2.5. O

Ideas similar to those used in the proof of Lemma 2.5 can be used to estimate the
probability of the occurrence of aalarge contour:

Lemma 2.7.For eachp > f, there exist a constamnt(f) > 0 such that
P (Ts(o) # 0) < |Ale™*¥)s (2.21)
for any finite Ac Z? and any scale s.

Proof. Fix &« > 0 and suppose without loss of generality that > 1 ands >
a~tlog|A| for somex > 0. If ['s(0) # @, the associatestskeleton must satisfys (&) >

TminS. INVoking (2.13) a variant of the estimate (2.16—-2.17) (here is where. 1 log | A|
enters into the play), we show thﬁﬂ’ﬂ(rs(a) # 0) < C|A|sze‘%fmi"5, whereC > 0

is a constant. From here the bound (2.21) follows by absorbing the fasfainto the
exponential. O
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2.2.3. Quantitative estimates around Wulff minimuhte existence of a minimum for

the functional (1.6) and a coarse-graining scheme supplemented with a bound of the
type in (2.13) tell us the following: Consider a collectidbnof contours, all of which

are roughly of the same scale and which enclose a fixed total volume, and suppose that
the value of the Wulff functional on & with & ~ T is close to the Wulff minimum.

Then (1) it must be the case tHatconsists of a single contour and (2) the shape of this
contour must be close to the Wulff shape. A quantitative (and mathematically precise)
version of this statement is given in the forthcoming lemma:

Lemma 2.8.For any 8 > fc, there exist constantg = ¢o(8) € (0,1), c = c(B) > O,
and C = C(f) < oo such that the following holds for al € (0, ¢g): Let " be a
collection of contours such thaiamy > ce+/|V (I')| forall y € T and let s be a scale
function satisfying s< €4/|V(T')|. Let & be a collection of s-skeletons compatible
withT', & ~ T', such that

#p(8) < w1V IV(ID)|(L+e). (2.22)

ThenI consists of a single contouF, = {y}, and there is an »x R? such that
di (V) VIVOIW + x) < eV/e/IV O, (2.23)

where W is the Wulff shape of unit area centered at the origin. Moreover,
IV = IV (S)]]| < CelV(p)l. (2.24)

Proof. We begin by noting that, by the assumptions of the present Lenii@;)|
and|V (6)| have to be of the same order of magnitude. More precisely, we claim that

[IV(D)] = [V(&)]] < Ce|V(T)| (2.25)

holds with someC = C(f) < oo independent of', G ande. Indeed, from (2.11) and
(2.22) we have

D PO < trn#3(8) < wil+ ) V/IV(D, (2.26)
SeS

which, using Lemma 2.3 and the bounsis< ¢./|V(I')] ande < 1, gives (2.25)
with C = 2ggwlrn:i}1.

The bound (2.25) essentially allows us to repleld®’) by V(&) in (2.22). Applying
Theorem 2.10 from [27] to the set of skeletoBsrescaled byV (&)|1/2, we can
conclude that there is pointe R? and a skeletois € & such that

A (P(S0), VIV (©)IOW +X) < av/eV/IV(S)], 2.27)
and
> [P aeviVS)I, (2.28)
Se6\(%)

wherea is a constant proportional to the ratio of the maximum and the minimum of
the surface tension. Using (2.25) once more, we can modify (2.27—-2.28) by replacing
V (&) on the right-hand sides By (I") at the cost of changingto a (1+ C). Moreover,

since (2.25) also implies thay/|V ()| — /[V(6)]| < Ce/[V(T)], we have

du (v IV (D) [0W, V|V (8)[8W) < Ce diamW./|V (T)]. (2.29)




18 M. Biskup, L. Chayes and R. Kotegk

Lety e T be the contour corresponding $. By the definition of skeletons, we have
du(y, P(S)) < s < e/|V(I')]. Combining this with (2.29), the modified bound (2.27),
ande < 1, we get

di (7, VIV(D)IOW + x) < c/ey/ [V (D)) (2.30)

foranyc > 1+ a(1+ C) + CdiamW. (From the properties ddV, it is easily shown
that diamW is of the order of unity.)

Let us proceed by proving that = {y}. For anyy’ € I" \ {7}, let S, be the unique
skeleton inG such that’ ~ S,. Since diamy’ < |[P(S,)|+sand, since alstP(S,)| >
s, we have diam’ < 2|P(S,)|. Using the modified bound (2.28), we get

diamy’ < 2|P(S,)| < 2a(1 + C)ey/IV (D). (2.31)

If c also satisfies the inequality > 20 (1 + C), then this estimate contradicts the

assumption that diami > ce/|V(I')| forall y’ € T. Hence ' = {y} as claimed.
Thus,V (I') = V(y) and the bound (2.24) is directly implied by (2.25). Moreover,

(2.30) holds withV (T") replaced by (y) on both sides. To prove (2.23), it remains to

show that the nakeg on the left-hand side of (2.30) can be replacedAgy). But that

is trivial becauser is the boundary o¥ (y) and the Hausdorff distance of two closed

sets inR? equals the Hausdorff distance of their boundaries.

2.3. Small-contour ensemblé&he goal of this section is to collect some estimates for

the probability inP,_+’ﬁ conditioned on the fact that all contours arsmall in the sense
thatT's(c) = 0. Most of what is to follow appears, in various guises, in the existing
literature (cf Remark 7). For some of the estimates (Lemmas 2.9 and 2.10) we will
actually provide a proof, while for others (Lemma 2.11) we can quote directly.

2.3.1. Estimates using the GHS inequalifyhe principal resource for what follows are

two basic properties of the correlation function of Ising spins. Specificalwebyﬂf

denote the truncated correlation function of the Ising model in @setZ? with plus
boundary condition, in non-negative inhomogeneous external fields(hy) and in-
verse temperaturg. Then:

(1) If B > pc, then the correlations in infinite volume decay exponentially, i.e., we have
(ox; oy) sy, < € XvIve (2.32)

for somed = &(B) < oo and allx andy.

(2) The GHS inequality implies that the finite-volume correlation functieg; ay>;’ﬁ,
is dominated by the infinite-volume correlation function at any pointwise-smaller
field:

(2.33)

+, . +,
0 < (ox; 0'y>A’ﬁ < {ox; 0'y>Zzﬁh/

for all A ¢ Z2 and allh’ = (h) with h € [0, hy] for all x.
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Note that, via (2.33), the exponential decay (2.32) holds uniforml in Z2. Part (1)
is a consequence of the main result of [24], see [53]; the GHS inequality from part (2)
dates back to [34].

Now we are ready to state the desired estimatesALetZ? be a finite set and let

be a scale function. Lel?;‘/’)’s be the Gibbs measure of the Ising modelAnc 72
conditioned on the everif's(¢) = ¢} and let us usc{e—)JA“ﬁ’s to denote the expectation

with respect thX’ﬂ’S. Then we have the following bounds:

Lemma 2.9.For eachp > f, there exist constants () andaz(f) such that
[(Ma) A7 — m | Al| < a1 (B) (10A] + |APe P9 (2:34)
for each finite set A- Z? and any scaling function s. Moreover, it & A, then

(MA) R = (Maa) KP23| < aa (B (1A + |APe2)9), (2.35)

Proof. By Lemma 2.7, we havé’,‘f’ﬁ(rs(a) # @) < |Ale 2 for someay > 0, inde-
pendent ofA. Note that we can suppose thatie~*2° does not exceed, e.g./2, be-

cause otherwise (2.34-2.35) can be ensured by deterministic estimates. An easy bound
then shows that, for somg = o/ (f) < oo,

[(MaAY RS — (M B | < af I APee2S, (2.36)

Therefore, it suffices to prove the bounds (2.34-2.35) without the restriction to the
ensemble o§-small contours. The proof will use that, for aByc Z2 we have

0 < (oxg” = (ox)lyy, < € e, (2.37)

This inequality is a direct consequence of properties (1-2) above. The original derivation
goes back to [17].

The bound (2.37) immediately implies both (2.34) and (2.35). Indeed, using (2.37)
forallx € Aandy € B\ A, we have for allA C B C Z? that

0< (MaR” —(MaE? <> > eIk <afjon,  (2.38)
xeAyeB\A
wherea] = a7 (f) < oco. This and (2.36) directly imply (2.34). To get (2.35), we also
need to note thgMa — Ma\n| < |A'l. O
Our next claim concerns an upper bound on the probability that the magnetization
in the plus state deviates from its mean by a positive amount:

Lemma 2.10.Let f > pc and lety = y(B) be the susceptibility. Then there exists a
constant K= K (#) such that

(m*)2

P{75(Ma = (Ma) R +m0) < 27 2 (2.39)

for any finite Ac Z2, anyv > 0, and any s> K log|A|.
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Proof. Let M denote the evenit = {o: Ma > (MA)X’ﬁ + m*ov}. By Lemma 2.7 we
have thatP,~”*(M) < 2P;# (M), so we just need to estimaks” (M). Consider

the cumulant generating functidﬁ,‘f’/j(h) = Iog(ehMA)X’ﬁ. The exponential Cheby-
shev inequality then gives

logP;# (M) < Fif () —h(Ma)k” —hmto,  h>0.  (240)
By the property (2) of the truncated correlation function, we get
#F, 7 +.5 +.8
W(h) = (Ma; Ma) p'h < (Ma; Ma) AT (2.41)

whereh = (hy) with hy = hforall x € Z2 and wherdis the zero field. SincEK’ﬁ(O) =
0andd F7(0) = (Ma) L7, we get the bound

h2
Fa/ () < h(MA R + = (Ma: Ma) 5. (2.42)
Now, once more by the property (2) above,

IAITHMA; Ma 18 < TAITHMas MA) 2 < TAITE DT S (o oyt =
XeA yeZZ
(2.43)
where the sums converge by the property (1) above. The claim now follows by optimiz-
ing overh. O

Remark 7The bound in Lemma 2.10 corresponds to Eq. (9.33) of Proposition 9.1 in
[49] proved with the help of Lemma 5.1 from [48]. Similarly, the estimatesin Lemma 2.9
are closely related to the bounds in Lemma 2.2.1 of [40]. We included the proofs of both
statements to pinpoint the exact formulation needed for our analysis as well as to reduce
the number of extraneous references.

