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Abstract: We study the formation/dissolution of equilibrium droplets in finite sys-
tems at parameters corresponding to phase coexistence. Specifically, we consider the
2D Ising model in volumes of sizeL2, inverse temperatureβ > βc and overall mag-
netization conditioned to take the valuem?L2

− 2m?vL , whereβ−1
c is the critical

temperature,m?
= m?(β) is the spontaneous magnetization andvL is a sequence of

positive numbers. We find that the critical scaling for droplet formation/dissolution
is whenv

3/2
L L−2 tends to a definite limit. Specifically, we identify a dimensionless

parameter1, proportional to this limit, a non-trivial critical value1c and a func-
tion λ1 such that the following holds: For1 < 1c, there are no droplets beyond logL
scale, while for1 > 1c, there is a single, Wulff-shaped droplet containing a frac-
tion λ1 ≥ λc = 2/3 of the magnetization deficit and there are no other droplets beyond
the scale of logL. Moreover,λ1 and1 are related via a universal equation that appar-
ently is independent of the details of the system.
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1. Introduction

1.1. Motivation. The connection between microscopic interactions and pure-phase (bulk)
thermodynamics has been understood at a mathematically sophisticated level for many
years. However, an analysis of systems at phase coexistence which contain droplets has
begun only recently. Over a century ago, Curie [25], Gibbs [33] and Wulff [55] de-
rived from surface-thermodynamical considerations that a single droplet of a particular
shape—theWulff shape—will appear in systems that are forced to exhibit a fixed excess
of a minority phase. A mathematical proof of this fact starting from a system defined
on the microscopic scale has been given in the context of percolation and Ising systems,
first in dimensiond = 2 [4,27] and, more recently, in all dimensionsd ≥ 3 [13,21,22].
Other topics related to the droplet shape have intensively been studied: Fluctuations of
a contour line [3, 18–20, 26, 37], wetting phenomena [50] and Gaussian fields near a
“wall” [5,15,29]. See [14] for a summary of these results and comments on the (recent)
history of these developments.

The initial stages of the rigorous “Wulff construction” program have focused on
systems in which the droplet subsumes a finite fraction of the available volume. Of
no less interest is the situation when the excess represents only a vanishing fraction
of the total volume. In [28], substantial progress has been made on these questions in
the context of the Ising model at low temperatures. Subsequent developments [38, 39,
48, 49] have allowed the extension, ind = 2, of the aforementioned results up to the
critical point [40]. Specifically, what has so far been shown is as follows: For two-
dimensional volumes3L of side L andδ > 0 arbitrarily small, if the magnetization
deficit exceedsL4/3+δ, then a Wulff droplet accounts, pretty much, for all the deficit,
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while if the magnetization deficit is bounded byL4/3−δ, there are no droplets beyond
the scale of logL. The preceding are of course asymptotic statements that hold with
probability tending to one asL →∞.

The focus of this paper is the intermediate regime, which has not yet received appro-
priate attention. Assuming the magnetization deficit divided byL4/3 tends to a definite
limit, we define a dimensionless parameter, denoted by1, which is proportional to this
limit. (A precise definition of1 is provided in (1.10).) Our principal result is as follows:
There is a critical value1c such that for1 < 1c, there are no large droplets (again,
nothing beyond logL scale), while for1 > 1c, there is a single, large droplet of a di-
ameter of the orderL2/3. However, in contrast to all situations that have previously been
analyzed, this large droplet only accounts for a finite fraction,λ1 < 1, of the magneti-
zation deficit, which, in addition, doesnot tend to zero as1 ↓ 1c! (Indeed,λ1 ↓ λc,
with λc = 2/3.) Whenever the droplet appears, its interior is representative of the minus
phase, its shape is close to the optimal (Wulff) shape and its volume is tuned to contain
theλ1-fraction of the deficit magnetization. Furthermore, for all values of1, there is at
most one droplet of sizeL2/3 and nothing else beyond the scale logL. At 1 = 1c the
situation is not completely resolved. However, there are only two possibilities: Either
there is one droplet of linear sizeL2/3 or no droplet at all.

The above transition is the result of a competition between two mechanisms for cop-
ing with a magnetization deficit in the system: Absorption of the deficit by the ambient
fluctuationsor the formation of adroplet. The results obtained in [27,28] and [40] deal
with the situations when one of the two mechanisms completely dominates the other.
As is seen by a simple-minded comparison of the exponential costs of the two mecha-
nisms,L4/3 is the only conceivable scaling of the magnetization deficit where these are
able to coexist. (This is the core of the heuristic approach outlined in [9, 46] and [7],
see also [8,11].) However, at the point where the droplets first appear, one can envision
alternate scenarios involving complicated fluctuations and/or a multitude of droplets
with effective interactions ranging across many scales. To rule out such possibilities it
is necessary to demonstrate the absence of these “intermediate-sized” droplets and the
insignificance—or absence—of large fluctuations. This was argued on a heuristic level
in [10] and will be proven rigorously here.

Thus, instead of blending into each other through a series of intermediate scales, the
droplet-dominated and the fluctuation-dominated regimes meet—literally—at a single
point. Furthermore, all essential system dependence is encoded into one dimension-
less parameter1 and the transition between the Gaussian-dominated and the droplet-
dominated regimes is thus characterized by auniversalconstant1c. In addition, the
relative fractionλ1 of the deficit “stored” in the droplet depends on1 via a univer-
sal equation which is apparently independent of the details of the system [10]. At this
point we would like to stress that, even though the rigorous results presented here are
restricted to the case of the two-dimensional Ising model, we expect that their validity
can be extended to a much larger class of models and the universality of the depen-
dence on1 will become the subject of amathematicalstatement. Notwithstanding
the rigorous analysis, this universal setting offers the possibility of fitting experimen-
tal/numerical data from a variety of systems onto a single curve.

A practical understanding of how droplets disappear is by no means an esoteric issue.
Aside from the traditional, i.e., three-dimensional, setting, there are experimental real-
izations which are effectively two-dimensional (see [42] and references therein). More-
over, there are purported applications of Ising systems undergoing “fragmentation” in
such diverse areas as nuclear physics and adatom formation [36]. From the perspective
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of statistical physics, perhaps more important are the investigations of small systems at
parameter values corresponding to a first order transition in the bulk. In these situations,
non-convexities appear in finite-volume thermodynamic functions [36,43,44,51], which
naturally suggest the appearance of a droplet. Several papers have studied the disappear-
ance of droplets and reported intriguing finite-size characteristics [7,9,42,45,46,51,52].
It is hoped that the results established here will shed some light in these situations.

1.2. The model.The primary goal of this paper is a detailed description of the above
droplet-formation phenomenon in the Ising model. In general dimension, this system is
defined by the formal Hamiltonian

H = −

∑
〈x,y〉

σxσy, (1.1)

where〈x, y〉 denotes a nearest-neighbor pair onZd and whereσx ∈ {−1,+1} denotes
an Ising spin. To define the Hamiltonian in a finite volume3 ⊂ Zd, we use∂3 to
denote the external boundary of3, ∂3 = {x /∈ 3: there exists a bond〈x, y〉 with y ∈
3}, fix a collection of boundary spinsσ∂3 = (σx)x∈∂3 and restrict the sum in (1.1)
to bonds〈x, y〉 such that{x, y} ∩ 3 6= ∅. We denote this finite-volume Hamiltonian
by H3(σ3, σ∂3). The special choices of the boundary configurations such thatσx =

+1, resp.,σx = −1 for all x ∈ ∂3 will be referred to as plus, resp., minus boundary
conditions.

The Hamitonian gives rise to the concept of a finite-volumeGibbs measure(also
known asGibbs state) which is a measure assigning each configurationσ3 = (σx)x∈3 ∈

{−1,+1}3 the probability

Pσ∂3,β
3 (σ3) =

e−βH3(σ3,σ∂3)

Zσ∂3
3 (β)

. (1.2)

Hereβ ≥ 0 denotes the inverse temperature,σ∂3 is an arbitrary boundary configuration
and Zσ∂3

3 (β) is the partition function. Most of this work will concentrate on squares
of L × L sites, which we will denote by3L , and the plus boundary conditions. In
this case we denote the above probability byP+,β

L (−) and the associated expectation

by 〈−〉+,β
L . As the choice of the signs in (1.1–1.2) indicates, the measureP+,β

L with
β > 0 tends to favor alignment of neighboring spins with an excess of plus spins over
minus spins.

Remark 1.As is well known, the Ising model is equivalent to a model of a lattice gas
where at most one particle is allowed to occupy each site. In our case, the sites occupied
by a particle are represented by minus spins, while the plus spins correspond to the
sites with no particles. In the particle distribution induced byP+,β

L , the total number
of particles is not fixed; hence, we will occasionally refer to this measure as the “grand
canonical” ensemble. On the other hand, if the number of minus spins is fixed (by
conditioning on the total magnetization, see Section 1.3), the resulting measure will
sometimes be referred to as the “canonical” ensemble.

The Ising model has been studied very extensively by mathematical physicists in
the last 20-30 years and a lot of interesting facts have been rigorously established. We
proceed by listing the properties of thetwo-dimensionalmodel which will ultimately
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be needed in this paper. For general overviews of various aspects mentioned below
we refer to, e.g., [14, 31, 32, 54]. The readers familiar with the background (and the
standard notation) should feel free to skip the remainder of this section and go directly
to Section 1.3 where we discuss the main results of the present paper.

• Bulk properties.For all β ≥ 0, the measureP+,β
L has a unique infinite volume

(weak) limit P+,β which is a translation-invariant, ergodic, extremal Gibbs state for the
interaction (1.1). Let〈−〉+,β denote the expectation with respect toP+,β . The persis-
tence of the plus-bias in the thermodynamic limit, characterized by themagnetization

m?(β) = 〈σ0〉
+,β , (1.3)

marks the region of phase coexistence in this model. Indeed, there is a non-trivial critical
value βc ∈ (0,∞)—known [1, 6, 41, 47] to satisfye2βc = 1 +

√
2—such that for

β > βc, we havem?(β) > 0 and there are multiple infinite-volume Gibbs states, while
for β ≤ βc, the magnetization vanishes and there is a unique infinite-volume Gibbs state
for the interaction (1.1). Further, using〈A; B〉+,β to denote the truncated correlation
function〈AB〉+,β

− 〈A〉+,β
〈B〉+,β , the magneticsusceptibility, defined by

χ(β) =
∑
x∈Z2

〈σ0; σx〉
+,β , (1.4)

is finite for allβ > βc, see [24,53]. By the GHS or FKG inequalities, we haveχ(β) ≥
1−m?(β)2 > 0 for all β ∈ [0,∞).

• Peierls’ contours.Our next requisite item is a description of the Ising configura-
tions in terms of Peierls’ contours. Given an Ising configuration in3 with plus boundary
conditions, we consider the set of dual bonds intersecting direct bonds that connect a
plus spin with a minus spin. These dual bonds will be assembled into contours as fol-
lows: First we note that only an even number of dual bonds meet at each site of the
dual lattice. When two bonds meet at a single dual site, we simply connect them. When
four bonds are incident with one dual lattice site, we apply the rounding rule “south-
east/north-west” to resolve the “cross” into two curves “bouncing” off each other (see,
e.g., [27,49] or Figure 1). Using these rules consistently, the aforementioned set of dual
bonds decomposes into a set of non self-intersecting polygons with rounded corners.
These are ourcontours.

Each contourγ is a boundary of a bounded subset ofR2, which we denote byV(γ).
We will also need a symbol for the set of sites in the interior ofγ; we let V(γ) =
V(γ) ∩ Z2. Thediameterof a contourγ is defined as the diameter of the setV(γ) in
the`2-metric onR2. In the thermodynamic interpretation used in Section 1.1, contours
represent microscopic boundaries of droplets. The advantage of the contour language is
that it permits the identification of a sharp boundary between two phases; the disadvan-
tage is that, in order to study the typical shape (and other properties) of large droplets,
one has to first resum over small fluctuations of this boundary.

• Surface tension.In order to study droplet equilibrium, we need to introduce the
concept of microscopic surface tension. Following [4, 48], onZ2 we can conveniently
useduality. Given aβ > βc, let β∗ = 1

2 log cothβ denote thedual temperature. For
any(k1, k2) ∈ Z2 andk = (k2

1 + k2
2)1/2, let n = (k1/k, k2/k) ∈ S1 = {x ∈ R2 : ‖x‖ =

1}. (Here‖x‖ is the Euclidean norm ofx.) Then the limit

τβ(n) = lim
N→∞

1

Nk
log〈σ0σNkn〉

+,β∗ , (1.5)
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Fig. 1. An example of an Ising spin configuration and its associated Peierls’ contours. In general, a contour
consists of a string of dual lattice bonds that bisect a direct bond between a plus spin and a minus spin. When
four such dual bonds meet at a single (dual) lattice site, an ambiguity is resolved by applying the south-
east/north-west rounding rule. (The remaining corners are rounded just for æsthetic reasons.) The shaded
areas correspond to the part ofV(γ) occupied by the minus spins.

where Nkn = (k1N, k2N) ∈ Z2, exists independently of what integersk1 and k2
we chose to representn and defines a function on a dense subset ofS1. It turns out
that this function can be continuously extended to alln ∈ S1. We call the resulting
quantityτβ(n) the surface tensionin directionn at inverse temperatureβ. As is well
known,n 7→ τβ(n) is invariant under rotations ofn by integer multiples ofπ2 andτmin =

infn∈S1 τβ(n) > 0 for all β > βc [48]. Informally, the quantityτβ(n)N represents
the statistical-mechanical cost of a (fluctuating) contour line connecting two sites at
distanceN on a straight line with direction (or normal vector)n.

Remark 2.Our definition of the surface tension differs from the standard definition
by a factor ofβ−1. In particular, the physical units ofτβ are length−1 rather than
energy×length−1. The present definition eliminates the need for an explicit occurrence
of β in many expressions throughout this paper and, as such, is notationally more con-
venient.

• Surface properties.On the level of macroscopic thermodynamics, it is obvious
that when a droplet of the minority phase is present in the system, it is pertinent to
minimize the total surface cost. By our previous discussion, the cost per unit length is
given by the surface tensionτβ(n). Thus, one is naturally led to the functionalWβ(γ)
that assigns the number

Wβ(γ) =

∫
γ
τβ(nt )dt (1.6)

to each rectifiable, closed curveγ = (γt ) in R2. Herent denotes the normal vector atγt .
The goal of the resulting variational problem is to minimizeWβ(∂D) over all D ⊂ R2

with rectifiable boundary subject to the constraint that the volume ofD coincides with
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that of the droplet. The classic solution, due to Wulff [55], is thatWβ(∂D) is minimized
by the shape

DW =
{
r ∈ R2 : r · n ≤ τβ(n), n ∈ S1

}
(1.7)

rescaled to contain the appropriate volume. (Herer · n denotes the dot product inR2.)
We will use W to denote the shapeDW scaled to have aunit (Lebesgue) volume. It
follows from (1.7) thatW is a convex set inR2. We define

w1(β) = Wβ(∂W) (1.8)

and note thatw1(β) > 0 onceβ > βc.