2.3.2. Gaussian control of negative deviatior3ur last claim concerns the deviations

of the plus magnetization in theegativedirection. Unlike in the previous Section, here
the restriction to the small contour is crucial because, obviously, if the deviation is too
large, there is a possibility of forming a droplet which cannot be controlled by bulk
estimates.

Let p > B¢ and letv be such thatMAP,:’ﬁ’s — 2m* v is an allowed value oM a.
DefineQ5, (v) by the expression

(m*)?

PPS(Ma = (M) P -2 -2
A7 (Ma = (Ma) ™ —20m") = «/TXIA exp| - A"

2+Q‘°A(v)}. (2.44)

Then we have:

Lemma 2.11 (Gaussian estimatefor eachf > fc and each set of positive constants
a1, az, ag, there are constants & oo and K < oo such that if s= K log L, then

2 3
|QAW)| < Cmax[ %Iog L, %} (2.45)
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for all allowed values ob such that

L2
O<wo < al@ (2.46)

and all connected sets & Z? such that
al? < |A <L? and |6A| <asLloglL. (2.47)

Proof. This is a reformulation of (a somewhat nontrivial) Lemma 2.3.3 from [4@].

3. Lower bound

In this Section we establish a lower bound for the asymptotic stated in (1.11). In addition
to its contribution to the proof of Theorem 1.1, this lower bound will play an essential
role in the proofs of Theorem 1.2 and Corollary 1.3. A considerable part of the proof
hinges on the Fortuin-Kasteleyn representation of the Ising (and Potts) models, which
makes the technical demands of this section rather different from those of the following
sections.

3.1. Large-deviation lower boundrhis section is devoted to the proof of the following
theorem:

Theorem 3.1 (Lower bound).Let s > fc and let(v ) be a sequence of positive num-
bers such that M|A_| — 2m* o is an allowed value of Mfor all L. Suppose that the
limit (1.10) exists withA € (0, co). Then there exists a sequengg) withe, — 0
such that

P (ML = m AL —2m" o) = exp{~w1yor( inf @a()+e)}  (32)

holds for all L.

Remark 81t is worth noting that, unlike in the corresponding statements of the lower
bounds in [27, 40], we do not require any control over how fast the efraiends

to zero asL — oo. Indeed, it turns out that in the regime of finite, the simple
convergence| — 0 will be enough to prove our main results. However, in the cases
wheno tends to infinity so fast thaA is infinite, a proof would probably need also
someinformation about the rate of the convergergce— 0.

The strategy of the proof will simply be to produce a near-Wulff droplet that com-
prises a particular fraction of the volume. The droplet will account for its requisite
share of the deficit magnetization and we then force the exterior to absorb the rest. The
probability of the latter event is estimated by using the truncated contour ensemble.

Let us first attend to the production of the droplet. Consider the Wulff skidod
unit area centered at the origin and a closed, self-avoiding polygonal BurvgV. We
will assume that the vertices Bfhave rational coordinates andNfdenotes the number
of vertices ofP, that each vertex is at mostl away from the boundary &. Let IntP
denote the set of points € R? surrounded by. For anyt,r > 1, letPg, P1, P2, P3
be four magnified copies df obtained by rescaling§ by factorst,t +r,t + 2r, and
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EXT Cy

Fig. 2. An illustration of the “coronask{ ,, K{!, K{'}, the setdNT andEXT, and thex-connected cir-
cuitsC4+ andC— of plus and minus sites, respectlvely which are used in Lemma 3.2 and the proof of The-
orem 3.1. Going from inside out, the four polygons corresponBgoP,, P> and P3; the shaded region
denotes the sed.

t + 3r, respectively. (Thus, for instancBg = {x € R?: x/t € P}.) This yields three
“coronas”K{, = IntPy\ IntPg, K{, = IntP\ IntPy, andK{', = IntP3\ IntP,
surroundingPo. LetK} , = K{ N Z?, and similarly forK, andK}'",.

Recall that ax-connected circuit irZ2 is a closed path on vertices @ whose
elementary steps connect either nearest or next-nearest neighbos; leg the set
of configurationss such thafk} , contains a:-connected circuit of sites e Z2 with

ox = —1 andK]", contains a- connected circuit of sites € Z2 with ox = +1. The
essential part of our lower bound comes from the following estimate:

Lemma 3.2.Let 8 > S; and letP be a polygonal curve as specified above. For any
pair of sequencef ) and (r.) tending to infinity as L— oo in such a way that

Lt >0, tre™™3 50 and rit;t— 0, (3.2)
there is a sequenag| ) withe; — 0 such that
PU En) 2 exp{-w /(P L+ )}, (3.3)
forall L > 1.

The proof of this lemma requires some substantial preparations and is therefore de-
ferred to Section 3.2. Using Lemma 3.2, we can prove Theorem 3.1.

Proof of Theorem 3.1.et us introduce the abbreviation

MLZ{O'I M|_=m*|A|_|—2m*v|_} (3.4)
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for the central event in question. Suppose first that A, whereA¢ is as in (1.18).
Proposition 2.1 then guarantees thagint1 ® (1) = ©4(0) = A. In particular, there
is no need to produce a droplet in the system.d.etK log L. By restricting to the set
of configurationds: I's(c) = 0} we get

PP M) = PHPR M) PH (Ts(0) = 0). (3.5)

The resulting lower bound is then a consequence of (2.44), Lemma2.11 and Lemma 2.7,
providedK is sufficiently large.

To handle the remaining cases,> A, we will have to produce a droplet. Fix a
polygonP with the above properties, let @) denote the two-dimensional Lebesgue
volume of its interior, and lefP| denote the size (i.e., length) of its boundary. Let
An, Wherel, is as defined in (1.19), and recall that, for this choiceipfve have
DA (L) = infocy<1 @a(V) andA > A > 0. Since the goal is to produce a droplet
of volume v, we letty = /Ao_ and pickr_ be such that (3.2) holds ds —

oo. Abbreviating€L. = &, r, , we let(e] ) denote the corresponding sequence from
Lemma 3.2. (Note that; may depend oir.)

For configurations i€, let C; be the innermost-connected circuit of plus spins
in K and letC_ denote the outermost-connected circuit of minus spins i ,

Let INT be the set of sites in the interior 6f and IetEXT be the set of sites in | that
are in the exterior of ;.. (Thus, we haveNT NC_ = EXTNCy = @.) Further, letAL =
AL \ (INT UEXT) and user to denote the spin configuration @a.. Let Miyr, Mexr
andM_. denote the overall magnetizationIMT, EXT and A, respectively. Finally, let
us abbreviate:r = L(M.NT)IJ{,’T/}‘SJ and introduce the eved] = {0 € £L: My =
—MUinT}-

The lower bound orP:“ﬂ (M) will be derived by restricting to the eveff, condi-
tioning ono.., extracting the probability of having the correct magnetizatiafin AL,
and applying Lemma 2.11 to retrieve the contribution from droplet surface tension. The
first two steps of this program give

PP ML) = PR MLNED =2 D PP MLNE o) PP (02). (3.6)

0+

Our next goal is to produce a lower bound of the type (3.1)3§n5(/\/l|_ N&l lox),
uniformly in 0. The advantage of conditioning on a fixed configuration is tha/ jfn
& N{o+} occurs, the overall magnetizationsiNT andEXT are fixed. Thus, oM N
& N{o+} we get

MEXT = ML - Mj: - MINT = <MEXT>-E"_)£-'§’S - 2m*l)|_(1 - XVOI(P) - 6|_), (37)

whered. = JL (o+) is given by the equation@ v o = | + Il + Il + IV with -1V
defined by

| = e — m*[INT], Il = <MEXT>Exf +mEXT],  (3.8)
= =My +m*|Ay], IV = 2m* (JINT| — AVol(P)oL ). 3.9
To estimate -1V, we first notice the geometric bounds
t2VOI(P) — ti[P| < [INT| < (t +r)?Vol(P) + (tu + ro)|Pl,

(3.10)
|AL] < (tL +3rL)% —t2 + (tL + 3rp)IP),
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and recall that, since botfi; andC_ are contained inAL, we have|C_|, |C4+| <
|AL]. Lemma 2.9 fors = K logL then allows us to estimaté| < a1(8)(|AL| +
IINT|2L 220Ky and, similarly,|ll| < a1(8)(|A+| + 4L + L4=%2BK) while the re-
maining two quantities are bounded by invokify| < 2|A+| and|IV| < 4r t. +
2r2 + 2(t + ru)IP|. Using thatr, = o(/or) andt, = O(/or), we havelA;| =
o(v.) asL — oo. Moreover, if K is so large that 4- a2(8)K < 4/3, we also
have|INT|2L~%2HK < L 42K — o(vL) asL — oo. Combining these bounds, it is
easy to show thab| (o+)| < d, forall o1, whered, is a sequence such that im0, =
0.

Now we are ready to estimate the probability that both andEXT produce their
share of magnetization deficit. Note first that

PlET’ﬁ(MlNT = —UnT) > PlET’ﬂ’s(MlNT = _/"INT)PIE'I"ﬁ (rs(a) = ﬂ)~ (3.11)

Using Lemmas 2.11 and 2.7, we @i’ (M = —pnr) > CL™ 2/3 for someC =
C(ﬁ) > 0 Ol’l the Other hand Iett'ng/lEXT = {O' MEXT = <MEXT>EXT - 2m DL(l -

AVol(P)—41)}, abound similar to (3.11) foIPEXTﬁ combined with Lemmas 2.11 and 2.7
yields

vL)2

P
exi (Mexr) = JET p{ ¥ |[EXT]

T (12— Vol (P) — 5L)2}, (3.12)

whereC’ = C’(8) > 0 is independent of. contributing to (3.6). Combining the
previous estimates, we can use Lemma 3.2 to extract the surface energy term. The result
is

Pl:l—,ﬂ(ML) 2 C//L—5/3 eXp{—w1\/H(DL — EI/_ /DL}a (313)

whereC” = C”(B) > 0 and whereb| stands for the quantity

N 3/2

W5 (P) 2(m 2 xtwi o) -2
@ 1— Vol (P : 14
L= Vi+ I o ( ol (P) +dL) (3.14)

As is clear from our previous reasoning, the quandify can be made arbitrary close
to @A (4) by lettingL — oo and optimizing oveP with the above properties. The
existence of the desired sequeltieg) then follows by the definition of the limit. O

3.2. Results using random-cluster representatibmthis section we establish some
technical results necessary for the completion of the proof of our lower bound. These
results are stated mostly in terms of the random cluster counterpart of the Ising model;
the crowning achievement, which is Lemma 3.5, gives immediately in the proof of
Lemma 3.2. We remark that the latter is the sum total of what this section contributes
to the proof of Theorem 3.1. The uninterested, or well-informed, readers are invited to
skip the entire section, provided they are prepared to accept Lemma 3.2 without a proof.



Droplet formation in the 2D Ising model 25

3.2.1. Preliminaries.Therandom clusterepresentation for the Ising (and Potts) ferro-
magnets is by now a well established tool. The purpose of the following remarks is to
define our notation; for more background and details we refer the reader to, e.g., [12,35]
or the excellent review [32].

LetT c Z? denote a finite graph. Bond configurationgenerically denoted by, is
the assignment of a zero (vacant) or a one (occupied) to each bdhd hre weight of
a configurationw is given, informally, byRI“lq€() where|w| denotes the number of
occupied bonds an@(w) denotes the number of connected components. For the Ising
system at hand we hage= 2 andR = e? — 1. The precise meaning 6f(w) depends
on the boundary conditions; of concern here are the so ciledindwired boundary
conditions. In the formeC (w) is the usual number of connected components including
the isolated sites, while in the latter all clusters touching the bond-complem®&raref
identified as a single component.

The free and wired random-cluster measurea in denoted bforee’ﬂ and P/ ﬁ
respectively, correspond to the free and plus (or minus) boundary condmons in the
Ising spin system. Both random-cluster measures enjoy the FKG property and the wired
measure stochastically dominates the free measure. The infinite volume limits of these

measures also exist; we denote these limiting objectﬁ,ﬂ;ﬁ‘fﬂ and ngkﬂ . The most
important type of event we shall consider is the event that sites are connected by paths
of occupied bonds. Our notation is as followsxIfy € T, we defing{x «— y} to be

the event that there is such a connection. If we demand the existence of a path using
only bonds with both ends in some subgrapkc T, we write {x T y}.

The next concept we need to discusdislity. For anyT c Z2, thedual graphT*
is defined as follows: Each bond @f is transversal to a bond ofZ + %) x (Z +

%) = (Z?*. These bonds are the bonds®f; the sites ofl™* are the endpoints of
these bonds. Each configuratieninduces a configuration on the dual graph via the
correspondence “direct occupied” with “dual vacant” amce versalt turns out that,
if we start with either free or wired boundary conditions®rthe weights for the dual
configurations are also random-cluster weights with paraméérdR*) = (q, q/R),
provided we also interchange the designation of “free” and “wired.” Of course, the
graph and its dual are not precisely the same. For example, if we examine the relevant
graph for the problem dual to the wired systemAip, this consists of afiL + 1) x
(L + 1) rectangle with the corners missing. Moreover, because the boundary conditions
on the dual graph are free, all dual edges touching the boundary sites are occupied
independently of the rest of the configuration. Thus, ignoring these decoupled degrees
of freedom, the restricted measure is equivalent to a free measute-on

In general, we will usg* to denote the inverse temperature dual tevhich, forq =
2 and the normalization of the Hamiltonian (1.1), is relateg t6a f* = 3 log cothp.

The critical temperature is self dual, i.8; = %Iog cothf.. For g > pc, the dual
model is in the high-temperature phase. Hence, the limiting free and wired measures
at f* coincide and, using the well-known relation between the spin-correlations and the
connectivity functions in the FK representation, we have

P’ (x «— y) = PR/ (x «— y) = (a0ox) T, (3.15)

for all x,y € Z2. Thus, the exponential decay of correlations in the spin system at
high temperaturesggoy) 4" < e~ IX-YI/¢ where¢ = &(4*) is the correlation length,
corresponds to an exponential decay of the connectivity probabilities. In particular, the



26 M. Biskup, L. Chayes and R. Kotegk

surface tensiomt 8 > B, as defined in (1.5) for unit vectorswith rationally related
components, is the inverse of the correlation length for two point connectivity functions
in the directiom at inverse temperatuyg".

3.2.2. Decay estimateddere we assemble two important ingredients for the proof of
Lemma 3.2. We begin by quantifying the decay of the point-to-boundary connectivity
function:

Lemma 3.3.Consider the g= 2 random cluster model &8 < S (which corresponds
to the high-temperature phase of the Ising system). Then,

Pl (10 «— aA.)) < ate™"/¢ (3.16)

forall ¢ > 1.

Proof. This is one portion of the proof of Proposition 4.1 in [23]x

For the purposes of the next lemma, tebe a unit vector with rationally related
components and I€t(n) be the set of all pair&a, b) of positive real numbers such that
thea x b rectangle with sidé perpendicular t; can be positioned ifR? in such a
way that all its four corners are . We will useRa p C 72 to denote a generig x b
rectangle with the latter property. xfandy are the two corners along the satnside

of R ,, we let] , denote the everfk < y}.
' ab Ra,b

Lemma3.4.Let 8 € (0, B) and letp* = Llogcoths. Letn be a unit vector with
rationally related components and suppose that L aad b_, with (a_, b.) € C(n),
tend to infinity in such away thatdL — 0, b /L — Oanddist(ngb, Z2\AL)/(bL +
logL) —» coas L— oo. Then

fi 1/b e
Jim PR (85, p) ™ = e, (3.17)

Proof. We will first establish the limit (3.17) for the measure in infinite volume and then
show that providedR] are well separated from? \ AL as specified, the finite volume
effects are not important. Throughout the proof, we will omit the subsgriffor the
surface tension.

Fix n € S with rationally related components and fet< fc. Let

00 =P’ (Blp),  (ab)ecm), (3.18)

and note thatifa, b1) € C(n) and(a, bz) € C(n) with b, > b;, then alsda, b1 +by) €
C(n) and(a, bz — by) € C(n). We begin by the claim that the events in question enjoy
a subadditive property:

gn

abitby = 0

b Oab,:  (@b1), (a,b2) € C(n). (3.19)

Indeed, we letR],, be translated relative t&], so that the “left"a-side of RT
coincides with the “nghta -side ofRa b, LetXa andyl be the “left” and “right” bottom
corners ofRajb and letxz andy» be similar corners ORa,b By our constructiony;
andxz coincide. Leth’lerbz denote the uniorIRa[",Dl U Rg’bz. Then

1 = y2} o {xe &> wifn{x &> y2}. (3.20)
,b1+by Ra,bl Ra,b2
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The inequality (3.19) then follows immediately from the FKG property of the mea-
surePY’.

Let A(n) = {a > 0:3db > 0, (a,b) € C(n)} be the set of allowed values af
As a consequence of subadditivity, for aaye .A(n) we have the existence of the
limit €72 = limp_, 0 (64) /. (Hereb only takes values such théa, b) € C(n).)
Further, ifag, ap € A(n) Wlth a1 > ap, then theras ab such that botiag, b) € C(n)
and (az, b) € C(n), and, for any suctb, we haved, b 0, >b- Thencew,, (N) <
wa, (N) Whenevery, ap € A(n) satisfya; > ap. Letw(n) = I|ma_>0o wa(n), wherea’s
are restricted tod(n). Now the quantity ) b= =lima_ 008 b, where(a, b) € C(n), still
obeys the subadditivity relation (3. 19) and, in partlcular hhH-spacesurface tension
h(N) is well defined by the limit

e ™™ — |im Iim (©@",)YP. 3.21
b—)oo(a,b)eC(n)( a,b) ( )
a— oo

Moreover,d] , > 6., for all a andb such that(a, b) € C(n) and, thereforezn(n) <
w(n). Our goal is to demonstrate thaf(n) = @ (n) and that the half-space surface
tensionz,(n) equals the full space surface tensigm).

Lete > 0. Then there is &* such thaty?} . > e ® ™+ However, since
0%.p+ Simply equalsthe limit of 6. asa — oo, there is ama* such that . >
e 2" (m(M+2) Thencew (n) < w(n) and the equality ofn(n) and w(n) follows.
To remove the half-space constraint, consider the analogue of the previously defined
events. Letx andy be related toR] , as in the definition of evensy , and letDf
denote the union oIRa[‘,b and its reflection through the line joiningandy. Let

pan = Pi (X € ¥)). (3.22)

a,b

Reasoning identical to that employed thus far yields
—t(N) _ | v n\l/b _ | : n \1/b
e = im lim (p)"" = lim_lim (p]p)"". (3.23)

where we tacitly assum@, b) € C(n) for the production of both limits. Now, obvi-
ously,pa b > enb and hence (n) < =y(n). To derive the opposite inequality, we note
that for eacta € A(n), there is ag(a) > 0 such that

O35 = 9(@)p4 (a,b) e C(n). (3.24)

Indeed, the event giving rise @;,b can certainly be achieved by connecting the bottom
corners ofR2a p directly to the middle points and then connecting the middle points on
the opposite-sides ofR} oa.b- 1hen (3.24) follows by FKG. (To get that(a) > 0, we
also used thaf > 0.) Taking the 1b-th power of both sides of (3.24) and lettibg—
oo followed bya — oo we arrive atw (n) = h(n) = 7(n) as promised.