Our preliminary arsenal is now complete and we are prepared to discuss the main
results.

1.3. Main results.Recall the notation3L for a square ofL × L sites inZ2. Consider
the Ising model in volume3L with plus boundary condition and inverse temperatureβ.
Let us define the total magnetization (of a configurationσ) in 3L by the formula

ML =
∑

x∈3L

σx. (1.9)

Let (vL)L≥1 be a sequence of positive numbers, withvL → ∞ as L → ∞, such
thatm?

|3L |−2m? vL is an allowed value ofML for all L ≥ 1. Our first result concerns
the decay rate of the probability thatML = m?

|3L | −2m? vL in the “grand canonical”
ensembleP+,β

L :

Theorem 1.1.Let β > βc and let m?
= m? (β), χ = χ(β), andw1 = w1(β) be as

above. Suppose that the limit

1 = 2
(m?)2

χw1
lim

L→∞

v
3/2
L

|3L |
(1.10)

exists with1 ∈ (0,∞). Then

lim
L→∞

1
√

vL
log P+,β

L

(
ML = m?

|3L | − 2m? vL
)
= −w1 inf

0≤λ≤1
81(λ), (1.11)

where
81(λ) =

√
λ+1(1− λ)2, 0≤ λ ≤ 1. (1.12)

The proof of Theorem 1.1 is a direct consequence of Theorems 3.1 and 4.1; the
actual proof comes in Section 5. We proceed with some remarks:

Remark 3.Note that, by our choice of the deviation scale, the termm?(β)|3L | can be
replaced by the mean value〈ML〉

+,β
L in all formulas; see Lemma 2.9 below. The mo-

tivation for introducing the factor “2m?” on the left-hand-side of (1.11) is that thenvL
represents the volume of a droplet that must be created in order to achieve the required
value of the overall magnetization (provided the magnetization outside, resp., inside the
droplet ism?, resp.,−m?).
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Remark 4.The quantityλ that appears in (1.11–1.12) represents thetrial fraction of the
deficit magnetization which might go into a large-scale droplet. (So, by our conven-
tion, the volume of such a droplet is justλvL .) The core of the proof of Theorem 1.1,
roughly speaking, is that the probability of seeing a droplet of this size tends to zero
as exp{−w1

√
vL81(λ)}. Evidently, a large deviation principle for the size of such a

droplet is satisfied with rateL2/3 and a rate function proportional to81. However, we
will not attempt to make this statement mathematically rigorous.

Next we shall formulate our main result on the asymptotic form of typical configura-
tions in the “canonical” ensemble described by the conditional measureP+,β

L ( · |ML =

m?
|3L | − 2m? vL). For any two setsA, B ⊂ R2, let dH(A, B) denote the Hausdorff

distance betweenA andB,

dH(A, B) = max
{
sup
x∈A

dist(x, B), sup
y∈B

dist(y, A)
}
, (1.13)

where dist(x, A) is the Euclidean distance ofx andA.
Our second main theorem is then as follows:

Theorem 1.2.Let β > βc and suppose that the limit in (1.10) exists with1 ∈ (0,∞).
Recall that W denotes the Wulff shape of a unit volume. Givenκ, s, L ∈ (0,∞),
let Aκ,s,L be the event that any external contourγ for which diamγ ≥ s must also
satisfydiamγ > κ√vL . Next, for eachε > 0, let Bε,s,L be the event that there is at
most one external contourγ0 in 3L with diamγ0 ≥ s and, whenever such a contourγ0
exists, it satisfies the conditions

inf
z∈R2

dH
(
V(γ0), z+

√
|V(γ0)|W

)
≤
√

εvL (1.14)

and
81

(
v−1

L |V(γ0)|
)
≤ inf

0≤λ′≤1
81(λ′)+ ε. (1.15)

In addition, the eventBε,s,L also requires that the magnetization insideγ0 obeys the
constraint ∣∣∣∣ ∑

x∈V(γ0)

(σx +m?)

∣∣∣∣ ≤ εvL . (1.16)

There exists a constantκ0 > 0 such that for eachζ > 0 and eachε > 0 there exist
numbers K0 <∞ and L0 <∞ such that

P+,β
L

(
Aκ,s,L ∩ Bε,s,L

∣∣ML = m?
|3L | − 2m? vL

)
≥ 1− L−ζ (1.17)

holds providedκ ≤ κ0 and s= K log L with K ≥ K0 and L≥ L0, .

Thus, simply put, whenever there is a large droplet in the system, its shape rarely
deviates from that of the Wulff shape and its volume (in units ofvL ) is almost always
given by a value ofλ nearly minimizing81. Moreover, all other droplets in the system
are at most of a logarithmic size.

Most of the physically interesting behavior of this system is simply a consequence
of where81 achieves its minimum and how this minimum depends on1. The upshot,
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which is stated concisely in Proposition 2.1 below, is that there is a critical value of1,
given by

1c =
1

2

(3

2

)3/2
, (1.18)

such that if1 < 1c, then81 has the unique minimizer atλ = 0, while for1 > 1c,
the unique minimizer of81 is nontrivial. More explicitly, for1 6= 1c, the function81

is minimized by

λ1 =

{
0, if 1 < 1c,

λ+(1), if 1 > 1c,
(1.19)

whereλ+(1) is the maximal positive solution to the equation

41
√

λ(1− λ) = 1. (1.20)

The reason for the changeover is that, as1 increases through1c, a local minimum
becomes a global minimum, see the proof of Proposition 2.1. As a consequence, the
minimizing fractionλ doesnot tend to zero as1 ↓ 1c; in particular, it tends toλc =

2/3.

Using the information about the unique minimizer of81 for 1 6= 1c, it is worth-
while to reformulate Theorem 1.2 as follows:

Corollary 1.3. Letβ > βc and suppose that the limit in (1.10) exists with1 ∈ (0,∞).
Let 1c and λ1 be as in (1.18) and (1.19), respectively. Let K be sufficiently large
(i.e., K ≥ K0, where K0 is as in Theorem 1.2). Considering the conditional distribu-
tion P+,β

L ( · |ML = m?
|3L | −2m? vL), the following holds with probability tending to

one as L→∞:

(1) If 1 < 1c, then all contoursγ in 3L satisfydiamγ ≤ K log L.
(2) If 1 > 1c, then there is exactly one external contourγ0 with diamγ0 > K log L and

all other external contoursγ satisfydiamγ ≤ K log L. Moreover, the unique “large”
external contourγ0 asymptotically satisfies the bounds (1.14–1.16) for allε > 0. In
particular, |V(γ0)| = vL(λ1 + o(1)) with probability tending to one as L→∞.

We remark that although the situation at1 = 1c is not fully resolved, we must
have either a single large droplet or no droplet at all; i.e., the outcome must mimic the
case1 > 1c or 1 < 1c. A better understanding of the case1 = 1c will certainly
require a more refined analysis; e.g., the second-order large-deviation behavior of the
measureP+,β

L (·).

Remark 5.We note that in the course of this work, the phrase “β > βc” appears in three
disparate meanings. First, forβ > βc, the magnetization is positive, second, forβ >
βc, the surface tension is positive and third, forβ > βc, truncated correlations decay
exponentially. The facts that the transition temperatures associated with these properties
all coincideand that βc is given by the self-dual condition plays no essential role in
our arguments. Nor are any other particulars of the square lattice really used. Thus,
we believe that our results could be extended to other planar lattices without much
modification. However, in the cases where the coincidence has not yet been (or cannot
be) established, we would need to define “βc” so as to satisfy all three criteria.
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1.4. Discussion and outline.The mechanism which drives the droplet formation/disso-
lution phenomenon described in the above theorems is not difficult to understand on
a heuristic level. This heuristic derivation (which applies to all dimensionsd ≥ 2)
has been discussed in detail elsewhere [10], so we will be correspondingly brief. The
main ideas are best explained in the context of the large-deviation theory for the “grand
canonical” distribution and, as a matter of fact, the actual proof also follows this path.

Consider the Ising model in the box3L and suppose we wish to observe a mag-
netization deficiencyδM = 2m?vL from the nominal value ofm?

|3L |. Of course,
this can be achieved in one shot by the formation of a Wulff droplet at the cost of
about exp{−w1

√
vL}. Alternatively, if we demand that this deficiency emerges out of

the background fluctuations, we might guess on the basis of fluctuation-dissipation ar-
guments that the cost would be of the order

exp
{
−

(δM)2

2Var(ML)

}
≈ exp

{
−2

(m? vL)2

χ |3L |

}
, (1.21)

whereχ is the susceptibility and Var(ML) = (χ + o(1))|3L | is the variance ofML in
distributionP+,β

L . Obviously, the former mechanism dominates when
√

vL � v2
L/|3L |,

i.e., whenvL � L4/3, while the latter dominates under the opposite extreme conditions,
i.e., whenvL � L4/3. (These are exactly the regions previously treated in [28, 40]
where the corresponding statements have been established in full rigor.) In the case
whenvL/L4/3 tends to a finite limit we now find that the two terms are comparable.
This is the basis of our parameter1 defined in (1.10).

Assumingv
3/2
L /|3L | is essentially at its limit, let us instead try a droplet of vol-

umeλvL , where 0≤ λ ≤ 1. The droplet cost is now reduced to

exp
{
−w1
√

λ
√

vL
}
, (1.22)

but we still need to account for the remaining fraction of the deficiency. Assuming the
fluctuation-dissipation reasoning can still be applied, this is now

exp
{
−2

(m? vL)2

χ |3L |
(1− λ)2

}
= exp

{
−w1
√

vL(1− λ)21
}
. (1.23)

Putting these together we find that the total cost of achieving the deficiencyδM =
2m?vL using a droplet of volumeλvL is given in the leading order by

exp
{
−w181(λ)

√
vL

}
. (1.24)

An optimal droplet size is then found by minimizing81(λ) overλ. This is exactly the
content of Theorem 1.1. We remark that even on the level of heuristic understanding,
some justification is required for the decoupling of these two mechanisms. In [10], we
have argued this case on a heuristic level; in the present work, we simply provide a
complete proof.

The pathway of the proof is as follows: The approximate equalities (1.22–1.24) must
be proved in the form of upper and lower bounds which agree in theL →∞ limit. (Of
course, we never actually have to go through the trouble of establishing the formulas
involving 81(λ) for non-optimal values ofλ.) For the lower bound (see Theorem 3.1)
we simply shoot for the minimum of81(λ): We produce a near-Wulff droplet of the
desired area and, on the complementary region, allow the background fluctuations to
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account for the rest. Here, as a bound, we are permitted to use a contour ensemble with
restriction to contours oflogarithmicsize which ensures the desired Gaussian behavior.

The upper bound requires considerably more effort. The key step is to show that,
with probability close to one, there are no droplets at any scale larger than logL or
smaller than

√
vL . Notwithstanding the technical difficulties, the result (Theorem 4.1)

is of independent interest because it applies for all1 ∈ (0,∞), including the case1 =
1c. Once the absence of these “intermediate” contour scales has been established, the
proof of the main results directly follow.

We finish with a brief outline of the remainder of this paper. In the next section we
collect the necessary technical statements needed for the proof of both the upper and
lower bound. Specifically, in Section 2.1 we discuss in detail the minimizers of81, in
Section 2.2 we introduce the concept of skeletons and in Section 2.3 we list the needed
properties of the logarithmic contour ensemble. Section 3 contains the proof of the
lower bound, while Section 4 establishes the absence of contour on scales between logL
and the anticipated droplet size. Section 5 assembles these ingredients together into the
proofs of the main results.

2. Technical ingredients

This section contains three subsections: Section 2.1 presents the solution of the vari-
ational problem for function81 on the right-hand side of (1.12), while Sections 2.2
and 2.3 collect the necessary technical lemmas concerning the skeleton calculus and
the small-contour ensemble. We remark that a variety of closely related results have
appeared in literature; in particular, in [40] (and the earlier [27, 28, 48]). For complete-
ness, we will provide proofs, but keep them as brief as possible. Readers familiar with
these topics (or who are otherwise uninterested) are invited to skip the entire section
on a preliminary run-through, referring back only for definitions when reading through
Sections 3–5.

2.1. Variational problem.Here we investigate the global minima of the function81

that was introduced in (1.12). Since the general picture is presumably applicable in
higher dimensions as well (certainly at the level of heuristic arguments, see [10]), we
might as well carry out the analysis in the case of a general dimensiond ≥ 2. For the
purpose of this subsection, let

81(λ) = λ
d−1

d +1(1− λ)2, 0≤ λ ≤ 1. (2.1)

We define
8?

1 = inf
0≤λ≤1

81(λ) (2.2)

and note that8?
1 > 0 once1 > 0. Let us introduce thed-dimensional version of

(1.18),

1c =
1

d

(d + 1

2

)d+1
d

. (2.3)

The minimizers of81 are then characterized as follows:

Proposition 2.1.Let d ≥ 2 and, for any1 ≥ 0, let M1 denote the set of all global
minimizers of81 on [0, 1]. Then we have:
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(1) If 1 < 1c, thenM1 = {0}.
(2) If 1 = 1c, thenM1 = {0, λc}, where

λc =
2

d + 1
. (2.4)

(3) If 1 > 1c, thenM1 = {λ0}, whereλ0 is the maximal positive solution to the
equation

2d

d − 1
1 λ

1
d (1− λ) = 1. (2.5)

In particular, λ0 > λc.

Proof. A simple calculation shows thatλ = 0 is always a (one-sided) local minimum
of λ 7→ 81(λ), while λ = 1 is always a (one-sided) local maximum. Moreover, the
stationary points of81 in (0, 1) have to satisfy (2.5). Consider the quantity

q(λ) =
1

1

(
1− d

d−1λ1/d8′1(λ)
)
=

2d

d − 1
λ1/d(1− λ), (2.6)

i.e.,q(λ) is essentially the left-hand side of (2.5). A simple calculation shows thatq(λ)

achieves its maximal value on [0, 1] atλ = λd =
1

d+1, where it equals1−1
d = 2d2(d2

−

1)−1(d+1)−1/d, and is strictly increasing forλ < λd and strictly decreasing forλ > λd.
On the basis of these observations, it is easy to verify the following facts:

(1) For 1 ≤ 1d, we have1q(λ) < 1 for all λ ∈ [0, 1] (except perhaps atλ = λd
when 1 equals1d). Consequently,λ 7→ 81(λ) is strictly increasing through-
out [0, 1]. In particular,λ = 0 is the unique global minimum of81(λ) in [0, 1].

(2) For 1 > 1d, (2.5), resp.,1q(λ) = 1 has two distinct solutions in [0, 1]. Conse-
quently,λ 7→ 81(λ) has two local extrema in(0, 1): A local maximum atλ =
λ−(1) and a local minimum atλ = λ+(1), whereλ−(1) andλ+(1) are the mini-
mal and maximal positive solutions to (2.5), respectively.

As a simple calculation shows, the function1 7→ λ+(1) is strictly increasing on its
domain withλ+(1) ∼ 1− d−1

2d
1
1 as1→∞.

In order to decide which of the two previously described local minima (λ = 0 orλ =
λ+(1)) gives rise to the global minimum, we first note that, while81(0) = 1 tends
to infinity as1 → ∞, the above asymptotics ofλ+(1) shows that81(λ+(1)) → 1
as1→∞. Hence,λ+(1) is the unique global minimum of81 once1 is sufficiently
large. Thus, it remains to show that the two local minima interchange their roles at1 =
1c. To that end we compute

d

d1
81

(
λ+(1)

)
=

∂

∂1
81

(
λ+(1)

)
=

(
1− λ+(1)

)2
< 1, (2.7)

where we used thatλ+(1) is a stationary point of81 to derive the first equality. Com-
paring this with d

d181(0) = 1, we see that1 7→ 81(λ+(1)) increases with1 strictly
slower than1 7→ 81(0) on any finite interval of1’s. Hence, there must be a unique
value of1 for which 81(0) and81(λ+(1)) are exactly equal. An elementary com-
putation shows that this happens at1 = 1c, where1c is given by (2.3). This finishes
the proof of (1) and (3); in order to show that also (2) holds, we just need to note
thatλ+(1c) is exactlyλc as given in (2.4). ut

Proposition 2.1 allows us to define a quantityλ1 by formula (1.19), where nowλ+(1)
is the maximal positive solution to (2.5). Since lim1↓1c λ1 = λc > 0, the function
1 7→ λ1 undergoes a jump at1c.
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2.2. Skeleton estimates.In this section we introduce coarse-grained versions of con-
tours calledskeletons. These objects will be extremely useful whenever an upper bound
on the probability of large contours is needed. Indeed, the introduction of skeletons will
permit us to effectively integrate out small fluctuations of contour lines and thus ex-
press the contour weights directly in terms of the surface tension. Skeletons were first
introduced in [4,27]; here we use a modified version of the definition from [40].

2.2.1. Definition and geometric properties.Given a scales > 0, ans-skeletonis ann-
tuple(x1, . . . , xn) of points on the dual lattice,xi ∈ (Z2)∗, such thatn > 1 and

s ≤ ‖xi+1− xi ‖ ≤ 2s, i = 1, . . . , n. (2.8)

Here‖ · ‖ denotes thè2-distance onR2 andxn+1 is identified withx1. Given a skele-
ton S, let P(S) be the closedpolygonal curvein R2 induced byS. We will use|P(S)|
to denote the total length ofP(S), in accord with our general notation for the length of
curves.

A contourγ is calledcompatiblewith ans-skeletonS= (x1, . . . , xn), if

(1) γ, viewed as a simple closed path onR2, passes through all sitesxi , i = 1, . . . , n
in the corresponding order.

(2) dH(γ, P(S)) ≤ s, wheredH is the Hausdorff distance (1.13).

We writeγ ∼ S if γ andSare compatible. For each configurationσ, we let0s(σ) be the
set of alls-largecontoursγ in σ; namely allγ in σ for which there is ans-skeletonSsuch
thatγ ∼ S. Given a set ofs-skeletonsS = (S1, . . . , Sm), we say that a configurationσ
is compatiblewith S, if 0s(σ) = (γ1, . . . , γm) andγk ∼ Sk for all k = 1, . . . , m. We
will write σ ∼ S to denote thatσ andS are compatible.

It is easy to see that0s(σ) actually consists of all contoursγ of the configurationσ
such that diamγ ≥ s. Indeed, diamγ ≥ s for everyγ ∈ 0s(σ) by the conditions (1)
and (2.8) above. On the other hand, for anyγ with diamγ ≥ s, we will construct ans-
skeleton by the following procedure: Regardγ as a closed non-self-intersecting curve,
γ = (γt )0≤t≤1, whereγ0 is chosen so that supx∈γ ‖x − γ0‖ ≥ s. Then we letx1 = γ0
andx2 = γt2, wheret2 = inf{t > 0: ‖γt − γ0‖ ≥ s}. Similarly, if t j has been defined
andx j = γt j

, we let x j+1 = γt j+1
, wheret j+1 = inf{t ∈ (t j , 1] : ‖γt − γt j

‖ ≥ s}.
Note that this definition ensures that (2.8) as well as the conditions (1) and (2) hold.
The consequence of this construction is that, via the equivalence relationσ ∼ S, the set
of all skeletons induces acoveringof the set of all spin configurations.

Remark 6.The reader familiar with [27, 40] will notice that we explicitly keep the
stronger condition (1) from [27]. Without the requirement that contours pass through
the skeleton points in the given order, Lemma 2.3 and, more importantly, Lemma 2.4
below would fail to hold.

Next we will discuss some subtleties of the geometry of the skeletons stemming from
the fact that the corresponding polygons (unlike contours) may have self-intersections.
We will stay rather brief; a detailed account of the topic can be found in [27].

We commence with a few geometric definitions: LetP = {P1, . . . ,Pk} denote a
finite collection of polygonal curves. Consider a smooth self-avoiding pathL from a
point x to∞ that is generic with respect to the polygons fromP (i.e., the pathL has
a finite number of intersections with eachP j and this number does not change under
small perturbations ofL). Let #(L ∩ P j ) be the number of intersections ofL with P j .
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Then wedefine V(P) ⊂ R2 to be the set of pointsx ∈ R2 such that the total number
of intersections,

∑n
j=1 #(L ∩ P j ), is odd for any pathL from x to∞ with the above

properties. We will use|V(P)| to denote the area ofV(P).
If P happens to be a collection of skeletons,P = S, the relevant set will beV(S).

If P happens to be a collection of Ising contours,P = 0, the associatedV(0) can
be thought of as a union of plaquettes centered at sites ofZ2; we will useV(0) =
V(0) ∩ Z2 to denote the relevant set of sites. It is clear that if0 are the contours
associated with a spin configurationσ in 3 and the plus boundary condition on∂3,
thenV(0) are exactly the sitesx ∈ 3 whereσx = −1. We proceed by listing a few
important estimates concerning compatible collections of contours and their associated
skeletons:

Lemma 2.2.There is a finite geometric constant g1 such that if0 is a collection of
contours andS is a collection of s-skeletons with0 ∼ S, then∑

γ∈0

|γ| ≤ g1s
∑
S∈S

∣∣P(S)
∣∣. (2.9)

In particular, if diamγ ≤ κ for all γ ∈ 0, then we also have, for some finite constant g2,∣∣V(0)
∣∣ ≤ g2κ

∑
S∈S

∣∣P(S)
∣∣. (2.10)

Proof. Immediate from the definition ofs-skeletons. ut

Lemma 2.2 will be useful because of the following observation: LetS be a col-
lection ofs-skeletons and recall that the minimal value of the surface tension,τmin =

infn∈S1 τβ(n) is strictly positive,τmin > 0. Then∑
S∈S

Wβ

(
P(S)

)
≥ τmin

∑
S∈S

∣∣P(S)
∣∣. (2.11)

Thus the bounds in (2.9–2.10) will allow us to convert a lower bound on the overall con-
tour surface area/volume into a lower bound on the Wulff functional of the associated
skeletons.

A little less trivial is the estimate on the difference between the volumes ofV(0)
andV(S):

Lemma 2.3.There is a finite geometric constant g3 such that if0 is a collection of
contours andS is a collection of s-skeletons with0 ∼ S, then∣∣∣∣∣V(0)

∣∣− ∣∣V(S)
∣∣∣∣∣ ≤ ∣∣V(0)4V(S)

∣∣ ≤ g3s
∑
S∈S

∣∣P(S)
∣∣. (2.12)

Here V(0)4V(S) denotes the symmetric difference of V(0) and V(S).

Proof.Follows by the same arguments as used in the proof of Theorem 5.13 in [27].ut



Droplet formation in the 2D Ising model 15

2.2.2. Probabilistic estimates.The main reason why skeletons are useful is the avail-
ability of the so calledskeleton upper bound, originally due to Pfister [48]. Recall
that, for eachA ⊂ Z2, we useP+,β

A to denote the probability distribution on spins
in A with plus boundary condition on the boundary ofA. Given a set of skeletons, we
let P+,β

A (S) = P+,β
A ({σ: σ ∼ S}) be the probability thatS is a skeleton ofsome

configuration inA. Then we have:

Lemma 2.4 (Skeleton upper bound).For all β > βc, all finite A ⊂ Z2, all scales s
and all collectionsS of s-skeletons in A, we have

P+,β
A (S) ≤ exp

{
−Wβ(S)

}
, (2.13)

where
Wβ(S) =

∑
S∈S

Wβ

(
P(S)

)
. (2.14)

Proof.This is exactly Eq. (1.3.1) in [40]. The proof goes back to [48], Lemma 6.7. For
our purposes, the key “splitting” argument is provided in Lemma 5.4 of [49]. A special
case of the key estimate appears in Eq. (5.51) from Lemma 5.5 of [49] with the correct
interpretation of the left-hand side.ut

The bound (2.13) will be used in several ways: First, to show that theK log L-large
contours in a box of side-lengthL are improbable, providedK is large enough; this is
a consequence of Lemma 2.5 below. The absence of such contours will be wielded to
rule out the likelihood of other improbable scenarios. Finally, after all atypical situa-
tions have been dispensed with, the skeleton upper bound will deliver the contribution
corresponding to the term

√
λ in (1.11).

An important consequence of the skeleton upper bound is the following generaliza-
tion of the Peierls estimate, which will be useful at several steps of the proof of our
main theorems.

Lemma 2.5.Let s= K log L and letSL ,K denote the set of all s-skeletons that arise
from contours in3L . For eachβ > βc andα > 0, there is a K0 = K0(α, β) < ∞,
such that ∑

S⊂SL ,K

exp
{
−αWβ(S)

}
≤ 1 (2.15)

for (all L and) all K ≥ K0.

Proof. Let S 0
L ,K be the set of allK log L-skeletonsS such thatS = (x1, . . . , xk)

with x1 = 0. By translation invariance,∑
S⊂SL ,K

e−αWβ (S)
≤

∑
n≥1

(
L2

∑
S∈S 0

L ,K

e−αWβ (P(S))
)n

, (2.16)

where the prefactorL2 accounts for the translation entropy of each skeleton within3L .
The latter sum can be estimated by mimicking the proof of Peierls’ bound, where con-
tour entropy was bounded by that of the simple random walk onZ2. Indeed, each skele-
ton can be thought of as a sequence of steps with step-length entropy at most 32s2,
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wheres = K log L, and with each step weighted by a factor not exceedinge−τmins.
This and (2.11) yield ∑

S∈S 0
L ,K

e−αWβ (P(S))
≤

∑
m≥1

(
32s2e−ατmins)m

. (2.17)

By choosingK0 sufficiently large, the right-hand side is less than1
2 L−2 for all K ≥ K0.

Using this in (2.16), the claim follows.ut

Lemmas 2.4 and 2.5 will be used in the form of the following corollary:

Corollary 2.6. Let β > βc, L ≥ 1 and κ > 0 be fixed, and letA be the set of of
configurationsσ such thatWβ(S) ≥ κ for at least one collection of s-skeletonsS
satisfyingS ∼ σ. Letα ∈ (0, 1), and let K0(α, β) be as in Lemma 2.5. If s= K log L
with K ≥ K0(α, β), then

P+,β
L (A) ≤ e−(1−α)κ . (2.18)

Proof.By the assumptions of the Lemma, we have

P+,β
L (A) ≤

∑
S⊂SK ,L
Wβ (S)≥κ

P+,β
L (S), (2.19)

where we used the notationP+,β
L (S) = P+,β

L ({σ: σ ∼ S}). Lemma 2.4 then implies

P+,β
L (A) ≤

∑
S⊂SK ,L
Wβ (S)≥κ

e−Wβ (S)
≤ e−(1−α)κ

∑
S⊂SK ,L

e−αWβ (S). (2.20)

Here we wrotee−Wβ (S)
= e−αWβ (S)e−(1−α)Wβ (S) and then invoked to boundWβ(S) ≥

κ to estimatee−(1−α)Wβ (S) by e−(1−α)κ . Finally, we dropped the constraint toWβ(S) ≥
κ in the last sum. Sinces = K log L with K ≥ K0(α, β), the last sum is less than one
by Lemma 2.5. ut

Ideas similar to those used in the proof of Lemma 2.5 can be used to estimate the
probability of the occurrence of ans-large contour:

Lemma 2.7.For eachβ > βc, there exist a constantα(β) > 0 such that

P+,β
A

(
0s(σ) 6= ∅

)
≤ |A|e−α(β)s (2.21)

for any finite A⊂ Z2 and any scale s.

Proof. Fix α > 0 and suppose without loss of generality that|A| > 1 and s ≥
α−1 log |A| for someα > 0. If 0s(σ) 6= ∅, the associateds-skeleton must satisfyWβ(S) ≥

τmins. Invoking (2.13) a variant of the estimate (2.16–2.17) (here is wheres ≥ α−1 log |A|

enters into the play), we show thatP+,β
A (0s(σ) 6= ∅) ≤ C|A|s2e−

1
2τmins, whereC > 0

is a constant. From here the bound (2.21) follows by absorbing the factorCs2 into the
exponential. ut
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2.2.3. Quantitative estimates around Wulff minimum.The existence of a minimum for
the functional (1.6) and a coarse-graining scheme supplemented with a bound of the
type in (2.13) tell us the following: Consider a collection0 of contours, all of which
are roughly of the same scale and which enclose a fixed total volume, and suppose that
the value of the Wulff functional on aS with S ∼ 0 is close to the Wulff minimum.
Then (1) it must be the case that0 consists of a single contour and (2) the shape of this
contour must be close to the Wulff shape. A quantitative (and mathematically precise)
version of this statement is given in the forthcoming lemma:

Lemma 2.8.For anyβ ≥ βc, there exist constantsε0 = ε0(β) ∈ (0, 1), c= c(β) > 0,
and C = C(β) < ∞ such that the following holds for allε ∈ (0, ε0): Let 0 be a
collection of contours such thatdiamγ > cε

√
|V(0)| for all γ ∈ 0 and let s be a scale

function satisfying s≤ ε
√
|V(0)|. Let S be a collection of s-skeletons compatible

with 0, S ∼ 0, such that

Wβ(S) ≤ w1
√
|V(0)|(1+ ε). (2.22)

Then0 consists of a single contour,0 = {γ}, and there is an x∈ R2 such that

dH
(
V(γ),

√
|V(γ)|W + x

)
≤ c
√

ε
√
|V(γ)|, (2.23)

where W is the Wulff shape of unit area centered at the origin. Moreover,∣∣|V(γ)| − |V(S)|
∣∣ ≤ Cε|V(γ)|. (2.24)

Proof. We begin by noting that, by the assumptions of the present Lemma,|V(0)|
and|V(S)| have to be of the same order of magnitude. More precisely, we claim that∣∣|V(0)| − |V(S)|

∣∣ ≤ Cε
∣∣V(0)

∣∣ (2.25)

holds with someC = C(β) < ∞ independent of0, S andε. Indeed, from (2.11) and
(2.22) we have ∑

S∈S

∣∣P(S)
∣∣ ≤ τ−1

minWβ(S) ≤ w1(1+ ε)τ−1
min

√
|V(0)|, (2.26)

which, using Lemma 2.3 and the boundss ≤ ε
√
|V(0)| and ε ≤ 1, gives (2.25)

with C = 2g3w1τ
−1
min.