To finish the proof, we must account for the effects of finite volume. Consider the
eventry, = aRab <> dAL}. ShouldFZ, not occur, a vacant ring separatg§ ,
from 8A| and, using fairly standard arguments, we have

pf
LreFeK'B(B ) = PR (Bl (FRp)°). (3.25)
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On the other hand, by Lemma 3.3, we have
Pe (FRp) < PYE(FRL) < BL(a+ b) e dSIORAmAL/E, (3.26)

Thus if the distance betwe@ng’b andoA | exceeds a large multiple bf +logL, the

dominant contribution tP%” (87 ,) comes fromPY (B N bl (Fip)®). Using (3.25),
the claim follows. O ’

3.2.3. Corona estimatesiVe recall the “corona” region& ,—K{', associated with
some given polygo®. In addition, we will also need to consider the collection of dual
sitesK{! = K{, N (z%*, Where(Zz)* is the lattice dual t&?. (This differs slightly
from the graph dual tm{[, by some boundary sites.) In the context of the random clus-
ter model (and its dual) we will consider three events: The first event, to be déﬂ,q)ted
takes place irKLr and is defined by

Et',r = {w: there is a circuit of occupied bonds Iﬁ{,r surrounding the origif.
(3.27)
The event}'| is defined similarly except that the circuit takes place in the regign

Finally, one more circuit, this time a dual circuit in the reg[@h;‘. We define

&t = {o: there is a dual circuit of vacant bonds K surrounding the origit.
(3.28)
As we will see in the proof of Lemma 3.2, the evéht N &' NE!" more or less implies
the desired everd . The desired lower bound will then be an immediate consequence
of the following lemma:

Lemma 3.5.Letp > S and letP be as in Lemma 3.2. For any sequen@e$ and(r)
satisfying (3.2), there is a sequen@g) such that” — 0 and, for all L,

P{V;,EK(EJLJLM”* ne", ) > exp[—t 7 (P)(L+€))). (3.29)

tL.re tL.re

Proof. In the course of this proof, let us abbrevige = &/ , , and similarly forg/'*
andel", as well ask}] , K;", andK{'. We will start with an estimate foP,"/, (8”*)
which is in any case the central mgredlent of this lemma. Ldde the smallest inte-
gerT > 2 such that the polygoR magnified byT has all vertices ofZ?. Letu, =
TL(tL +rL)/T] + T and letxy, ..., Xy be the vertices of the polygoR magni-
fied byuL. Letxj, ..., Xy be the corresponding vertices of the polygdomagnified
by u. and translated by-%, —%). Notice that (oncd| andr_ are large enough) the
sitesx;, ..., x}, lie inside the “corona’k;"". We usen; to denote the unit vector con-
stituting the outer normal to the side betwegn, andx" (wherexy, , is identified
with x}). By our constructionxy, ..., XN € Z2, X},..., X5 € (Z?* andn; have
rationally related components.

Fori =1,..., N, letus consider the rectangl%"bi with the base coinciding with
the line betweetx andx’", . Hereg; is the largest possible number such tfeat bi) e
c(ny) andRai, by K*” We remark that al(a;) and(b;j) haveL-dependence which is
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notationally suppressed and that these tend to infinity as co. In particular, they;'s
scale withuy_ . Let us denote

bi .
bj = lim = i=1,...,N, (3.30)
L—oo t

where the limit exists by the construction lpfs and where we noted that/u;, — 1
asL — oo.
Let B be the event that there is a dual vacant connectjork— x" , in the

box Ra by and letB; be the corresponding “direct” event that there is a direct occu-
pied pathx; «— Xj+1 contained |n(2, 2) -translate ofRa b - It is clear that the in-

tersection /L, B produces the everdl]'* and that these events are FKG-correlated.
Moreover, by duality, we have

* f *
|_ FK(B ) = PLre?,ﬂFK(Bi) (3.31)

(c.f., the paragraph before (3.15)). Now we are perfectly positioned to apply Lemma 3.4:
Using FKG, the scaling relation (3.30), and the fact that als@affsetend to infinity by
our construction, we have as a consequence of the above-mentioned lemma that

lim P (el = exp{- Zb]‘[ﬂ(n])} (3.32)

The remainder of the proof concerns the estimate of the probaﬂl}_'iffﬁK(Sl'_ N
&g, We claim that this conditional probability tends to onelas— oo. First,
as a worst-case scenario, consider the eVgritthat all bonds ink;!! are vacant. By
monotonicity in boundary conditions and the strong FKG propert?‘%fK it is seen
that

PUE(EL nelel) = PME (L nel V). (3.33)

Under the condition tha¥,'* occurs,&] and&! are independent and we may treat
them separately. The arguments are virtually identical for both events, so we need only

be explicit abouP"Z (€] [V/'").
Let £ be a maximal integer such that there is a circuit of dual citgs,. ., z;,,
separating the boundarlest with the property that, |fA*L (zJ) is the translate of
A;, by (the vectory!, thenA; (z}) C K| . Note that liminf o €1 /ri > 1/3. Now,
for the even€'L notto occur, there must be a dual occupied path connecting some dual

site on the outer boundary m'L to another on the inner boundary and hence at least
one z]-‘ has to be connected to the boundary 01‘1‘it§L (z]-‘) by a path of dual occupied
bonds. Using subadditivity of the probability measure, we find

m
1— PMLELIV™) < DT Pz = ony @IVI™). (3.34)
=1

Now, again invoking monotonicity in the boundary conditions, the probability of the
above connection events may be estimated from above by placing dual wired (i.e., direct
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free) boundary conditions OA;L(Z]‘). But then, by duality, we have exactly the event
which is the subject of Lemma 3.3. Explicitly,

PUE(Z e an; @)|V") < P}’{’f:*K (0 «— aAy,) (3.35)

holds for allj = 1, ..., m, and the bound in (3.16) can be applied. Now the number
of sitesz}‘ which comprise the circuit does not exceed a multiplg ofThus, for some
constantC independent of. we have

PULC(ELIV) = 1—cort e, (3.36)

By the condition stated in (3.2), the fact that > ¢ > r /3 for sufficiently largeL,
and the observation thét! = rin, the desired result fcffl'_ follows. Similarly for the

eventg!'. O

Proof of Lemma 3.2Me make liberal use of the correspondence between the graphical
configurations» and (sets of) spin configurations as described, e.g., in [2,12,30]. Each
connected cluster i represents the spin configurations in which all sites of the clus-
ter have spins of the same type. Thusglifn £'* N &' occurs, then the inner circuit

of occupied bonds iﬂK'L forces the spins on these sites to be of the same type. Since
these are disconnected from the boundary pfby the dual vacant circuit ii*!!, with
probability one-half, all spins on the circuit are minus. Similarly, the outer circuit of
bonds in]K'L” is plus-type with probability one if it is connected@d | and with prob-

ability 1/2 otherwise. Thusl,'-’E”ﬁ(z;‘tL,rL 1€l n & n &y is certainly bigger than /4,
and the claim follows using Lemma 3.50

4. Absence of intermediate contour sizes

4.1. Statement and outlind.he goal of this section is to prove that, with probability
tending to one at — oo, there will be no contours with a diameter between the
scales of lod- and, /v in the “canonical” ensemble of the Ising model in volume.
This result is by far the most difficult part of the proof of our main results stated in
Section 1.3.

We start with a standard notion from contour theory. Lét) denote the set of
all contours of a configuration in A with plus boundary condition. Applying the
rounding rule, contours are self-avoiding simple curveR3nRecall thatl's(c) is the
set of contours ob that have a non-triviak-skeleton. We say that € I'(o) is an
externalcontour, if it is not surrounded by any other contour fronWe will usel" ()
to denote the set of external contourslafs). (We remark that"$(s), namely the
external contours df (¢) which are big enough to have arskeleton, coincides exactly
with the set of external contours of the collectibg(o).)

Using this notation, the evend,. s from Theorem 1.2 is best described via its
complement:

Al gL ={o1Ty e I o), diamy < s\/vL}. (4.2)

The relevant claim is then restated as follows:
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Theorem4.1.Letf > fc and let(v) be a sequence of positive numbers that make
M |AL| — 2m* o an allowed value of M for all L. Suppose the limiA in (1.10)
obeysA € (0, o). For each ¢ > Othere existe > 0, Kg < 0o and Lg < oo such that
if K > Ko, L > Lpand s= K logL, then

PP (AS, oL IML = m*AL| —2m* o) < L™ (4.2)

Lets = KlogL be a scale function and recall that a contgus s-largeif y €

I's(o). For > > 0, a contoury large enough to be astlarge contour but satisfying
diamy < /oL will be called as-intermediatecontour. Thus, Theorem 4.1 shows
that, in the canonical ensemble with the magnetization fixed't{a\. | — 2m* v | , there
are nox-intermediate contours with probability tending to oneLatends to infinity.
This statement, which is of interest in its own right, reduces the proof of our main result
to a straightforward application of isoperimetric inequalities for the Wulff functional as
formulated in Lemma 2.8.

Remark 9The reason why aowerof L appears on the right-hand side is because we
only demand the absence of contours with sizes &virg L. Indeed, for a genera,

the right-hand side of (4.2) could be replacedéyy® for some constant > 0. In
particular, the decay can be made substantially faster by easing the lower limit of what
we chose to call an intermediate size contour. Finally, we notelthat Theorem 4.1

depends not only ofi, A, andcp, but also on how fast the Iimiif/z/|AL| is achieved.

The proof of Theorem 4.1 will require some preparations. In particular, we will need
to estimate the (conditional) probability of five highly unprobable events that we would
like to exclude explicitly from the further considerations. All five events are defined
with reference to a positive numbegrwhich, more or less, is the samethat appears
in Theorem 4.1.