The bound (2.25) essentially allows us to replaceV(0) by V(S) in (2.22). Applying
Theorem 2.10 from [27] to the set of skeletonsS rescaled by|V(S)|−1/2, we can
conclude that there is pointx ∈ R2 and a skeletonS0 ∈ S such that

dH
(
P(S0),

√
|V(S)|∂W + x

)
≤ α
√

ε
√
|V(S)|, (2.27)

and ∑
S∈S\{S0}

∣∣P(S)
∣∣ ≤ αε

√
|V(S)|, (2.28)

whereα is a constant proportional to the ratio of the maximum and the minimum of
the surface tension. Using (2.25) once more, we can modify (2.27–2.28) by replacing
V(S) on the right-hand sides byV(0) at the cost of changingα to α(1+C). Moreover,
since (2.25) also implies that|

√
|V(0)| −

√
|V(S)|| ≤ Cε

√
|V(0)|, we have

dH
(√
|V(0)|∂W,

√
|V(S)|∂W

)
≤ Cε diamW

√
|V(0)|. (2.29)
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Let γ ∈ 0 be the contour corresponding toS0. By the definition of skeletons, we have
dH(γ, P(S0)) ≤ s ≤ ε

√
|V(0)|. Combining this with (2.29), the modified bound (2.27),

andε ≤ 1, we get

dH
(
γ,

√
|V(0)|∂W + x

)
≤ c
√

ε
√
|V(0)| (2.30)

for anyc ≥ 1+ α(1+ C) + C diamW. (From the properties ofW, it is easily shown
that diamW is of the order of unity.)

Let us proceed by proving that0 = {γ}. For anyγ′ ∈ 0 \ {γ}, let Sγ′ be the unique
skeleton inS such thatγ′ ∼ Sγ′ . Since diamγ′ ≤ |P(Sγ′)|+s and, since also|P(Sγ′)| ≥
s, we have diamγ′ ≤ 2|P(Sγ′)|. Using the modified bound (2.28), we get

diamγ′ ≤ 2
∣∣P(Sγ′)

∣∣ ≤ 2α(1+ C)ε
√
|V(0)|. (2.31)

If c also satisfies the inequalityc > 2α(1 + C), then this estimate contradicts the
assumption that diamγ′ ≥ cε

√
|V(0)| for all γ′ ∈ 0. Hence,0 = {γ} as claimed.

Thus,V(0) = V(γ) and the bound (2.24) is directly implied by (2.25). Moreover,
(2.30) holds withV(0) replaced byV(γ) on both sides. To prove (2.23), it remains to
show that the nakedγ on the left-hand side of (2.30) can be replaced byV(γ). But that
is trivial becauseγ is the boundary ofV(γ) and the Hausdorff distance of two closed
sets inR2 equals the Hausdorff distance of their boundaries.ut

2.3. Small-contour ensemble.The goal of this section is to collect some estimates for
the probability inP+,β

L conditioned on the fact that all contours ares-small in the sense
that 0s(σ) = ∅. Most of what is to follow appears, in various guises, in the existing
literature (cf Remark 7). For some of the estimates (Lemmas 2.9 and 2.10) we will
actually provide a proof, while for others (Lemma 2.11) we can quote directly.

2.3.1. Estimates using the GHS inequality.The principal resource for what follows are
two basic properties of the correlation function of Ising spins. Specifically, let〈σx; σy〉

+,β
A,h

denote the truncated correlation function of the Ising model in a setA ⊂ Z2 with plus
boundary condition, in non-negative inhomogeneous external fieldsh = (hx) and in-
verse temperatureβ. Then:

(1) If β > βc, then the correlations in infinite volume decay exponentially, i.e., we have

〈σx; σy〉
+,β

Z2,h
≤ e−‖x−y‖/ξ (2.32)

for someξ = ξ(β) <∞ and allx andy.
(2) The GHS inequality implies that the finite-volume correlation function,〈σx; σy〉

+,β
A,h ,

is dominated by the infinite-volume correlation function at any pointwise-smaller
field:

0≤ 〈σx; σy〉
+,β
A,h ≤ 〈σx; σy〉

+,β

Z2,h′
(2.33)

for all A ⊂ Z2 and allh′ = (h′x) with h′x ∈ [0, hx] for all x.
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Note that, via (2.33), the exponential decay (2.32) holds uniformly inA ⊂ Z2. Part (1)
is a consequence of the main result of [24], see [53]; the GHS inequality from part (2)
dates back to [34].

Now we are ready to state the desired estimates. LetA ⊂ Z2 be a finite set and lets
be a scale function. LetP+,β,s

A be the Gibbs measure of the Ising model inA ⊂ Z2

conditioned on the event{0s(σ) = ∅} and let us use〈−〉+,β,s
A to denote the expectation

with respect toP+,β,s
A . Then we have the following bounds:

Lemma 2.9.For eachβ > βc, there exist constantsα1(β) andα2(β) such that∣∣〈MA〉
+,β,s
A −m?

|A|
∣∣ ≤ α1(β)

(
|∂A| + |A|2e−α2(β) s) (2.34)

for each finite set A⊂ Z2 and any scaling function s. Moreover, if A′ ⊂ A, then∣∣〈MA〉
+,β,s
A − 〈MArA′〉

+,β,s
ArA′

∣∣ ≤ α1(β)
(
|A′| + |A|2e−α2(β) s). (2.35)

Proof. By Lemma 2.7, we haveP+,β
A (0s(σ) 6= ∅) ≤ |A|e−α2s for someα2 > 0, inde-

pendent ofA. Note that we can suppose that|A|e−α2s does not exceed, e.g., 1/2, be-
cause otherwise (2.34–2.35) can be ensured by deterministic estimates. An easy bound
then shows that, for someα′1 = α′1(β) <∞,∣∣〈MA〉

+,β,s
A − 〈MA〉

+,β
A

∣∣ ≤ α′1|A|
2e−α2s. (2.36)

Therefore, it suffices to prove the bounds (2.34–2.35) without the restriction to the
ensemble ofs-small contours. The proof will use that, for anyB ⊂ Z2 we have

0≤ 〈σx〉
+,β
B − 〈σx〉

+,β
B∪{y} ≤ e−‖x−y‖/ξ . (2.37)

This inequality is a direct consequence of properties (1-2) above. The original derivation
goes back to [17].

The bound (2.37) immediately implies both (2.34) and (2.35). Indeed, using (2.37)
for all x ∈ A andy ∈ B \ A, we have for allA ⊆ B ⊆ Z2 that

0≤ 〈MA〉
+,β
A − 〈MA〉

+,β
B ≤

∑
x∈A

∑
y∈B\A

e−‖x−y‖/ξ
≤ α′′1|∂A|, (2.38)

whereα′′1 = α′′1(β) < ∞. This and (2.36) directly imply (2.34). To get (2.35), we also
need to note that|MA − MA\A′ | ≤ |A′|. ut

Our next claim concerns an upper bound on the probability that the magnetization
in the plus state deviates from its mean by a positive amount:

Lemma 2.10.Let β > βc and letχ = χ(β) be the susceptibility. Then there exists a
constant K= K (β) such that

P+,β,s
A

(
MA ≥ 〈MA〉

+,β
A +m? v

)
≤ 2e−

(vm?)2
2χ |A| (2.39)

for any finite A⊂ Z2, anyv ≥ 0, and any s≥ K log |A|.
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Proof.LetM denote the eventM = {σ: MA ≥ 〈MA〉
+,β
A +m? v}. By Lemma 2.7 we

have thatP+,β,s
A (M) ≤ 2P+,β

A (M), so we just need to estimateP+,β
A (M). Consider

the cumulant generating functionF+,β
A (h) = log〈ehMA〉

+,β
A . The exponential Cheby-

shev inequality then gives

log P+,β
A (M) ≤ F+,β

A (h)− h〈MA〉
+,β
A − hm? v, h ≥ 0. (2.40)

By the property (2) of the truncated correlation function, we get

d2F+,β
A

dh2
(h) = 〈MA;MA〉

+,β
A,h ≤ 〈MA;MA〉

+,β
A,0 , (2.41)

whereh = (hx) with hx = h for all x ∈ Z2 and where0 is the zero field. SinceF+,β
A (0) =

0 and d
dh F+,β

A (0) = 〈MA〉
+,β
A , we get the bound

F+,β
A (h) ≤ h〈MA〉

+,β
A +

h2

2
〈MA;MA〉

+,β
A,0 . (2.42)

Now, once more by the property (2) above,

|A|−1
〈MA;MA〉

+,β
A,0 ≤ |A|

−1
〈MA;MA〉

+,β

Z2,0
≤ |A|−1

∑
x∈A

∑
y∈Z2

〈σx; σy〉
+,β
= χ,

(2.43)
where the sums converge by the property (1) above. The claim now follows by optimiz-
ing overh. ut

Remark 7.The bound in Lemma 2.10 corresponds to Eq. (9.33) of Proposition 9.1 in
[49] proved with the help of Lemma 5.1 from [48]. Similarly, the estimates in Lemma 2.9
are closely related to the bounds in Lemma 2.2.1 of [40]. We included the proofs of both
statements to pinpoint the exact formulation needed for our analysis as well as to reduce
the number of extraneous references.

2.3.2. Gaussian control of negative deviations.Our last claim concerns the deviations
of the plus magnetization in thenegativedirection. Unlike in the previous Section, here
the restriction to the small contour is crucial because, obviously, if the deviation is too
large, there is a possibility of forming a droplet which cannot be controlled by bulk
estimates.

Let β > βc and letv be such that〈MA〉
+,β,s
A − 2m? v is an allowed value ofMA.

Define�s
A(v) by the expression

P+,β,s
A

(
MA = 〈MA〉

+,β,s
A −2vm?

)
=

1
√

2πχ |A|
exp

{
−2

(m?)2

χ |A|
v2
+�s

A(v)
}
. (2.44)

Then we have:

Lemma 2.11 (Gaussian estimate).For eachβ > βc and each set of positive constants
a1, a2, a3, there are constants C<∞ and K <∞ such that if s= K log L, then

∣∣�s
A(v)

∣∣ ≤ C max
{

K
v2

L3
log L ,

v3

L4

}
(2.45)
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for all allowed values ofv such that

0≤ v ≤ a1
L2

log L
(2.46)

and all connected sets A⊂ Z2 such that

a2L2
≤ |A| ≤ L2 and |∂A| ≤ a3L log L . (2.47)

Proof.This is a reformulation of (a somewhat nontrivial) Lemma 2.3.3 from [40].ut

3. Lower bound

In this Section we establish a lower bound for the asymptotic stated in (1.11). In addition
to its contribution to the proof of Theorem 1.1, this lower bound will play an essential
role in the proofs of Theorem 1.2 and Corollary 1.3. A considerable part of the proof
hinges on the Fortuin-Kasteleyn representation of the Ising (and Potts) models, which
makes the technical demands of this section rather different from those of the following
sections.

3.1. Large-deviation lower bound.This section is devoted to the proof of the following
theorem:

Theorem 3.1 (Lower bound).Letβ > βc and let(vL) be a sequence of positive num-
bers such that m? |3L | − 2m? vL is an allowed value of ML for all L. Suppose that the
limit (1.10) exists with1 ∈ (0,∞). Then there exists a sequence(εL) with εL → 0
such that

P+,β
L

(
ML = m?

|3L | − 2m? vL
)
≥ exp

{
−w1
√

vL
(

inf
0≤λ≤1

81(λ)+ εL
)}

(3.1)

holds for all L.

Remark 8.It is worth noting that, unlike in the corresponding statements of the lower
bounds in [27, 40], we do not require any control over how fast the errorεL tends
to zero asL → ∞. Indeed, it turns out that in the regime of finite1, the simple
convergenceεL → 0 will be enough to prove our main results. However, in the cases
whenvL tends to infinity so fast that1 is infinite, a proof would probably need also
someinformation about the rate of the convergenceεL → 0.

The strategy of the proof will simply be to produce a near-Wulff droplet that com-
prises a particular fraction of the volumevL . The droplet will account for its requisite
share of the deficit magnetization and we then force the exterior to absorb the rest. The
probability of the latter event is estimated by using the truncated contour ensemble.

Let us first attend to the production of the droplet. Consider the Wulff shapeW of
unit area centered at the origin and a closed, self-avoiding polygonal curveP ⊂ W. We
will assume that the vertices ofP have rational coordinates and, ifN denotes the number
of vertices ofP, that each vertex is at most 1/N away from the boundary ofW. Let IntP
denote the set of pointsx ∈ R2 surrounded byP. For anyt, r > 1, let P0, P1, P2, P3
be four magnified copies ofP obtained by rescalingP by factorst , t + r , t + 2r , and
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Fig. 2. An illustration of the “coronas”KI
t,r , KII

t,r , KIII
t,r , the setsINT andEXT, and the∗-connected cir-

cuitsC+ andC− of plus and minus sites, respectively, which are used in Lemma 3.2 and the proof of The-
orem 3.1. Going from inside out, the four polygons correspond toP0, P1, P2 andP3; the shaded region
denotes the setA±.

t + 3r , respectively. (Thus, for instance,P0 = {x ∈ R2 : x/t ∈ P}.) This yields three
“coronas” K I

t,r = Int P1 \ Int P0, K II
t,r = Int P2 \ Int P1, and K III

t,r = Int P3 \ Int P2

surroundingP0. Let KI
t,r = K I

t,r ∩ Z2, and similarly forKII
t,r andKIII

t,r .
Recall that a∗-connected circuit inZ2 is a closed path on vertices ofZ2 whose

elementary steps connect either nearest or next-nearest neighbors. LetEt,r be the set
of configurationsσ such thatKI

t,r contains a∗-connected circuit of sitesx ∈ Z2 with
σx = −1 andKIII

t,r contains a∗-connected circuit of sitesx ∈ Z2 with σx = +1. The
essential part of our lower bound comes from the following estimate:

Lemma 3.2.Let β > βc and letP be a polygonal curve as specified above. For any
pair of sequences(tL) and(rL) tending to infinity as L→∞ in such a way that

tL L−1
→ 0, tLrLe−rLτmin/3

→ 0 and rL t−1
L → 0, (3.2)

there is a sequence(ε′L) with ε′L → 0 such that

P+,β
L (EtL ,rL ) ≥ exp

{
−tLWβ(P)(1+ ε′L)

}
, (3.3)

for all L ≥ 1.

The proof of this lemma requires some substantial preparations and is therefore de-
ferred to Section 3.2. Using Lemma 3.2, we can prove Theorem 3.1.

Proof of Theorem 3.1.Let us introduce the abbreviation

ML =
{
σ: ML = m?

|3L | − 2m? vL
}

(3.4)
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for the central event in question. Suppose first that1 ≤ 1c, where1c is as in (1.18).
Proposition 2.1 then guarantees that inf0≤λ≤1 81(λ) = 81(0) = 1. In particular, there
is no need to produce a droplet in the system. Lets= K log L. By restricting to the set
of configurations{σ: 0s(σ) = ∅} we get

P+,β
L (ML) ≥ P+,β,s

L (ML)P+,β
L

(
0s(σ) = ∅

)
. (3.5)

The resulting lower bound is then a consequence of (2.44), Lemma 2.11 and Lemma 2.7,
providedK is sufficiently large.

To handle the remaining cases,1 > 1c, we will have to produce a droplet. Fix a
polygonP with the above properties, let Vol(P) denote the two-dimensional Lebesgue
volume of its interior, and let|P| denote the size (i.e., length) of its boundary. Letλ =
λ1, whereλ1 is as defined in (1.19), and recall that, for this choice ofλ, we have
81(λ) = inf0≤λ′≤1 81(λ′) andλ ≥ λc > 0. Since the goal is to produce a droplet
of volume λvL , we let tL =

√
λvL and pickrL be such that (3.2) holds asL →

∞. AbbreviatingEL = EtL ,rL , we let (ε′L) denote the corresponding sequence from
Lemma 3.2. (Note thatε′L may depend onP.)

For configurations inEL , let C+ be the innermost∗-connected circuit of plus spins
in KIII

t,r and letC− denote the outermost∗-connected circuit of minus spins inKI
t,r .

Let INT be the set of sites in the interior ofC− and letEXT be the set of sites in3L that
are in the exterior ofC+. (Thus, we haveINT ∩ C− = EXT ∩ C+ = ∅.) Further, letA± =
3L \ (INT ∪ EXT) and useσ± to denote the spin configuration onA±. Let MINT, MEXT

andM± denote the overall magnetization inINT, EXT andA±, respectively. Finally, let
us abbreviateµINT = b〈MINT〉

+,β,s
INT c and introduce the eventE ′L = {σ ∈ EL : MINT =

−µINT}.
The lower bound onP+,β

L (ML) will be derived by restricting to the eventE ′L , condi-
tioning onσ±, extracting the probability of having the correct magnetization in3L\A±,
and applying Lemma 2.11 to retrieve the contribution from droplet surface tension. The
first two steps of this program give

P+,β
L (ML) ≥ P+,β

L (ML ∩ E ′L) ≥
∑
σ±

P+,β
L (ML ∩ E ′L |σ±)P+,β

L (σ±). (3.6)

Our next goal is to produce a lower bound of the type (3.1) onP+,β
L (ML ∩ E ′L |σ±),

uniformly inσ±. The advantage of conditioning on a fixed configuration is that, ifML∩

E ′L ∩ {σ±} occurs, the overall magnetizations inINT andEXT are fixed. Thus, onML ∩

E ′L ∩ {σ±} we get

MEXT = ML − M± − MINT = 〈MEXT〉
+,β,s
EXT − 2m? vL

(
1− λVol(P)− δL

)
, (3.7)

whereδL = δL(σ±) is given by the equation 2m? vLδL = I + II + III + IV with I–IV
defined by

I = µINT −m?
|INT|, II = −〈MEXT〉

+,β,s
EXT +m?

|EXT|, (3.8)

III = −M± +m?
|A±|, IV = 2m?

(
|INT| − λVol(P)vL

)
. (3.9)

To estimate I–IV, we first notice the geometric bounds

t2
LVol(P)− tL |P| ≤ |INT| ≤ (tL + rL)2Vol(P)+ (tL + rL)|P|,

|A±| ≤ (tL + 3rL)2
− t2

L + (tL + 3rL)|P|,
(3.10)
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and recall that, since bothC+ and C− are contained inA±, we have|C−|, |C+| ≤
|A±|. Lemma 2.9 fors = K log L then allows us to estimate|I| ≤ α1(β)(|A±| +
|INT|2L−α2(β)K ) and, similarly,|II | ≤ α1(β)(|A±| + 4L + L4−α2(β)K ), while the re-
maining two quantities are bounded by invoking|III | ≤ 2|A±| and |IV | ≤ 4rL tL +
2r 2

L + 2(tL + rL)|P|. Using thatrL = o(
√

vL) and tL = O(
√

vL), we have|A±| =
o(vL) as L → ∞. Moreover, if K is so large that 4− α2(β)K < 4/3, we also
have|INT|2L−α2(β)K

≤ L4−α2(β)K
= o(vL) asL →∞. Combining these bounds, it is

easy to show that|δL(σ±)| ≤ δ̄L for all σ±, whereδ̄L is a sequence such that limL→∞ δ̄L =

0.
Now we are ready to estimate the probability that bothINT andEXT produce their

share of magnetization deficit. Note first that

P−,β
INT (MINT = −µINT) ≥ P−,β,s

INT (MINT = −µINT)P−,β
INT

(
0s(σ) = ∅

)
. (3.11)

Using Lemmas 2.11 and 2.7, we getP−,β
INT (MINT = −µINT) ≥ C L−2/3 for someC =

C(β) > 0. On the other hand, lettingMEXT = {σ: MEXT = 〈MEXT〉
+,β,s
EXT − 2m? vL(1−

λVol(P)−δL)}, a bound similar to (3.11) forP+,β
EXT combined with Lemmas 2.11 and 2.7

yields

P+,β
EXT (MEXT) ≥

C′
√
|EXT|

exp
{
−2

(m? vL)2

χ |EXT|

(
1− λVol(P)− δL

)2
}
, (3.12)

whereC′ = C′(β) > 0 is independent ofσ± contributing to (3.6). Combining the
previous estimates, we can use Lemma 3.2 to extract the surface energy term. The result
is

P+,β
L (ML) ≥ C′′L−5/3 exp

{
−w1
√

vL 8L − ε′L
√

vL
}
, (3.13)

whereC′′ = C′′(β) > 0 and where8L stands for the quantity

8L =
Wβ(P)

w1

√
λ+

2(m?)2χ−1w−1
1 v

3/2
L

L2− (tL + rL)2

(
1− λVol(P)+ δ̄L

)2
. (3.14)

As is clear from our previous reasoning, the quantity8L can be made arbitrary close
to 81(λ) by letting L → ∞ and optimizing overP with the above properties. The
existence of the desired sequence(εL) then follows by the definition of the limit. ut

3.2. Results using random-cluster representation.In this section we establish some
technical results necessary for the completion of the proof of our lower bound. These
results are stated mostly in terms of the random cluster counterpart of the Ising model;
the crowning achievement, which is Lemma 3.5, gives immediately in the proof of
Lemma 3.2. We remark that the latter is the sum total of what this section contributes
to the proof of Theorem 3.1. The uninterested, or well-informed, readers are invited to
skip the entire section, provided they are prepared to accept Lemma 3.2 without a proof.
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3.2.1. Preliminaries.Therandom clusterrepresentation for the Ising (and Potts) ferro-
magnets is by now a well established tool. The purpose of the following remarks is to
define our notation; for more background and details we refer the reader to, e.g., [12,35]
or the excellent review [32].

Let T ⊂ Z2 denote a finite graph. Abond configuration, generically denoted byω, is
the assignment of a zero (vacant) or a one (occupied) to each bond inT. The weight of
a configurationω is given, informally, byR|ω|qC(ω), where|ω| denotes the number of
occupied bonds andC(ω) denotes the number of connected components. For the Ising
system at hand we haveq = 2 andR= e2β

−1. The precise meaning ofC(ω) depends
on the boundary conditions; of concern here are the so calledfreeandwired boundary
conditions. In the former,C(ω) is the usual number of connected components including
the isolated sites, while in the latter all clusters touching the bond-complement ofT are
identified as a single component.

The free and wired random-cluster measures in3L , denoted byPfree,β
L ,FK and Pw,β

L ,FK,
respectively, correspond to the free and plus (or minus) boundary conditions in the
Ising spin system. Both random-cluster measures enjoy the FKG property and the wired
measure stochastically dominates the free measure. The infinite volume limits of these
measures also exist; we denote these limiting objects byPfree,β

FK and Pw,β
FK . The most

important type of event we shall consider is the event that sites are connected by paths
of occupied bonds. Our notation is as follows: Ifx, y ∈ T, we define{x ←→ y} to be
the event that there is such a connection. If we demand the existence of a path using
only bonds with both ends in some subgraphA ⊂ T, we write{x←→

A
y}.

The next concept we need to discuss isduality. For anyT ⊂ Z2, thedual graphT∗
is defined as follows: Each bond ofT is transversal to a bond on(Z + 1

2) × (Z +
1
2) = (Z2)∗. These bonds are the bonds ofT∗; the sites ofT∗ are the endpoints of
these bonds. Each configurationω induces a configuration on the dual graph via the
correspondence “direct occupied” with “dual vacant” andvice versa. It turns out that,
if we start with either free or wired boundary conditions onT, the weights for the dual
configurations are also random-cluster weights with parameters(q∗, R∗) = (q, q/R),
provided we also interchange the designation of “free” and “wired.” Of course, the
graph and its dual are not precisely the same. For example, if we examine the relevant
graph for the problem dual to the wired system in3L , this consists of an(L + 1) ×
(L+1) rectangle with the corners missing. Moreover, because the boundary conditions
on the dual graph are free, all dual edges touching the boundary sites are occupied
independently of the rest of the configuration. Thus, ignoring these decoupled degrees
of freedom, the restricted measure is equivalent to a free measure on3L−1.

In general, we will useβ∗ to denote the inverse temperature dual toβ, which, forq =
2 and the normalization of the Hamiltonian (1.1), is related toβ via β∗ = 1

2 log cothβ.
The critical temperature is self dual, i.e.,βc =

1
2 log cothβc. For β > βc, the dual

model is in the high-temperature phase. Hence, the limiting free and wired measures
atβ∗ coincide and, using the well-known relation between the spin-correlations and the
connectivity functions in the FK representation, we have

Pfree,β∗

FK (x←→ y) = Pw,β∗

FK (x←→ y) = 〈σ0σx〉
+,β∗ , (3.15)

for all x, y ∈ Z2. Thus, the exponential decay of correlations in the spin system at
high temperatures,〈σ0σx〉

+,β∗
≤ e−‖x−y‖/ξ whereξ = ξ(β∗) is the correlation length,

corresponds to an exponential decay of the connectivity probabilities. In particular, the
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surface tensionat β > βc, as defined in (1.5) for unit vectorsn with rationally related
components, is the inverse of the correlation length for two point connectivity functions
in the directionn at inverse temperatureβ∗.

3.2.2. Decay estimates.Here we assemble two important ingredients for the proof of
Lemma 3.2. We begin by quantifying the decay of the point-to-boundary connectivity
function:

Lemma 3.3.Consider the q= 2 random cluster model atβ < βc (which corresponds
to the high-temperature phase of the Ising system). Then,

Pw,β
`,FK

(
{0←→ ∂3`}

)
≤ 4`e−`/ξ (3.16)

for all ` ≥ 1.

Proof.This is one portion of the proof of Proposition 4.1 in [23].ut

For the purposes of the next lemma, letn be a unit vector with rationally related
components and letC(n) be the set of all pairs(a, b) of positive real numbers such that
the a × b rectangle with sideb perpendicular ton can be positioned inR2 in such a
way that all its four corners are inZ2. We will useRn

a,b ⊂ Z2 to denote a generica× b
rectangle with the latter property. Ifx andy are the two corners along the sameb-side
of Rn

a,b, we letBn
a,b denote the event{x←→

Rn
a,b

y}.

Lemma 3.4.Let β ∈ (0, βc) and letβ∗ = 1
2 log cothβ. Let n be a unit vector with

rationally related components and suppose that L, aL and bL , with (aL , bL) ∈ C(n),
tend to infinity in such a way that aL/L → 0, bL/L → 0 anddist(Rn

a,b, Z2
\3L)/(bL+

log L)→∞ as L→∞. Then

lim
L→∞

Pfree,β
L ,FK

(
Bn

aL ,bL

)1/bL
≥ e−τβ∗ (n). (3.17)

Proof.We will first establish the limit (3.17) for the measure in infinite volume and then
show that providedRn

L are well separated fromZ2
\3L as specified, the finite volume

effects are not important. Throughout the proof, we will omit the subscriptβ∗ for the
surface tension.

Fix n ∈ S1 with rationally related components and letβ < βc. Let

θ n
a,b = Pw,β

FK

(
Bn

a,b

)
, (a, b) ∈ C(n), (3.18)

and note that if(a, b1) ∈ C(n) and(a, b2) ∈ C(n) with b2 ≥ b1, then also(a, b1+b2) ∈
C(n) and(a, b2 − b1) ∈ C(n). We begin by the claim that the events in question enjoy
a subadditive property:

θ n
a,b1+b2

≥ θ n
a,b1

θ n
a,b2

, (a, b1), (a, b2) ∈ C(n). (3.19)

Indeed, we letRn
a,b2

be translated relative toRn
a,b1

so that the “left”a-side of Rn
a,b2

coincides with the “right”a-side ofRn
a,b1

. Let x1 andy1 be the “left” and “right” bottom
corners ofRn

a,b1
and letx2 andy2 be similar corners ofRn

a,b2
. By our construction,y1

andx2 coincide. LetRn
a,b1+b2

denote the unionRn
a,b1
∪ Rn

a,b2
. Then{

x1 ←→
Rn

a,b1+b2

y2
}
⊃

{
x1←→

Rn
a,b1

y1
}
∩

{
x2←→

Rn
a,b2

y2
}
. (3.20)
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The inequality (3.19) then follows immediately from the FKG property of the mea-
surePw,β

FK .
Let A(n) = {a > 0: ∃b > 0, (a, b) ∈ C(n)} be the set of allowed values ofa.

As a consequence of subadditivity, for anya ∈ A(n) we have the existence of the
limit e−$a(n)

= limb→∞(θ n
a,b)

1/b. (Hereb only takes values such that(a, b) ∈ C(n).)
Further, ifa1, a2 ∈ A(n) with a1 ≥ a2, then thereis a b such that both(a1, b) ∈ C(n)
and (a2, b) ∈ C(n), and, for any suchb, we haveθ n

a1,b
≥ θ n

a2,b
. Thence$a1(n) ≤

$a2(n) whenevera1, a2 ∈ A(n) satisfya1 ≥ a2. Let$(n) = lima→∞$a(n), wherea’s
are restricted toA(n). Now the quantityθ n

∞,b = lima→∞ θ n
a,b, where(a, b) ∈ C(n), still

obeys the subadditivity relation (3.19) and, in particular, thehalf-spacesurface tension
τh(n) is well defined by the limit

e−τh(n)
= lim

b→∞
lim

(a,b)∈C(n)
a→∞

(θ n
a,b)

1/b. (3.21)

Moreover,θ n
∞,b ≥ θ n

a,b for all a andb such that(a, b) ∈ C(n) and, therefore,τh(n) ≤
$(n). Our goal is to demonstrate thatτh(n) = $(n) and that the half-space surface
tensionτh(n) equals the full space surface tensionτ(n).