The first eventRi s.L» collects the configurations for which the combined length of

all s-large contours im\_ exceedw‘lsﬁ. These configurations need to &@riori
excluded because all of the crucial Gaussian estimates from Section 2.3 can only be
applied to regions with a moderate surface-to-volume ratio. Next, we show that one can
ignore configurations whose large contours occupy too big volume. This is the basis of
the eventRi’s’L. The remaining three events concern the magnetization deficit in two
random subsets of_: A set Inf C V(I'$Y(0)) of sites enclosed by asilarge contour

and a set EXtof sites outside ak-large contours. The precise definitions of these sets
is given in Section 4.2. The respective events are:

(3) The eveme’{’s’L thatMjpee < —m*|Int®| — %—151)3/4.

(4) The evenR? _ | thatMgyge > M*|EXE| — 2:em*vy .
(5) The evenR? | thatMexe < MH|EXt’| — 2(1+ >~ Hm*oL.

By choosings« sufficiently small, the event®?, ..., R® will be shown to have a
probability vanishing exponentially fast witlfo_. These estimates are the content of
Lemma 4.2 and Lemmas 4.6-4.8.

Once the preparatory statements have been proven, we consider a rather extreme ver-
sion of the restricted contour ensemble, namely, one in which no contour that is larger
thansc-intermediate is allowed to appear. We show, in a rather difficult Lemma 4.9, that
despite this restriction, bounds similar to those of (4.2) still hold. The final step—the
proof of Theorem 4.1—is now achieved by conditioning on the location(s) of the large
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contour(s), which by theR-lemmas” are typically notoo big and nottoo rough. By
definition, the exterior region is now in the restricted ensemble featured in Lemma 4.9
and the result derived therein allows a relatively easy endgame.

Throughout Sections 4.2-4.4 we will I8t> S be fixed and letv ) be a sequence
of positive numbers such that*|A | — 2m* v is an allowed value oM for all L.
Moreover, we will assume thdb ) is such that the limitA in (1.10) exists withA e
(0, 00).

4.2. Contour length and volumén this section we will prepare the grounds for the
proof of Theorem 4.1. In particular, we derive rather crude estimates on the total length
of large contours and the volume inside and outside large external contours. These
results come as Lemmas 4.2 and 4.4 below.

4.2.1. Total contour lengthWe begin by estimating the combined length of large con-
tours. Lets be a scale function and, for any> O, IetR}{’S,L be the event

RisL = {02 > = %‘1sﬁ}. (4.3)

yels(0)
The probability of even‘RL’s,L is then estimated as follows:
Lemma 4.2.For each g > 0there existq > 0, Kg < oo and Ly < oo such that

PP (RL g [ML = m" [AL| = 2m" oy ) < &1L (4.9)

2,S,L

holds for all >z < 3¢, K > Ko, L > Lo, and s= K logL.

Proof. Let Ko be the quantityKo(%,ﬁ) from Lemma 2.5 and let us recall thain
denotes the minimal value of the surface tension. We claim that it suffices to show that,
for all c; > 0 and an appropriate choice f the bound

PP (RL ) < e oVt (4.5)

%5

holds true onceé is sufficiently large. Indeed, if (4.5) is established, we just chase
so large that the differenag — c; exceeds the rate constant from the lower bound in
Theorem 3.1 and the estimate (4.4) immediately follows.

In order to prove (4.5), fixx; > 0 and Iet%gl = 201C}/tmin, Wheregy is as in

(2.9). LetK > Ko, » < »p ands = K logL. We claim that if- € R, ;| andSis a
collection ofs-skeletons such th& ~ o, then (2.9) and (2.11) force

sl < D Il < ws D[P < gistin #5(S), (4.6)
yel's(o) SeS

Hence, for eacly € Ris . there is at least on& such thats ~ ¢ and #;(6) >

fZCI/},/OL. By Corollary 2.6 withx = 2¢/ /oL anda = % and our choice oKy, (4.5)
ollows. O
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4.2.2. Interiors and exteriorsGiven a scale functiosand a configuration, let ()
be the set of external contourslin(s). (Note that these contours will also be external
in the set of all contours af.) Define Int= Ints | (o) to be the set of all sites i
enclosed by some e I'S(s) and let Ext= Exts| (s) be the complement of Int,
i.e., Ext= AL\ Int.

Given a set of external contours we claim that under the condition thB§<(c) =
I, the measureP[L’ﬁ is a product of independent measures on Ext and Int. A coarse
look might suggest a product of plus-boundary condition measure on Ext and the minus
measure on Int. Indeed, all spins in Ext up against a piedé arfe necessarily pluses
and similarly all spins on the Int sides of these contours are minuses. But this is not
quite the end of the story, two small points are in order: First, we have invoked a round-
ing rule. Thus, for example, certain spins in Ext (at some corners but not up against the
contours) ardorcedto be plus otherwise the rounding rule would have drawn the con-
tour differently. On the other hand, some corner spirepermitted either sign because
the rounding rule would separate any such resulting contour. Fortunately, the upshot of
these “rounding anomalies” is only to force a few additiom@&usspins in Int angplus
spins in Ext than would appear from a naive looK at

To make the aforementioned observations notationally apparent, we define Int
Int to be the set of sites that can be flipped without changiagd similarly for Ext. We
thus havery, = —1 for all x € Int\ Int® andox = +1 for all x € Ext\ Ext°. Explicitly,
there are a few more boundary spins than one might have thought, but they are always of
the correct type. Thus, clearly, although rather trivially, the meaﬁﬁré(~|l“§“(a) =
I') restricted to Int is simply the measure in Int with minus boundary conditions. The
same measure on Ext is not quite the corresponding plus-measure due to the condition
that ' constitutesall the external contours visible on the scaleThus, beyond the
scales in Ext, we must see...no contours. But this is precisely the definition of the
restricted ensemble.

We conclude that the conditional measure splits on Int and Ext into independent
measures that are well understood. Explicitlydifis an event depending only on the
spins in Int andB is an event depending only on the spins in‘Exten

P/ (AN BII(0) = T) = P (AP B). @.7)

This observation will be crucial for our estimates in the next section.
Next we will notice that the number of sites associated with the contours can be
easily bounded in terms of the total lengthIaf

Lemma 4.3.There exists a geometrical constant g oo such that the following is
true: If T is a set of external contours andt® and Ext® are as defined above, then

|AL\ (It UEX)| < g2 > Iyl (4.8)
yell

Proof.Each site fron\ | \ (Int° UEXt®) is within some (Euclidean) distance from a dual
lattice sitex* e (Z2)* such that some contogre I' passes througk*. On the other
hand, the number of dual lattice site$ visited by contours fronT" does not exceed
twice the total length of all contours ifi. From here the existence ofga satisfying
(4.8) follows. O

The definition of the even?ta}{’s,l_ gives us the following easy bounds:
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Lemma 4.4.Let gs be asinLemma 4.3. Let¢ Rl sL and let the setit = Ints | (o),
Int® = Intg | (¢) andEXt" = EXt| (o) be as above Then we have the bounds

|oInt°| < gasts/or  and |OEX| < gaxlsoL + 4L (4.9)

and
Int°] < |Int| < g2s2s%,. (4.10)

Proof. Sincedlnt® ¢ AL \ (Ext® U Int®) which by Lemma 4.4 impliegoInt®| <
Oa Z/ers(g) |y], the first bound in (4.9) is an immediate consequence of the fact faat
R sL- Note that the same inequality is true féint|. The second bound in (4.9) then
foIIows by the fact thabExt® c 0AL U AL \ (Ext° U Int®). The last bound, (4.10), is
then implied by the first bound in (4.9) féint instead oféint® and the isoperimetric
inequality |A| < +|0A|? valid for any A ¢ R? that is a finite union of closed unit
squares (see, e.g., Lemma A.1in [16]x

4.2.3. Volume of large contourslhe preceding lemma asserts that, for typical config-
urations, the interior of large contours is not too big. Actually, one can be a bit more
precise. Namely, introducing

RZ L = {0t VAT = (1 - oL}, (4.12)

we will show in the next lemma that, wheneveiis sufficiently small, the conditional
probability ofR%S L given theM_'s of interest is still exponentially small ig/o.
However, unlike in Lemma 4.2 (and Lemma 4.6 below), here the constant multiplying
/oL in the exponent can no longer be made arbitrarily large.

Lemma 4.5.There exist constants ¢ 0, 3¢ > 0, Kg < 00, and Lg < oo such that
P (R26 LML = m*[AL| —2m* o, ) < e™%V7L (4.12)
holds for all K > Ko, s¢ € (0, 0], L > Lo, and s= K logL.

Proof.Let @7, be as defined in (2.2). Clearly, it suffices to prove the statemesbioe
» > 0, so letsr € (0, 1) be such that

2 = w1 (1 — 3% — (O% + 2x)] > 0. (4.13)

(This is possible becaust’, < 1forall A < co.) Let Lo be so large tha¢ from
Theorem 3.1 satisfieg < s forall L > L. Let Kg be chosen to exceed the quan-
tity Ko(z¢, B) from Lemma 2.5.

Fix K > Ko, L > Lg,ands = K logL. Let nowes e Ris’l_ and let us temporarily
abbreviatd” = I's(s) andl” = T&Y(0). Let S be anys-skeleton such tha ~ T', and
let &’ be the set of skeletons & corresponding td”’. First we note that we may as
well assume that, for some fixé®l > 0 to be specified later

> PO < vt (4.14)

Se®



Droplet formation in the 2D Ising model 35

Indeed, the contribution of the configurations violating this bound can be directly esti-
mated, combining Corollary 2.6 with = > and (2.11), bye~1=>9Bv?L_ For configu-
rations satisfying (4.14), Lemma 2.3 in turn implies

V(&) = [VI)| = gss D [P(S)] = (1 - )%, (4.15)
Se&
providedL is sufficiently large to ensure thgsK %% <« 1. As a consequence of

this and the Wulff variational problen#(&') > w1(1 — »),/vL. Since& O &,
we have#3(6) > #3(&') and thus for every e Ris | satisfying (4.14) there is a
collection® of s-skeletons such th& ~ o and#3(5) > w1(1—),/vL. Using, once
more, Corollary 2.6 witlx = s and our choice oK, we have

PHI(RZ 1) < e 19wyt 4 o= (=>9ByoL, (4.16)

Letting B = (1 — »)w;, the right-hand side beats the lower bouﬁg’ﬂ(ML =
m*|AL| — 2m* o) > exp{—w1,/oL (D% + )} from Theorem 3.1 and our choice
of Lo andx« by exactly 2~ (C2+>1)VoL Using the leeway in the exponent to absorb the

extra factor of 2 (which may require that we further increasg the estimate (4.12)
follows. O

4.3. Magnetization deficit due to large contouls. this section we will provide the
necessary control over the magnetization deficit inside and outside large contours. The
relevant statements come as Lemmas 4.6-4.8.