Let ε > 0. Then there is ab? such thatθ n
∞,b? ≥ e−b?(τh(n)+ε). However, since

θ n
∞,b? simply equalsthe limit of θ n

a,b? asa → ∞, there is ana? such thatθ n
a?,b? ≥

e−b?(τh(n)+2ε). Thence$(n) ≤ τh(n) and the equality ofτh(n) and $(n) follows.
To remove the half-space constraint, consider the analogue of the previously defined
events. Letx and y be related toRn

a,b as in the definition of eventBn
a,b and letDn

a,b
denote the union ofRn

a,b and its reflection through the line joiningx andy. Let

ρ n
a,b = Pw,β

FK

(
{x←→

Dn
a,b

y}
)
. (3.22)

Reasoning identical to that employed thus far yields

e−τ(n)
= lim

b→∞
lim

a→∞
(ρ n

a,b)
1/b
= lim

a→∞
lim

b→∞
(ρ n

a,b)
1/b, (3.23)

where we tacitly assume(a, b) ∈ C(n) for the production of both limits. Now, obvi-
ously,ρ n

a,b ≥ θ n
a,b and henceτ(n) ≤ τh(n). To derive the opposite inequality, we note

that for eacha ∈ A(n), there is ag(a) > 0 such that

θ n
2a,b ≥ g(a)ρ n

a,b, (a, b) ∈ C(n). (3.24)

Indeed, the event giving rise toθ n
2a,b can certainly be achieved by connecting the bottom

corners ofRn
2a,b directly to the middle points and then connecting the middle points on

the oppositea-sides ofRn
2a,b. Then (3.24) follows by FKG. (To get thatg(a) > 0, we

also used thatβ > 0.) Taking the 1/b-th power of both sides of (3.24) and lettingb→
∞ followed bya→∞ we arrive at$(n) = τh(n) = τ(n) as promised.

To finish the proof, we must account for the effects of finite volume. Consider the
eventFn

a,b = {∂Rn
a,b ↔ ∂3L}. ShouldFn

a,b not occur, a vacant ring separatesRn
a,b

from ∂3L and, using fairly standard arguments, we have

Pfree,β
L ,FK (Bn

a,b) ≥ Pw,β
FK

(
Bn

a,b

∣∣(Fn
a,b)

c). (3.25)
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On the other hand, by Lemma 3.3, we have

Pw,β
FK (Fn

a,b) ≤ Pw,β
L ,FK(Fn

a,b) ≤ 8L(a+ b) e−dist(∂Rn
a,b,∂3L )/ξ . (3.26)

Thus if the distance between∂Rn
a,b and∂3L exceeds a large multiple ofbL + log L, the

dominant contribution toPw,β
FK (Bn

a,b) comes fromPw,β
FK (Bn

a,b

∣∣(Fn
a,b)

c). Using (3.25),
the claim follows. ut

3.2.3. Corona estimates.We recall the “corona” regionsKI
t,r –KIII

t,r associated with
some given polygonP. In addition, we will also need to consider the collection of dual
sitesK∗IIt,r = K II

t,r ∩ (Z2)∗, where(Z2)∗ is the lattice dual toZ2. (This differs slightly
from the graph dual toKII

t,r by some boundary sites.) In the context of the random clus-
ter model (and its dual) we will consider three events: The first event, to be denotedE I

t,r ,
takes place inKI

t,r and is defined by

E I
t,r =

{
ω : there is a circuit of occupied bonds inKI

t,r surrounding the origin
}
.

(3.27)
The eventE III

t,r is defined similarly except that the circuit takes place in the regionKIII
t,r .

Finally, one more circuit, this time a dual circuit in the regionKII∗
t,r . We define

E II∗
t,r =

{
ω : there is a dual circuit of vacant bonds inK∗IIt,r surrounding the origin

}
.

(3.28)
As we will see in the proof of Lemma 3.2, the eventE I

t,r ∩E II∗
t,r ∩E III

t,r more or less implies
the desired eventEt,r . The desired lower bound will then be an immediate consequence
of the following lemma:

Lemma 3.5.Letβ > βc and letP be as in Lemma 3.2. For any sequences(tL) and(rL)
satisfying (3.2), there is a sequence(ε′′L) such thatε′′L → 0 and, for all L,

Pw,β
L ,FK

(
E I

tL ,rL
∩ E II∗

tL ,rL
∩ E III

tL ,rL

)
≥ exp

{
−tLWβ(P)(1+ ε′′L)

}
. (3.29)

Proof. In the course of this proof, let us abbreviateE I
L = E

I
tL ,rL

, and similarly forE II∗
L

andE III
L , as well asKI

L , K∗IIL , andKIII
L . We will start with an estimate forPw,β

L ,FK(E II∗
L ),

which is in any case the central ingredient of this lemma. LetT be the smallest inte-
ger T ≥ 2 such that the polygonP magnified byT has all vertices onZ2. Let uL =

Tb(tL + rL)/Tc + T and let x1, . . . , xN be the vertices of the polygonP magni-
fied by uL . Let x∗1, . . . , x∗N be the corresponding vertices of the polygonP magnified
by uL and translated by(−1

2,−1
2). Notice that (oncetL andrL are large enough) the

sitesx∗1, . . . , x∗N lie inside the “corona”K∗IIL . We useni to denote the unit vector con-
stituting the outer normal to the side betweenx∗i+1 and x∗i (wherex∗N+1 is identified
with x∗1). By our construction,x1, . . . , xN ∈ Z2, x∗1, . . . , x∗N ∈ (Z2)∗ and ni have
rationally related components.

For i = 1, . . . , N, let us consider the rectanglesRni
ai ,bi

with the base coinciding with
the line betweenx∗i andx∗i+1. Hereai is the largest possible number such that(ai , bi ) ∈

C(ni ) andRni
ai ,bi
⊂ K∗IIL . We remark that all(ai ) and(bi ) haveL-dependence which is
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notationally suppressed and that these tend to infinity asL →∞. In particular, thebi ’s
scale withuL . Let us denote

bi = lim
L→∞

bi

tL
, i = 1, . . . , N, (3.30)

where the limit exists by the construction ofbi ’s and where we noted thattL/uL → 1
asL →∞.

Let B∗i be the event that there is a dual vacant connectionx∗i ←→ x∗i+1 in the
box Rni

ai ,bi
and letBi be the corresponding “direct” event that there is a direct occu-

pied pathxi ←→ xi+1 contained in(1
2, 1

2)-translate ofRni
ai ,bi

. It is clear that the in-

tersection
⋂N

i=1B∗i produces the eventE II∗
L and that these events are FKG-correlated.

Moreover, by duality, we have

Pw,β
L ,FK(B∗i ) = Pfree,β∗

L−1,FK(Bi ) (3.31)

(c.f., the paragraph before (3.15)). Now we are perfectly positioned to apply Lemma 3.4:
Using FKG, the scaling relation (3.30), and the fact that also thea j ’s tend to infinity by
our construction, we have as a consequence of the above-mentioned lemma that

lim
L→∞

Pw,β
L ,FK

(
E II∗

L

)1/tL
= exp

{
−

N∑
j=1

b j τβ(n j )
}
. (3.32)

The remainder of the proof concerns the estimate of the probabilityPw,β
L ,FK(E I

L ∩

E III
L |E

II∗
L ). We claim that this conditional probability tends to one asL → ∞. First,

as a worst-case scenario, consider the eventV II∗
L that all bonds inK∗IIL are vacant. By

monotonicity in boundary conditions and the strong FKG property ofPw,β
L ,FK it is seen

that
Pw,β

L ,FK

(
E I

L ∩ E
III
L

∣∣E II∗
L

)
≥ Pw,β

L ,FK

(
E I

L ∩ E
III
L

∣∣V II∗
L

)
. (3.33)

Under the condition thatV II∗
L occurs,E I

L andE III
L are independent and we may treat

them separately. The arguments are virtually identical for both events, so we need only
be explicit aboutPw,β

L ,FK(E I
L |V

II∗
L ).

Let `L be a maximal integer such that there is a circuit of dual cites,z∗1, . . . , z∗m,
separating the boundaries ofKI

L with the property that, if3∗`L
(z∗j ) is the translate of

3∗`L
by (the vector)z∗j , then3∗`L

(z∗j ) ⊂ KI
L . Note that lim infL→∞ `L/rL > 1/3. Now,

for the eventE I
L not to occur, there must be a dual occupied path connecting some dual

site on the outer boundary ofKI
L to another on the inner boundary and hence at least

onez∗j has to be connected to the boundary of its3∗`L
(z∗j ) by a path of dual occupied

bonds. Using subadditivity of the probability measure, we find

1− Pw,β
L ,FK

(
E I

L

∣∣V II∗
L

)
≤

m∑
j=1

Pw,β
L ,FK

(
z∗j ←→ ∂3∗`L

(z∗j )
∣∣V II∗

L

)
. (3.34)

Now, again invoking monotonicity in the boundary conditions, the probability of the
above connection events may be estimated from above by placing dual wired (i.e., direct
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free) boundary conditions on3∗`L
(z∗j ). But then, by duality, we have exactly the event

which is the subject of Lemma 3.3. Explicitly,

Pw,β
L ,FK

(
z∗j ←→ ∂3∗`L

(z∗j )
∣∣V II∗

L

)
≤ Pw,β∗

`L ,FK

(
0←→ ∂3`L

)
(3.35)

holds for all j = 1, . . . , m, and the bound in (3.16) can be applied. Now the number
of sitesz∗j which comprise the circuit does not exceed a multiple oftL . Thus, for some
constantC independent ofL we have

Pw,β
L ,FK

(
E I

L

∣∣V II∗
L

)
≥ 1− C`L tLe−`L/ξ . (3.36)

By the condition stated in (3.2), the fact thatrL ≥ `L ≥ rL/3 for sufficiently largeL,
and the observation thatξ−1

= τmin, the desired result forE I
L follows. Similarly for the

eventE III
L . ut

Proof of Lemma 3.2.We make liberal use of the correspondence between the graphical
configurationsω and (sets of) spin configurations as described, e.g., in [2,12,30]. Each
connected cluster inω represents the spin configurations in which all sites of the clus-
ter have spins of the same type. Thus, ifE I

L ∩ E
II∗
L ∩ E

III
L occurs, then the inner circuit

of occupied bonds inKI
L forces the spins on these sites to be of the same type. Since

these are disconnected from the boundary of3L by the dual vacant circuit inK∗IIL , with
probability one-half, all spins on the circuit are minus. Similarly, the outer circuit of
bonds inKIII

L is plus-type with probability one if it is connected to∂3L and with prob-

ability 1/2 otherwise. Thus,P+,β
L (EtL ,rL |E I

L ∩ E
II∗
L ∩ E

III
L ) is certainly bigger than 1/4,

and the claim follows using Lemma 3.5.ut

4. Absence of intermediate contour sizes

4.1. Statement and outline.The goal of this section is to prove that, with probability
tending to one asL → ∞, there will be no contours with a diameter between the
scales of logL and

√
vL in the “canonical” ensemble of the Ising model in volume3L .

This result is by far the most difficult part of the proof of our main results stated in
Section 1.3.

We start with a standard notion from contour theory. Let0(σ) denote the set of
all contours of a configurationσ in 3L with plus boundary condition. Applying the
rounding rule, contours are self-avoiding simple curves inR2. Recall that0s(σ) is the
set of contours ofσ that have a non-trivials-skeleton. We say thatγ ∈ 0(σ) is an
externalcontour, if it is not surrounded by any other contour from0. We will use0ext

s (σ)
to denote the set of external contours of0s(σ). (We remark that0ext

s (σ), namely the
external contours of0(σ) which are big enough to have ans-skeleton, coincides exactly
with the set of external contours of the collection0s(σ).)

Using this notation, the eventAκ,s,L from Theorem 1.2 is best described via its
complement:

Ac
κ,s,L =

{
σ: ∃γ ∈ 0ext

s (σ), diamγ ≤ κ
√

vL
}
. (4.1)

The relevant claim is then restated as follows:
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Theorem 4.1.Let β > βc and let(vL) be a sequence of positive numbers that make
m?
|3L | − 2m? vL an allowed value of ML for all L. Suppose the limit1 in (1.10)

obeys1 ∈ (0,∞). For each c0 > 0 there existκ > 0, K0 <∞ and L0 <∞ such that
if K ≥ K0, L ≥ L0 and s= K log L, then

P+,β
L

(
Ac

κ,s,L

∣∣ML = m?
|3L | − 2m? vL

)
≤ L−c0 (4.2)

Let s = K log L be a scale function and recall that a contourγ is s-large if γ ∈
0s(σ). For κ > 0, a contourγ large enough to be ans-large contour but satisfying
diamγ ≤ κ√vL will be called aκ-intermediatecontour. Thus, Theorem 4.1 shows
that, in the canonical ensemble with the magnetization fixed tom?

|3L |−2m? vL , there
are noκ-intermediate contours with probability tending to one asL tends to infinity.
This statement, which is of interest in its own right, reduces the proof of our main result
to a straightforward application of isoperimetric inequalities for the Wulff functional as
formulated in Lemma 2.8.

Remark 9.The reason why apowerof L appears on the right-hand side is because we
only demand the absence of contours with sizes overK log L. Indeed, for a generals,
the right-hand side of (4.2) could be replaced bye−αs for some constantα > 0. In
particular, the decay can be made substantially faster by easing the lower limit of what
we chose to call an intermediate size contour. Finally, we note thatL0 in Theorem 4.1
depends not only onβ, 1, andc0, but also on how fast the limitv3/2

L /|3L | is achieved.

The proof of Theorem 4.1 will require some preparations. In particular, we will need
to estimate the (conditional) probability of five highly unprobable events that we would
like to exclude explicitly from the further considerations. All five events are defined
with reference to a positive numberκ which, more or less, is the sameκ that appears
in Theorem 4.1.

The first event,R1
κ,s,L , collects the configurations for which the combined length of

all s-large contours in3L exceedsκ−1s
√

vL . These configurations need to bea priori
excluded because all of the crucial Gaussian estimates from Section 2.3 can only be
applied to regions with a moderate surface-to-volume ratio. Next, we show that one can
ignore configurations whose large contours occupy too big volume. This is the basis of
the eventR2

κ,s,L . The remaining three events concern the magnetization deficit in two
random subsets of3L : A set Int◦ ⊂ V(0ext

s (σ)) of sites enclosed by ans-large contour
and a set Ext◦ of sites outside alls-large contours. The precise definitions of these sets
is given in Section 4.2. The respective events are:

(3) The eventR3
κ,s,L that MInt◦ ≤ −m?

|Int◦| − κ−1sv3/4
L .

(4) The eventR4
κ,s,L that MExt◦ ≥ m?

|Ext◦| − 2κm?vL .