4.3.1. Magnetization insideOur next claim concerns the total magnetization inside the
large contours in\_. Recalling the definition of It we reintroduce the event

RE oL = {07 Mine < —m" [Int°] — >~ 2s0/*}. (4.17)
For the probability ofRi’S’L we have the following bound:
Lemma 4.6.For each @ > 0there existqg > 0, Ko < oo and Lp < oo such that
P (REg LML = m* [AL| — 2m* 0, ) < e7%VoL (4.18)
foranys < 5, K > Ko, L > Lo, and s= K logL.

Proof.Fix acz > 0. By Lemma 4.2, there ang¢ < oo, Ko < oo andLg < oo such that
PEL’ﬁ(R,%’S’dML =m"|AL| — 2m* o) < e %3V whenevers = K logL andL >
Lo. LetT = {T®Y0): 0 ¢ R%S . }. Recalling the lower bound in Theorem 3.1, it is
clearly sufficient to prove that for sonwg > 0 large enough,

PHA (RS [T¥(0) =T) < 2e”%VoL (4.19)

s,S,L

holds for allT" € T" and allL sufficiently large provided: is sufficiently small and
that theK in's = K log L is sufficiently large. (Note that, for (4.19) to imply (4.18},
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will have to exceeds by a f-dependent factor. The factor of “2” was put in for later
convenience.)
Pickal' e T. SinceR'i’s’L depends only on the configuration inIn¢4.7) implies

P (RS LT 0) =T) = Pl (RE.61). (4.20)

In order to apply Lemma 2.10, we need to compam®*|Int°| with the actual av-
erage magnetization of the Ising model in volume Inith minus boundary condi-
tion. By (4.10) and (4.9), we havént’| < g79~2s% and|oInt°] < gad s /oL.
Then Lemma 2.9 and (2.36) imply the existence of constapts: a1(8) < oo and
a2 = a(f) > 0 such that

|<M.mo>;;t§ + MmNl < a1(ga9 oL + (93570 "0 )%eT ). (4.21)

Now, sinces = K logL, for K large the right-hand side is less tham8s9 ~'s./oL .

Thus, ifL is so large that the latter does not excé@x:rlsf/4 (i.e., ifdargq9 s /oL <
_1SUL/ ), theno € R3 sl andIr'®Y(g) = T imply

1
Minee < (Mlnt(’)mtfs =5 Svfm. (4.22)

Let nowss > O be such that; < ¥2(8s3x93) 1, wherey = y(B) is the suscep-
tibility, and let »x < . By equatlon (2. 39) in Lemma 2.10 and the fact that°| <

929 25?0, the right-hand side of (4.20) is bounded &7 $v*t. The bound (4.19) is
thus proved. O

4.3.2. Magnetization outsideRecall the definition of Ext Our first concern here is an

upper bound on the total magnetization in Extet R?, ¢ | be the event

R oL = {0: Mexe > m* [Ext’| — 25em* v, }. (4.23)

To bound the conditional probability of this event is easy; we will actually show
that it can be included into the preceding ones for configurations containgtl in=
{o: ML = m*|AL| —2m* oL}

Lemma 4.7.For any» > 0 and any K < oo there exists an ¢ < oo such that
Rl sl NML C (R gL URS gL URS g1 ) N ML (4.24)
forany L > Lgand s= K logL.

Proof. Let >z andK be fixed. Let us abbreviate fht= Int | (o) and Ext = Extg| (o)
for a configurations which we will take to be in(RY, SN (R SN (R3 SN
M. First, we note that i ¢ RL,S,L, we can use Lemmas 4.3 and 4.4 to get

IALl = (IEXC] + Int’]) < gas s /oL (4.25)

and hence
IML — Mgxe — Mine| < Gar 1s\/oL. (4.26)
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Now, since the total magnetization is held fixed, ives, M|, we haveM| = m* |A|—
2m* v and by a simple calculation we get

Mexe < ML — Mine + Gaxe~1s/oL

—m* (JAL| = [IN€]) = M * (Int°] — 2m* -1 (4.27)
= [AL] = [INt°]) inte + M [INt°] — 2m™ v + gasc™ "Sy/vL.

Atthe expense of another factor@f>r—1s. /o[, we can replacA | |—|Int°| with [Ext°].
Finally, sinces ¢ R2 .| UR3 .| we can use the bounds

Mine > —m* [Int°] — >~ 1sp ¥/ (4.28)
and
lInt°] < V(&) < (1— 3oL (4.29)
in succession to arrive at
Mexe < M* [EXE| — 2m* sop + 20azts /oL + » so . (4.30)

From here we see that¢ Ri/Z,s,L oncel is so large that the remaining terms on the
right-hand side are swamped byn* 0. O

Our second task concerning the magnetization outside the large external contours is
to show thatMgye — m*|Ext°| will not get substantially below the deficit value forced
in by the condition on overall magnetization. (Note, however, that we have to allow
for the possibility that EXt = A in which case the exterior takes the entire deficit.)
Let >« > 0 and consider the event

R oL = {07 Mege < m* [Ext’| — 2m* (14 5 Do }. (4.31)
The probability ofRf’{’s,,_ is bounded as follows:

Lemma 4.8.For any g > 0there exist constantgy > 0, Ko < oo and Lp < oo such
that
PP (RS, o [ML = m*[AL] —2m* o) < e %ViL (4.32)

2,S,L

forall K > Kg, s < »gand L > Lo, and s= K logL.

Proof. With @ as in (2.2) ands fixed, choosec so that

w1 A .
e < [A 3 (DA]. (4.33)
For thissp > 0, let Lo be so large that for alL > Lo, the finiteL expression on
the right-hand side of (1.10) exceedsl + ﬁ)—l and, at the same time from
Theorem 3.1 is bounded by /(6:).
First, we can restrict ourselves to the complemeﬂ?bg L with ¥ so small that the
corresponding; exceeds 8. Once again using Lemma 2.9, we get

|(Mexe) 558 — m*|Ext|| < a1(gad " sy/or + 4L + LA%e929), (4.34)
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Now, sinces = K logL ando, ~ L#3, for K sufficiently large the right-hand side
does not exceede@ L. Thus, ifL is so large that the latter does not excae*du_%gl,
it suffices to prove the corresponding bound for the event

R ={o: Mexe < (MEXP>E;(€> — M 2+ 55 Yo} (4.35)

Clearly,R depends only on the configuration in Exand thus (4.7) makes the estimates
in Lemma 2.11 available. We get

(Mo )? 1,2
):valjﬂ (1+2_%o) } (4.36)
§Cexp[—w1A(1+ z—io)\/H]

HereC = C(f) < oo is independent of and the second inequality follows from our
assumption aboutg. Now, using (4.33) and the fact that < A /(6s¢), we derive the
bound

P/ (RIre() =T) < Cexp|-2

P:r ’ﬁ@WgXt(a) = r) < CeP/IL(®+e)—2e5/oc (4.37)

The claim then follows by multiplying both sides b@f’ﬂ(rgxt(a) = T'), summing
over allT” with the above properties and comparing the right-hand side with the lower
bound in Theorem 3.1.0

4.4. Proof of Theorem 4.1The ultimate goal of this section is to rule out the occurrence

of intermediate contours. As a first step we derive an upper bound on the probability of
the occurrence of contours of intermediate sizes in a contour ensemble constrained to
not contain contours with diameters larger thayov_. The relevant statement comes

as Lemma 4.9. Once this lemma is established, we will give a proof of Theorem 4.1.

4.4.1. A lemma for the restricted ensembiRecall our notatiorPf{’ﬁ’g for the proba-
bility measure in volume\ c A conditioned on the event that the contour diameters
do not exceed’. We will show that the occurrence of intermediate contours is improb-

able in PIJ{"B’S’ with 8" = 2, /o[ and magnetization restricted to “reasonable” values.
For anyA c AL and anys > 0 ands > 0, let

S.s.a = {o: there existg in A such thas < diamy < /o }. (4.38)
Then we have the following estimates:

Lemma4.9.Forany ¢ > 0, g9 > 1, andy > 1, there existg € (0, 1), Ko < oo,
and Lp < oo, suchthatfors= K logL, all 5c € (0, »0], K > Ko, L > Lg,all A c AL
satisfying the bounds

Al > 9712 and |oA| < OL, (4.39)
and all ¢ € [0, ¢o] that make m|A| — 2pm* v an allowed value of M, we have

PPV (AC A [Ma = m* [A] = 2pm¥ o) < L%, (4.40)

2,S,\
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Proof. Notice that the event}, . , is monotone irs = K log L and thus it is sufficient
to prove the claim for only a flxeK (chosen suitably large). Letg € (0, 1) be fixed
and letsc € (0, »p]. (At the very end of the proof, we will have to assume thatis
sufficiently small, see (4.54).) Fix a s&tc Z? satisfying (4.39) and let

Ma(p) = {o: My =m* [A] = 2pm* v }. (4.41)

Let us define
Sa = (MA) PP — Al (4.42)

and note that, oM 4 (¢), we haveMy = (MA>Jr hs op — 2pM*oL.

The proof of (4.40) will be performed by writing the conditional probability as a
guotient of two probabilities with unconstrained contour sizes and estimating separately
the numerator and the denominator. Let

£ = {0': vy € T's(o), diamy < %ﬁ} (4.43)
and, using the shorthand = A, s A, write
: PHA (AN Ma(p) N E
P (A M () = A LMADE) g g
P (Malp) NE)

As to the bound on the denominator, we restrict the contour sizAstins = K log L
asin (3.5) and apply Lemmas 2.11 and 2.7 with the result

2 *
m- e oL
PP (Malp)n€) = 3 ex 2! ”L) -2 onl, (4.45)
A p{ XIA XA }
whereC; = C1(8, ¢, po) > 0. Here, we note that two distinct terms were incorpo-
rated into the constar@@;: First, a term proportional téi since, by Lemma 2.9 and
(4.39),10A| < 2a19L onceK is sufficiently large and thu@x |2/|A| is bounded by a
constant independent &f. Second, a term that comes from the bound (2.45) yielding

QS (poL + 2 'CL’%'g, 1} with someC;, = C(8, ¥, o) < oo. (Notice
that togeta constaml independent ok, we have to chooskg after a choice oK is
done.) Although the second term on the right-hand side of (4.45) is negligible compared
to the first one, its exact form will be needed to cancel an inconvenient contribution of
the complement of intermediate contours.

In order to estimate the numerator, Iet= {T's(0): 0 € £, T's(0) # @} be the set of
all collections ofs-large contours that can possibly contribute€to(We also demand
thatI's(o) # @, because ond® there will be at least onglarge contour.) Then we have

PYP (AN MA@)NE) < D PHF(Ma@)|Ts(0) = T) P (Ts(0) = T). (4.46)
rer

Our strategy is to derive a bound é’tj( 'B(MA(¢)|FS(0) I') which is uniform inl" €

I andto estlmatet?A ﬂ(Fs(a) = I') using the skeleton upper bound.
LetT" € T and let& be ans-skeleton such thad ~ I'. We claim that, for some
C’' =C/(B,9) < oo and somejo = 7o(f, ¥) < oo, independent of, &, »p andL,

+,
PY MA@ITS@ =) _ L/ 2oy

(4.47)
PP (Ma(p) N E)
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holds true. Indeed, Iet’ be the abbreviation for the set of external contour§ iand

let &’ be the set of skeletons i&i corresponding t@”. Recall the definition of Int and
Int® and note thaV(I'") = Int and#3(&) > #3(&’), since& > &'. Also note that,
by (2.10) and (2.11) and the fact that diara s,/v( for all y € I/, we have

Int] < Gose/oL > [P(S)] < Gosotmy/oL #5(S). (4.48)
Se&

This bound tells us that we might as well assume thdt < . />v. . Indeed, in the
opposite case, the bound (4.47) would directly follow by noting that (4.45) implies

PH (Ma(p) N E) = C1L=2e~m/75(S) with 5, given by

(m*p)2vy* | my 5Aﬁ]
XTmin Al XTmin Al
Notice thaty; is bounded uniformly irk andA by (4.39) and the facts that < oo and
oa < 2019 L. A similar bound, using (2.9) instead of (2.10), shows that ftat| <
s/vL/+/>0. Indeed, if the opposite is true, then (2.9-2.11) imply thak#;(S) >
Tmindy 1ﬁ and we can proceed as before.

Thus, let us assume thdnt| < />0 and|éInt] < s,/oL/,/7¢ hold true. In
order for M (¢) to occur, the total magnetization it should deviate fronm* |A|
by —2¢pm* v, while the volume Int can help the bulk only by at mesfint|. More
preciselyMgxe is forced to deviate from its mean Va|(MExtO)E;(€;’S by at least-2m*u
(and by not more thar-2m*u — 2|Int|) whereu is defined by

= 20| (4.49)

—2m*u = —2pm* o — Jexe + 2/INt], (4.50)

With dexe as in (4.42). By the estimat¢iit| < /7oL, [Ext’| > 297112, |0EXE| <
29L, andu < C3L*® « L?/logL, with C3 = C3(8, 9, po) (all these bounds hold
for L sufficiently large—in particular, to ensure th&t/v logL < ¥L), we now have,
once more, Lemma 2.11 at our disposal. Thus,

+.p _ (mro)? 5 Mo -
PR7 (Ma)|Ts(e) =T) < Caexp| -2 FEop? = 2= L e lent(g}él)

whereCyq = Ca(f, ¥, po) < co. Similarly as in (4.45), the constafyy incorporates
also the error tern®2 . (u). To compare the right-hand side of (4.51) and (4.45), we
invoke the second part of Lemma 2.9 to note that,Kosufficiently large and some
a1 = a1(f) < oo,

oA — Ogxe < 01|A\ Ext°]. (4.52)

Using (4.48) again|int| is bounded by a constant time$#(&).,/vL and the same
holds for|A \ Ext°|. Therefore, there is a constapt = 72(8, ¥) < oo, independent
of s, such that

m* poL
XAl

2

(6a — Jexe + 2/Int]) < n220073(S), (4.53)

holds true for all” € I" and their associated skeletafisBy combining this with (4.51)
and (4.45), the bound (4.47) is established wish= max{#1, 72}, which we remind is
independent 0.
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With (4.47), the proof is easily concluded. Indeed, a straightforward application of
the skeleton bound to the second term on the right-hand side of (4.46) then shows that

PU (A M) < 3 CLRe AT IO a5
S#£0

Now, choosing sufficiently small, we have + 59./5¢0 > 2/3. Then we can extract

the termC’e~3”4(®) which, choosing thek in's = K logL sufficiently large, can
be made less thah=2%, for any cg initially prescribed. Invoking Lemma 2.5, the
remaining sum is then estimated by onel

4.4.2. Absence of intermediate contoutemmas 4.2 and 4.5-4.9 finally put us in the
position to rule out the intermediate contours altogether.

Proof of Theorem 4.Recall that our goal is to prove (4.2), i.@LT’ﬂ(AclML) < L%,
Pick anycg > 0 and»g < 1. LetKg andLg be chosen so that Lemmas 4.2, 4.5, 4.6,
and 4.8 hold withsome ¢, cp,c3,¢c5 > 0 for all »x < 25, K > KgandL > Lo.
We also assume théaty is chosen so that Lemma 4.7 is valid fer= 2. We wish

to restrict attention to configuration outside the sefs ., , RS, ¢ andR? ¢, but

sinceR’, s Is essentially included iR7_ o, andR;_ ., we might as well focus

on the evenR®, whereR = |J7_; RS, ¢ . Fixanys < xo, lets = K logL and let

us introduce the shorthandl = A, s | . Appealing to the aforementioned lemmas, our
goal will be achieved if we establish the bouF’?ET’ﬁ(AC NREML) < L=,

Let us abbreviate = s»,/o and letl’' = {FSXt(a): o € R% be the set of all
collections of external contours that can possibly arise floinFix I' € T and recall
our notation Ext for the exterior component ok induced by the contours ifi. To
prove (4.2), it suffices to show that, for dlle T,

PHA (A NRENMLITEY o) = T) < L™20P/ (ML|T%0) =T).  (4.55)

Indeed, multiplying (4.55) bwj’ﬂ(rg”(a) = T') and summing over all' € T, we
derive that
P/ (AN REN M) < L=20PF (Mmy). (4.56)

Thence P, (A N REIM ) < L2 which, in light of the boundP™* (R|M ) <
4e~°V"L wherec = min{cy, ¢y, C3, s}, implies (4.2) oncd. is sufficiently large.

It remains to prove (4.55) for alll € T'. Let ¢ > 0 be such tham* |Ext’| —
2pm* oL is an allowed value oMgye and consider the corresponding evérye ()
(cf. (4.41)). Note that, by the restriction to the Complementﬁ@;’s’l_ andR®

»0,s,L’
we only need to consider € [, 1+ %51]. We claim that, for all such allowed values
of ¢, we have

PP (AS|TE%0) = T} N ML N Meye (9)) = Pl (A Mexe (0)).  (4.57)

Indeed, given tha]fSXt(a) = TI', the event4 depends only on the configurations in Ext
Moreover, M| N Mgxe (9) can be written as an intersection.®exe (¢), which also
depend only om in Ext®, and the evenfio: M \exe = m* (JAL| —|EXt°]) —2m* (1—
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@)oL}, which depends only on the configuration in°Inthus, (4.57) follows from (4.7)
and some elementary manipulations.
By the restriction to the complementﬁfioysyl_, we havegExt®| > L2/2 and|eExt°| <
8L for all T" e I". Choosing nowcs = 2¢cg and thenKg andL g (if necessary, even big-
ger than before) so that Lemma 4.9 can be applied, the right-hand side of (4.57) can
be bounded by ~% = L~2% uniformly in T’ € T, provided is sufficiently small
andL > Lg. Using (4.57), we thus have

PJ,ﬂ(ACmRCmML ﬂMExP(¢)|Fq(U) = r)
S PI:,_,/;(AC“FSxt(U) =T}IN M, ﬂMExto((ﬂ))
x PP (ML N Meye (9)|Tg(0) =T)
< L20p M (M N Mexe (9)|Tq(0) = T),

(4.58)

for all ¢ for which m* |[Ext°| — 2pm* v is an allowed value oMgye. (In the cases
wheng & [0, 1+ %61] we haveR® N Mgy () = @ and the left-hand side vanishes.)
This implies (4.55) by summing over all allowed valuespof O

5. Proof of main results

Having established the absence of intermediate-size contours, we are now in the posi-
tion to prove our main results.

Proof of Theorem 1.Fix a¢ > 0 and recall our notatioML ={o: M| = m*|A|_|
2m* v, }. Our goal is to estimate the conditional probablﬁtly ﬂ(A SLYUBEg L IML)
by L=¢. Letcp > ¢ and note that, by Theorem 4.1, we have

PP (AS ¢ IML) < L%, (5.1)

provideds is sufficiently small and. sufficiently large. This means we can restrict our
attention to the everts; ¢ | \ AS_ ¢, . Furthermore, we can use Lemmas 4.2, 4.5, 4.6,

and 4.7 to exclude the eve@ L Rﬁ s Rg L andR? 5L Providedy is suffi-
ciently small. We therefore mtroduce the evépt% ¢ defined by

1 2 3 4
Eesep = Best \ (A5, s URjsL URGsL URYsL YR sL)- (5.2

where we have suppressee: K log L andL from the notation.