(5) The eventR5
κ,s,L that MExt◦ ≤ m?

|Ext◦| − 2(1+ κ−1)m?vL .

By choosingκ sufficiently small, the eventsR1, . . . ,R5 will be shown to have a
probability vanishing exponentially fast with

√
vL . These estimates are the content of

Lemma 4.2 and Lemmas 4.6-4.8.
Once the preparatory statements have been proven, we consider a rather extreme ver-

sion of the restricted contour ensemble, namely, one in which no contour that is larger
thanκ-intermediate is allowed to appear. We show, in a rather difficult Lemma 4.9, that
despite this restriction, bounds similar to those of (4.2) still hold. The final step—the
proof of Theorem 4.1—is now achieved by conditioning on the location(s) of the large
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contour(s), which by the “R-lemmas” are typically nottoo big and nottoo rough. By
definition, the exterior region is now in the restricted ensemble featured in Lemma 4.9
and the result derived therein allows a relatively easy endgame.

Throughout Sections 4.2-4.4 we will letβ > βc be fixed and let(vL) be a sequence
of positive numbers such thatm?

|3L | − 2m? vL is an allowed value ofML for all L.
Moreover, we will assume that(vL) is such that the limit1 in (1.10) exists with1 ∈
(0,∞).

4.2. Contour length and volume.In this section we will prepare the grounds for the
proof of Theorem 4.1. In particular, we derive rather crude estimates on the total length
of large contours and the volume inside and outside large external contours. These
results come as Lemmas 4.2 and 4.4 below.

4.2.1. Total contour length.We begin by estimating the combined length of large con-
tours. Lets be a scale function and, for anyκ > 0, letR1

κ,s,L be the event

R1
κ,s,L =

{
σ:

∑
γ∈0s(σ)

|γ| ≥ κ−1s
√

vL

}
. (4.3)

The probability of eventR1
κ,s,L is then estimated as follows:

Lemma 4.2.For each c1 > 0 there existκ0 > 0, K0 <∞ and L0 <∞ such that

P+,β
L

(
R1

κ,s,L

∣∣ML = m?
|3L | − 2m? vL

)
≤ e−c1

√
vL (4.4)

holds for allκ ≤ κ0, K ≥ K0, L ≥ L0, and s= K log L.

Proof. Let K0 be the quantityK0(
1
2, β) from Lemma 2.5 and let us recall thatτmin

denotes the minimal value of the surface tension. We claim that it suffices to show that,
for all c′1 > 0 and an appropriate choice ofκ, the bound

P+,β
L (R1

κ,s,L) ≤ e−c′1
√

vL (4.5)

holds true onceL is sufficiently large. Indeed, if (4.5) is established, we just choosec′1
so large that the differencec′1 − c1 exceeds the rate constant from the lower bound in
Theorem 3.1 and the estimate (4.4) immediately follows.

In order to prove (4.5), fixc′1 > 0 and letκ−1
0 = 2g1c′1/τmin, whereg1 is as in

(2.9). LetK ≥ K0, κ ≤ κ0 ands = K log L. We claim that ifσ ∈ R1
κ,s,L andS is a

collection ofs-skeletons such thatS ∼ σ, then (2.9) and (2.11) force

κ−1s
√

vL ≤
∑

γ∈0s(σ)

|γ| ≤ g1s
∑
S∈S

∣∣P(S)
∣∣ ≤ g1sτ−1

minWβ(S). (4.6)

Hence, for eachσ ∈ R1
κ,s,L there is at least oneS such thatS ∼ σ andWβ(S) ≥

2c′1
√

vL . By Corollary 2.6 withκ = 2c′1
√

vL andα = 1
2, and our choice ofK0, (4.5)

follows. ut
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4.2.2. Interiors and exteriors.Given a scale functions and a configurationσ, let0ext
s (σ)

be the set of external contours in0s(σ). (Note that these contours will also be external
in the set of all contours ofσ.) Define Int= Ints,L(σ) to be the set of all sites in3L
enclosed by someγ ∈ 0ext

s (σ) and let Ext= Exts,L(σ) be the complement of Int,
i.e., Ext= 3L \ Int.

Given a set of external contours0, we claim that under the condition that0ext
s (σ) =

0, the measureP+,β
L is a product of independent measures on Ext and Int. A coarse

look might suggest a product of plus-boundary condition measure on Ext and the minus
measure on Int. Indeed, all spins in Ext up against a piece of0 are necessarily pluses
and similarly all spins on the Int sides of these contours are minuses. But this is not
quite the end of the story, two small points are in order: First, we have invoked a round-
ing rule. Thus, for example, certain spins in Ext (at some corners but not up against the
contours) areforcedto be plus otherwise the rounding rule would have drawn the con-
tour differently. On the other hand, some corner spinsarepermitted either sign because
the rounding rule would separate any such resulting contour. Fortunately, the upshot of
these “rounding anomalies” is only to force a few additionalminusspins in Int andplus
spins in Ext than would appear from a naive look at0.

To make the aforementioned observations notationally apparent, we define Int◦
⊂

Int to be the set of sites that can be flipped without changing0 and similarly for Ext. We
thus haveσx = −1 for all x ∈ Int \ Int◦ andσx = +1 for all x ∈ Ext \ Ext◦. Explicitly,
there are a few more boundary spins than one might have thought, but they are always of
the correct type. Thus, clearly, although rather trivially, the measureP+,β

L (·|0ext
s (σ) =

0) restricted to Int is simply the measure in Int with minus boundary conditions. The
same measure on Ext is not quite the corresponding plus-measure due to the condition
that 0 constitutesall the external contours visible on the scales. Thus, beyond the
scales in Ext, we must see. . . no contours. But this is precisely the definition of the
restricted ensemble.

We conclude that the conditional measure splits on Int and Ext into independent
measures that are well understood. Explicitly, ifA is an event depending only on the
spins in Int◦ andB is an event depending only on the spins in Ext◦, then

P+,β
L

(
A ∩ B

∣∣0ext
s (σ) = 0

)
= P−,β

Int◦ (A)P+,β,s
Ext◦ (B). (4.7)

This observation will be crucial for our estimates in the next section.
Next we will notice that the number of sites associated with the contours can be

easily bounded in terms of the total length of0:

Lemma 4.3.There exists a geometrical constant g4 < ∞ such that the following is
true: If 0 is a set of external contours andInt◦ andExt◦ are as defined above, then

|3L \ (Int◦ ∪ Ext◦)| ≤ g4

∑
γ∈0

|γ|. (4.8)

Proof.Each site from3L \(Int◦∪Ext◦) is within some (Euclidean) distance from a dual
lattice sitex∗ ∈ (Z2)∗ such that some contourγ ∈ 0 passes throughx∗. On the other
hand, the number of dual lattice sitesx∗ visited by contours from0 does not exceed
twice the total length of all contours in0. From here the existence of ag4 satisfying
(4.8) follows. ut

The definition of the eventR1
κ,s,L gives us the following easy bounds:
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Lemma 4.4.Let g4 be as in Lemma 4.3. Letσ 6∈ R1
κ,s,L and let the setsInt = Ints,L(σ),

Int◦ = Int◦s,L(σ) andExt◦ = Ext◦s,L(σ) be as above. Then we have the bounds

|∂Int◦| ≤ g4κ−1s
√

vL and |∂Ext◦| ≤ g4κ−1s
√

vL + 4L (4.9)

and
|Int◦| ≤ |Int| ≤ g2

4κ−2s2vL . (4.10)

Proof. Since ∂Int◦ ⊂ 3L \ (Ext◦ ∪ Int◦) which by Lemma 4.4 implies|∂Int◦| ≤
g4

∑
γ∈0s(σ)

|γ|, the first bound in (4.9) is an immediate consequence of the fact thatσ 6∈

R1
κ,s,L . Note that the same inequality is true for|∂Int|. The second bound in (4.9) then

follows by the fact that∂Ext◦ ⊂ ∂3L ∪ 3L \ (Ext◦ ∪ Int◦). The last bound, (4.10), is
then implied by the first bound in (4.9) for∂Int instead of∂Int◦ and the isoperimetric
inequality |3| ≤ 1

16|∂3|
2 valid for any3 ⊂ R2 that is a finite union of closed unit

squares (see, e.g., Lemma A.1 in [16]).ut

4.2.3. Volume of large contours.The preceding lemma asserts that, for typical config-
urations, the interior of large contours is not too big. Actually, one can be a bit more
precise. Namely, introducing

R2
κ,s,L =

{
σ: |V(0ext

s (σ))| ≥ (1− κ)vL
}
, (4.11)

we will show in the next lemma that, wheneverκ is sufficiently small, the conditional
probability ofR2

κ,s,L given theML ’s of interest is still exponentially small in
√

vL .
However, unlike in Lemma 4.2 (and Lemma 4.6 below), here the constant multiplying
√

vL in the exponent can no longer be made arbitrarily large.

Lemma 4.5.There exist constants c2 > 0, κ0 > 0, K0 <∞, and L0 <∞ such that

P+,β
L

(
R2

κ,s,L

∣∣ML = m?
|3L | − 2m? vL

)
≤ e−c2

√
vL (4.12)

holds for all K ≥ K0, κ ∈ (0, κ0], L ≥ L0, and s= K log L.

Proof.Let 8?
1 be as defined in (2.2). Clearly, it suffices to prove the statement forsome

κ > 0, so letκ ∈ (0, 1) be such that

c2 = w1
[
(1− κ)2

− (8?
1 + 2κ)

]
> 0. (4.13)

(This is possible because8?
1 < 1 for all 1 < ∞.) Let L0 be so large thatεL from

Theorem 3.1 satisfiesεL ≤ κ for all L ≥ L0. Let K0 be chosen to exceed the quan-
tity K0(κ, β) from Lemma 2.5.

Fix K ≥ K0, L ≥ L0, ands = K log L. Let nowσ ∈ R2
κ,s,L and let us temporarily

abbreviate0 = 0s(σ) and0′ = 0ext
s (σ). Let S be anys-skeleton such thatS ∼ 0, and

let S′ be the set of skeletons inS corresponding to0′. First we note that we may as
well assume that, for some fixedB > 0 to be specified later∑

S∈S′

∣∣P(S)
∣∣ ≤ B

τmin

√
vL . (4.14)
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Indeed, the contribution of the configurations violating this bound can be directly esti-
mated, combining Corollary 2.6 withα = κ and (2.11), bye−(1−κ)B

√
vL . For configu-

rations satisfying (4.14), Lemma 2.3 in turn implies∣∣V(S′)
∣∣ ≥ ∣∣V(0′)

∣∣− g3s
∑
S∈S′

∣∣P(S)
∣∣ ≥ (1− κ)2vL , (4.15)

providedL is sufficiently large to ensure thatg3K log L
√

vL

B
τmin
� 1. As a consequence of

this and the Wulff variational problem,Wβ(S′) ≥ w1(1 − κ)
√

vL . SinceS ⊃ S′,
we haveWβ(S) ≥ Wβ(S′) and thus for everyσ ∈ R2

κ,s,L satisfying (4.14) there is a
collectionS of s-skeletons such thatS ∼ σ andWβ(S) ≥ w1(1−κ)

√
vL . Using, once

more, Corollary 2.6 withα = κ and our choice ofK0, we have

P+,β
L (R2

κ,s,L) ≤ e−(1−κ)2w1
√

vL + e−(1−κ)B
√

vL . (4.16)

Letting B = (1 − κ)w1, the right-hand side beats the lower boundP+,β
L (ML =

m?
|3L | − 2m? vL) ≥ exp{−w1

√
vL(8?

1 + κ)} from Theorem 3.1 and our choice
of L0 andκ by exactly 2e−(c2+κw1)

√
vL . Using the leeway in the exponent to absorb the

extra factor of 2 (which may require that we further increaseL0), the estimate (4.12)
follows. ut

4.3. Magnetization deficit due to large contours.In this section we will provide the
necessary control over the magnetization deficit inside and outside large contours. The
relevant statements come as Lemmas 4.6-4.8.

4.3.1. Magnetization inside.Our next claim concerns the total magnetization inside the
large contours in3L . Recalling the definition of Int◦, we reintroduce the event

R3
κ,s,L =

{
σ: MInt◦ ≤ −m?

|Int◦| − κ−1sv3/4
L

}
. (4.17)

For the probability ofR3
κ,s,L we have the following bound:

Lemma 4.6.For each c3 > 0 there existκ0 > 0, K0 <∞ and L0 <∞ such that

P+,β
L

(
R3

κ,s,L

∣∣ML = m?
|3L | − 2m? vL

)
≤ e−c3

√
vL (4.18)

for anyκ ≤ κ0, K ≥ K0, L ≥ L0, and s= K log L.

Proof.Fix ac3 > 0. By Lemma 4.2, there areϑ <∞, K0 <∞ andL0 <∞ such that
P+,β

L (R1
ϑ,s,L |ML = m?

|3L | − 2m? vL) ≤ e−2c3
√

vL whenevers = K log L andL ≥

L0. Let 00000000000000 = {0ext
s (σ) : σ 6∈ R1

ϑ,s,L}. Recalling the lower bound in Theorem 3.1, it is
clearly sufficient to prove that for somec′3 > 0 large enough,

P+,β
L

(
R3

κ,s,L

∣∣0ext
s (σ) = 0

)
≤ 2e−c′3

√
vL (4.19)

holds for all0 ∈ 00000000000000 and all L sufficiently large providedκ is sufficiently small and
that theK in s= K log L is sufficiently large. (Note that, for (4.19) to imply (4.18),c′3
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will have to exceedc3 by aβ-dependent factor. The factor of “2” was put in for later
convenience.)

Pick a0 ∈ 00000000000000. SinceR3
κ,s,L depends only on the configuration in Int◦, (4.7) implies

P+,β
L

(
R3

κ,s,L

∣∣0ext
s (σ) = 0

)
= P−,β

Int◦
(
R3

κ,s,L

)
. (4.20)

In order to apply Lemma 2.10, we need to compare−m?
|Int◦| with the actual av-

erage magnetization of the Ising model in volume Int◦ with minus boundary condi-
tion. By (4.10) and (4.9), we have|Int◦| ≤ g2

4ϑ−2s2vL and |∂Int◦| ≤ g4ϑ
−1s
√

vL .
Then Lemma 2.9 and (2.36) imply the existence of constantsα1 = α1(β) < ∞ and
α2 = α2(β) > 0 such that∣∣〈MInt◦〉

−,β
Int◦ +m?

|Int◦|
∣∣ ≤ α1

(
g4ϑ
−1s
√

vL + (g2
4s2ϑ−2vL)2e−α2s). (4.21)

Now, sinces = K log L, for K large the right-hand side is less than 2α1g4ϑ
−1s
√

vL .