On the basis of the aforementioned Lemmas, the proof of Theorem 1.2 will follow
if we can establish that for each > 0 and eacle > 0 there areKg < o0, ¥ > 0
andcy > 0 such that

P (€ gl ML) < €OV0 (5.3)

wheneverl is sufficiently large. The proof of (5.3) will be performed by conditioning
on the set ok-large exterior contours and applying separately the Gaussian estimates
and the skeleton upper bound. The argument will be split into several cases, depending
on which of the bounds (1.14-1.16) constituting the ey fail to hold.

Let us write& ,.,» as the disjoint unioﬁ1 uE? e whereé‘ 9 is the set of all

configurations on which one of (1.14) or (1 15) fail and whéj’rgf 9 = Ee,50,0 \ &L

€,36,0"
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LetT = {T'$Y0): 0 € & ,.0) be the set of all collections of exterior contours allowed
by &, .,s. (Heres = K log L.) Sincel's(o) is non-empty for alb contributing to3°¢ | ,
we havel' # g forallT e T. Let ”

Ar = o NV (5.4)

To apply the Gaussian estimate, we need the followipgerbound on the magnetiza-
tion in Ext°.

Lemmab5.1.Lete > 0, » > Oandd > 0and letthe K in s= K log L be sufficiently
large. Then there exists a sequerfee) with lim__, x| = 0 such that for both i=
1,2,alT eTandallc e M N Sé,uﬂ N{TYs) = I'}, the magnetization M =
MEX@L(U) (o) obeys the bound

Mexe < (Mexe)gie® — 2m* o (1— A + €& — &L). (5.5)

Heree; = Oandez = €/(2m*).

Proof. Recall the exact definition of Ext The proof is similar in spirit to the reason-
ing (4.29-4.30). First we will address the case of configuratior&éi;g’ﬁ. Using the

equalityM| = m*|AL| — 2m* o and our restriction to the complementkf; oL We
have w
ML < MF|EXt| + m* |V (D)| — 2m* oL + gad ~1s /oL, (5.6)

wheregsd ~1s. /oL bounds the volume of EXtExt® according to Lemma 4.3. Next, in
view of the restriction tc(Rg,S,L)C, we have

My > =MV (D)| — 9 Lo — gad ~Ys /oL (5.7)

Finally, sinceMgxe < ML — My(r) + ga¥ "1s/oL and since (4.34) implies that

m*|Ext®| — (MExtofEr;(fi’s can be bounded by8L onceK is sufficiently large, we have
(5.5) withx given by

2MixL = 19_130[1/4 + 39419_181)[1/2 + 8a1Lz)[1. (5.8)

Sincev| ~ L%3, we have lim ;o x. = 0 as claimed.
Next we will attend to the case of configurations fréﬁwx’ﬁ, for which the bound

(1.16) must fail. Since?_  is still a subset ofR3 ¢ | )¢, we still have the bound (5.7)
at our disposal implying thalyy > —m*|V(I')| — ev oncel is sufficiently large.
However, this means that the only way (1.16) can fail is that, in fact, the lower bound

My = —m V()| + evL (5.9)

holds. Substituting this stronger bound in the above derivation in the place of (5.7), the
desired estimate follows.O

With Lemma 5.1 in the hand, we are ready to start proving the bound (5.3). We
begin with the Gaussian estimate. By the restriction to the complemdag of , we
have the boundr < 1 — ¢ and thus 1— Ar + ¢ — k. > 0 oncel is sufficiently
large. Moreover, since we also discardléﬁ’s,,_, Lemma 2.11 forA = Ext° applies.
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Combining this with the observation (4.7) and the bound (5.5), there exists a constant
C < oo such that

2(m*vL)2

PHA (ML NE ™) =T) < Cex [—
L ( e,%,q?| S ) ) p XlALl

A—Ar+e€ — KL)Z} (5.10)

holds for alll’ e T'. Next we will estimate the probability th&€*{(s) = I'. Let S be
a collection of skeletons correspondingltoThe skeleton upper bound in Lemma 2.4
along with the estimates featured in Lemma 2.5 then yields

PEAIeo) =T) < > e/ <ce”i®, (5.11)
&' 26

WhereC’ < oo and where&’ corresponds to the skeleton of a full d&f(s) with
Fext(o.)

To estlmate the probability of1,. N €,y N {I&Y o) = I'}, we will write T as the
union of two disjoint setd” =T'1 UT». I—iere

T1={lel:36~T, #4(6) < wi/iroL(1+ec™?)}, (5.12)

wherec is the constant from Lemma 2.8, afid = I' \ I'1. First we will study the cases
whenI" e IT'1. By the restriction to the event, s |, we know that diamy > s, /o for

all y € I'. Using thati < 1 — ¥—recall that we are in the complement&f sL—

we have diany > c(ec=2)/[V(T)| wheneverz > ¢/c. Moreover, the upper bound
on #5(6) from (5.12) along with the estimaté; (&) > tmins /oL imply that ir

is bounded away from zero and thag/|V (I')| = e+/AroL > s for L sufficiently
large. This verifies the assumptions of Lemma 2.8 witeplaced byc—2, which then
guarantees thdt is a singleton]" = {yo}, and that

|nf dH(V(Vo) VIVGIW + 2) < VeIV (7o)l (5.13)

Now, |V (yg)l = AroL < vL (because, as noted befofg, < 1), which means that the
right-hand side is less thagfeo and (1.14) holds. But oﬁé e the event. s, must
fail, so we must have either thdt, (ir) > @’ + €, which only applies when = 1,
or that (1.16) fails, which only applies wheén= 2.

We claim that, in both cases, there existgan 0 and arm > 0O—both proportional
to e—such that for som& ~ I andL sufficiently large, we have

o 2
(11— a)73(&) + 2%(1 —ir+ 6 — k)2 > wi oL () + ). (5.14)

Indeed, the Wulff variational problem in conjunction with Lemma 2.3, the restriction to
(R )¢ and the boundl — x)*/2 > 1 — x for x € [0, 1] imply that

Pp(®) = V@)Y = wn (Vo) — g0~ Vr) 515
> w1/ AroL — gswl(ﬁ%)‘lsz.
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Observing also that the diﬁerenceﬂ*)zuﬁ/z/(xmm —w1A - 0asL —» oo, the
left hand side of (5.14) can be bounded from below by

w1/ ©OpA(AT) — w1/ AroL — OLV/oL + 2w1A oL (6 — kL)Y, (5.16)

wheres. — 0 (aswellagx| — 0)withL — oo. (Here we again used thatLr > ¥.)
Now, fori = 1 we haved (Ar) > @ + € from which (5.14) follows once < € and
L is sufficiently large. For = 2, we use®, (Ar) > @’ and get the same conclusion
since (5.16) now contains the positive termi ez, /o o €.,/vL.

By putting (5.10) and (5.11) together, applying (5.14), choo$ing Ko(«, #) and
invoking Lemma 2.5 to bound the sum over all skeleténsve find that

P (ML NE ey NIT(0) € T1)) < 2CC exp{—wi1 /oL (4 +€)}.  (5.17)

wheneverL is sufficiently large. (Here the embarrassing factor “2” comes from com-
bining the corresponding estimates foe 1 andi = 2.)

Thus, we are down to the cades I'», which means that for every skeletén~ T',
we have’;(6) > wi/AiroL (14 €c~2). Moreover, SiNC&¢ 9,5 C A,.s.L, all s-large
contours that we have to consider actually satisfy that diams«,/v_. In particular,
we also have tha¥/;(6) > tminsz,/oL. Combining these bounds we derive that, for
somec’ > 0 and regardless of the value Aof,

%(6) > wl( Ar +C/)m. (5.18)

Disregarding the factas in (5.10) and performing similar estimates as in the derivation
of (5.17), we find that (5.14) holds again for some- 0. Hence an analogue of (5.17)
is valid also for alll’ € I'>. A combination of these estimates in conjunction with
Theorem 3.1 show that, indeed, (5.3) is true wittygroportional toe. This finishes
the proof. O

The previous proof immediately provides us with the proof of the other main results:
Proof of Theorem 1.1n light of Theorem 3.1, we need to prove an appropriate upper
bound onPL“L’ﬁ(ML), where M| = {6: ML = m*|AL| — 2m* v }. First we note

that for L sufficiently large, the probabilit?f"’}(/\/l L) is comparable witrPL“L’ﬂ (FL),
whereF, is the event

FL=MLNApsL NBesL N (R URS | URS S (5.19)

with ¢, s, 9 as in the proof of Theorem 1.2. But ¢f_, we have at most one large
contour and the skeleton and Gaussian upper bounds readily give us that

P/ (FL) < CevavL®h=e), (5.20)

for someC < oo and some’ > 0 proportional tae. From here and Theorem 3.1, the
claim (1.11) follows by lettind- — oo ande | 0. O

Our last task is to prove Corollary 1.3.

Proof of Corollary 1.3By Proposition 2.1, ifA < A, the unique minimizer ob A (1)
is 2 = 0. Thus, fore > 0 sufficiently small and_ large enough, the contour volumes
are restricted to a small number timgs. Since (1.14) says that the contour volume
is proportional to the square of its diameter, this (eventually) forces giame, /o1
for any fixedsc > 0. But that contradicts the fact that,. s | holds for as sufficiently
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small. Hence, no such intermediatexists and all contours have a diameter smaller
thanK logL.

In the cased\ > Ag, the function® 4 (1) is minimized only by a non-zerd (which
is, in fact, larger than 23) and so the scenarios without large contours are exponentially
suppressed. Since, again, diam s,/v|_ for all potential contours, Theorem 1.2 guar-
antees that there is only one such contour and it obeys the bounds (1.14) and (1.15). All
the other contours have diameter less tKalogL. 0O
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