Thus, ifL is so large that the latter does not exceed1
2κ−1sv3/4

L (i.e., if 4α1g4ϑ
−1s
√

vL ≤

κ−1sv3/4
L ), thenσ ∈ R3

κ,s,L and0ext
s (σ) = 0 imply

MInt◦ ≤ 〈MInt◦〉
−,β,s
Int◦ −

1

2
κ−1sv3/4

L . (4.22)

Let now κ0 > 0 be such thatc′3 ≤ ϑ2(8κ2
0χg2

4)−1, whereχ = χ(β) is the suscep-
tibility, and let κ ≤ κ0. By equation (2.39) in Lemma 2.10 and the fact that|Int◦| ≤
g2

4ϑ−2s2vL , the right-hand side of (4.20) is bounded by 2e−c′3
√

vL . The bound (4.19) is
thus proved. ut

4.3.2. Magnetization outside.Recall the definition of Ext◦. Our first concern here is an
upper bound on the total magnetization in Ext◦. LetR4

κ,s,L be the event

R4
κ,s,L =

{
σ: MExt◦ ≥ m?

|Ext◦| − 2κm? vL
}
. (4.23)

To bound the conditional probability of this event is easy; we will actually show
that it can be included into the preceding ones for configurations contained inML =

{σ: ML = m?
|3L | − 2m? vL}.

Lemma 4.7.For anyκ > 0 and any K<∞ there exists an L0 <∞ such that

R4
κ/2,s,L ∩ML ⊂

(
R1

κ,s,L ∪R
2
κ,s,L ∪R

3
κ,s,L

)
∩ML (4.24)

for any L≥ L0 and s= K log L.

Proof. Let κ andK be fixed. Let us abbreviate Int◦ = Int◦s,L(σ) and Ext◦ = Ext◦s,L(σ)

for a configurationσ which we will take to be in(R1
κ,s,L)c

∩ (R2
κ,s,L)c

∩ (R3
κ,s,L)c

∩

ML . First, we note that ifσ 6∈ R1
κ,s,L , we can use Lemmas 4.3 and 4.4 to get

|3L | −
(
|Ext◦| + |Int◦|

)
≤ g4κ−1s

√
vL (4.25)

and hence
|ML − MExt◦ − MInt◦ | ≤ g4κ−1s

√
vL . (4.26)
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Now, since the total magnetization is held fixed, i.e.,σ ∈ML , we haveML = m?
|3L |−

2m? vL and by a simple calculation we get

MExt◦ ≤ ML − MInt◦ + g4κ−1s
√

vL

= m? (|3L | − |Int◦|)− MInt◦ +m?
|Int◦| − 2m? vL + g4κ−1s

√
vL .

(4.27)

At the expense of another factor ofg4κ−1s
√

vL , we can replace|3L |−|Int◦|with |Ext◦|.
Finally, sinceσ 6∈ R2

κ,s,L ∪R
3
κ,s,L we can use the bounds

MInt◦ ≥ −m?
|Int◦| − κ−1sv3/4

L (4.28)

and
|Int◦| ≤ |V(0ext

s (σ))| ≤ (1− κ)vL (4.29)

in succession to arrive at

MExt◦ ≤ m?
|Ext◦| − 2m? κvL + 2g4κ−1s

√
vL + κ−1sv3/4

L . (4.30)

From here we see thatσ 6∈ R4
κ/2,s,L onceL is so large that the remaining terms on the

right-hand side are swamped by−m? κvL . ut

Our second task concerning the magnetization outside the large external contours is
to show thatMExt◦ −m?

|Ext◦| will not get substantially below the deficit value forced
in by the condition on overall magnetization. (Note, however, that we have to allow
for the possibility that Ext◦ = 3L in which case the exterior takes the entire deficit.)
Let κ > 0 and consider the event

R5
κ,s,L =

{
σ: MExt◦ ≤ m?

|Ext◦| − 2m? (1+ κ−1)vL
}
. (4.31)

The probability ofR5
κ,s,L is bounded as follows:

Lemma 4.8.For any c5 > 0 there exist constantsκ0 > 0 , K0 <∞ and L0 <∞ such
that

P+,β
L

(
R5

κ,s,L

∣∣ML = m?
|3L | − 2m? vL

)
≤ e−c5

√
vL (4.32)

for all K ≥ K0, κ ≤ κ0 and L≥ L0, and s= K log L.

Proof.With 8?
1 as in (2.2) andc5 fixed, chooseκ0 so that

c5 ≤
w1

2

[
1+

1

3κ0
−8?

1

]
. (4.33)

For thisκ0 > 0, let L0 be so large that for allL ≥ L0, the finite-L expression on
the right-hand side of (1.10) exceeds1(1 + 1

2κ0
)−1 and, at the same time,εL from

Theorem 3.1 is bounded by1/(6κ0).
First, we can restrict ourselves to the complement ofR1

ϑ,s,L with ϑ so small that the
correspondingc1 exceeds 2c5. Once again using Lemma 2.9, we get∣∣〈MExt◦〉

+,β
Ext◦ −m?

|Ext◦|
∣∣ ≤ α1

(
g4ϑ
−1s
√

vL + 4L + L4e−α2s). (4.34)



38 M. Biskup, L. Chayes and R. Kotecký

Now, sinces = K log L andvL ∼ L4/3, for K sufficiently large the right-hand side
does not exceed 8α1L. Thus, if L is so large that the latter does not exceedm? vLκ−1

0 ,
it suffices to prove the corresponding bound for the event

R =
{
σ: MExt◦ ≤ 〈MExt◦〉

+,β
Ext◦ −m? (2+ κ−1

0 )vL
}
. (4.35)

Clearly,R depends only on the configuration in Ext◦, and thus (4.7) makes the estimates
in Lemma 2.11 available. We get

P+,β
L

(
R

∣∣0ext
s (σ) = 0

)
≤ C exp

{
−2

(m?vL)2

χ |Ext◦|

(
1+

1

2κ0

)2}
≤ C exp

{
−w11

(
1+

1

2κ0

)
√

vL

}
.

(4.36)

HereC = C(β) < ∞ is independent of0 and the second inequality follows from our
assumption aboutL0. Now, using (4.33) and the fact thatεL ≤ 1/(6κ0), we derive the
bound

P+,β
L

(
R

∣∣0ext
s (σ) = 0

)
≤ Ce−w1

√
vL (8?

1+εL )−2c5
√

vL . (4.37)

The claim then follows by multiplying both sides byP+,β
L (0ext

s (σ) = 0), summing
over all0 with the above properties and comparing the right-hand side with the lower
bound in Theorem 3.1.ut

4.4. Proof of Theorem 4.1.The ultimate goal of this section is to rule out the occurrence
of intermediate contours. As a first step we derive an upper bound on the probability of
the occurrence of contours of intermediate sizes in a contour ensemble constrained to
not contain contours with diameters larger thanκ√vL . The relevant statement comes
as Lemma 4.9. Once this lemma is established, we will give a proof of Theorem 4.1.

4.4.1. A lemma for the restricted ensemble.Recall our notationP+,β,s′

3 for the proba-
bility measure in volume3 ⊂ 3L conditioned on the event that the contour diameters
do not exceeds′. We will show that the occurrence of intermediate contours is improb-

able in P+,β,s′

3 with s′ = κ√vL and magnetization restricted to “reasonable” values.
For any3 ⊂ 3L and anys > 0 andκ > 0, let

Ac
κ,s,3 =

{
σ: there existsγ in 3 such thats ≤ diamγ ≤ κ

√
vL

}
. (4.38)

Then we have the following estimates:

Lemma 4.9.For any c6 > 0, ϕ0 > 1, andϑ > 1, there existκ0 ∈ (0, 1), K0 < ∞,
and L0 <∞, such that for s= K log L, all κ ∈ (0, κ0], K ≥ K0, L ≥ L0, all 3 ⊂ 3L
satisfying the bounds

|3| ≥ ϑ−1L2 and |∂3| ≤ ϑL , (4.39)

and allϕ ∈ [κ0, ϕ0] that make m? |3| − 2ϕm? vL an allowed value of M3, we have

P
+,β,κ√vL
3

(
Ac

κ,s,3

∣∣M3 = m?
|3| − 2ϕm? vL

)
≤ L−c6. (4.40)
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Proof.Notice that the eventAc
κ,s,3 is monotone ins= K log L and thus it is sufficient

to prove the claim for only a fixedK (chosen suitably large). Letκ0 ∈ (0, 1) be fixed
and letκ ∈ (0, κ0]. (At the very end of the proof, we will have to assume thatκ0 is
sufficiently small, see (4.54).) Fix a set3 ⊂ Z2 satisfying (4.39) and let

M3(ϕ) =
{
σ: M3 = m?

|3| − 2ϕm? vL
}
. (4.41)

Let us define
δ3 = 〈M3〉

+,β,s
3 −m?

|3| (4.42)

and note that, onM3(ϕ), we haveM3 = 〈M3〉
+,β,s
3 − δ3 − 2ϕm?vL .

The proof of (4.40) will be performed by writing the conditional probability as a
quotient of two probabilities with unconstrained contour sizes and estimating separately
the numerator and the denominator. Let

E =
{
σ: ∀γ ∈ 0s(σ), diamγ ≤ κ

√
vL

}
(4.43)

and, using the shorthandA = Aκ,s,3, write

P
+,β,κ√vL
3

(
Ac

∣∣M3(ϕ)
)
=

P+,β
3 (Ac

∩M3(ϕ) ∩ E)

P+,β
3 (M3(ϕ) ∩ E)

. (4.44)

As to the bound on the denominator, we restrict the contour sizes in3 to s = K log L
as in (3.5) and apply Lemmas 2.11 and 2.7 with the result

P+,β
3 (M3(ϕ) ∩ E) ≥

C1

L2
exp

{
−2

(m? vL)2

χ |3|
ϕ2
− 2

m? ϕ vL

χ |3|
δ3

}
, (4.45)

whereC1 = C1(β, ϑ, ϕ0) > 0. Here, we note that two distinct terms were incorpo-
rated into the constantC1: First, a term proportional toδ2

3 since, by Lemma 2.9 and
(4.39),|δ3| ≤ 2α1ϑL onceK is sufficiently large and thus|δ3|

2/|3| is bounded by a
constant independent ofL. Second, a term that comes from the bound (2.45) yielding
|�s

3(ϕvL +
δ3

2m? )| ≤ C2 max{K log L
L1/3 , 1} with someC2 = C2(β, ϑ, ϕ0) < ∞. (Notice

that, to get a constantC1 independent ofL, we have to chooseL0 after a choice ofK is
done.) Although the second term on the right-hand side of (4.45) is negligible compared
to the first one, its exact form will be needed to cancel an inconvenient contribution of
the complement of intermediate contours.

In order to estimate the numerator, let00000000000000 = {0s(σ) : σ ∈ E, 0s(σ) 6= ∅} be the set of
all collections ofs-large contours that can possibly contribute toE . (We also demand
that0s(σ) 6= ∅, because onAc there will be at least ones-large contour.) Then we have

P+,β
3

(
Ac
∩M3(ϕ)∩E

)
≤

∑
0∈00000000000000

P+,β
3

(
M3(ϕ)

∣∣0s(σ) = 0
)
P+,β

3

(
0s(σ) = 0

)
. (4.46)

Our strategy is to derive a bound onP+,β
3 (M3(ϕ)|0s(σ) = 0) which is uniform in0 ∈

00000000000000 and to estimateP+,β
3 (0s(σ) = 0) using the skeleton upper bound.

Let 0 ∈ 00000000000000 and letS be ans-skeleton such thatS ∼ 0. We claim that, for some
C′ = C′(β, ϑ) <∞ and someη0 = η0(β, ϑ) <∞, independent of0, S, κ0 andL,

P+,β
3 (M3(ϕ)|0s(σ) = 0)

P+,β
3 (M3(ϕ) ∩ E)

≤ C′L2eη0
√

κ0Wβ (S) (4.47)
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holds true. Indeed, let0′ be the abbreviation for the set of external contours in0 and
let S′ be the set of skeletons inS corresponding to0′. Recall the definition of Int and
Int◦ and note thatV(0′) = Int andWβ(S) ≥ Wβ(S′), sinceS ⊃ S′. Also note that,
by (2.10) and (2.11) and the fact that diamγ ≤ κ√vL for all γ ∈ 0′, we have

|Int| ≤ g2κ
√

vL

∑
S∈S′

∣∣P(S)
∣∣ ≤ g2κ0τ

−1
min
√

vL Wβ(S). (4.48)

This bound tells us that we might as well assume that|Int| ≤
√κ0vL . Indeed, in the

opposite case, the bound (4.47) would directly follow by noting that (4.45) implies
P+,β

L (M3(ϕ) ∩ E) ≥ C1L−2e−η1
√κ0Wβ (S) with η1 given by

η1 = 2g2

[ (m? ϕ)2

χτmin

v
3/2
L

|3|
+

m? ϕ

χτmin

δ3
√

vL

|3|

]
. (4.49)

Notice thatη1 is bounded uniformly inL and3 by (4.39) and the facts that1 <∞ and
δ3 ≤ 2α1ϑL. A similar bound, using (2.9) instead of (2.10), shows that also|∂Int| ≤
s
√

vL/
√κ0. Indeed, if the opposite is true, then (2.9–2.11) imply that

√κ0Wβ(S) ≥

τming−1
1
√

vL and we can proceed as before.
Thus, let us assume that|Int| ≤

√κ0vL and |∂Int| ≤ s
√

vL/
√κ0 hold true. In

order forM3(ϕ) to occur, the total magnetization in3 should deviate fromm?
|3|

by −2ϕm? vL , while the volume Int can help the bulk only by at most−|Int|. More
precisely,MExt◦ is forced to deviate from its mean value〈MExt◦〉

+,β,s
Ext◦ by at least−2m?u

(and by not more than−2m?u− 2|Int|) whereu is defined by

−2m?u = −2ϕm? vL − δExt◦ + 2|Int|, (4.50)

with δExt◦ as in (4.42). By the estimates|Int| ≤
√κ0vL , |Ext◦| ≥ 1

2ϑ−1L2, |∂Ext◦| ≤
2ϑL, andu ≤ C3L4/3

� L2/ log L, with C3 = C3(β, ϑ, ϕ0) (all these bounds hold
for L sufficiently large—in particular, to ensure thatK

√
vL log L ≤ ϑL), we now have,

once more, Lemma 2.11 at our disposal. Thus,

P+,β
3

(
M3(ϕ)

∣∣0s(σ) = 0
)
≤ C4 exp

{
−2

(m? vL)2

χ |3|
ϕ2
− 2

m? ϕvL

χ |3|

(
δExt◦ − 2|Int|

)}
,

(4.51)
whereC4 = C4(β, ϑ, ϕ0) < ∞. Similarly as in (4.45), the constantC4 incorporates
also the error term�s

Ext◦(u). To compare the right-hand side of (4.51) and (4.45), we
invoke the second part of Lemma 2.9 to note that, forK sufficiently large and some
α1 = α1(β) <∞,

δ3 − δExt◦ ≤ α1|3 \ Ext◦|. (4.52)

Using (4.48) again,|Int| is bounded by a constant timesκ0Wβ(S)
√

vL and the same
holds for|3 \ Ext◦|. Therefore, there is a constantη2 = η2(β, ϑ) < ∞, independent
of κ0, such that

2
m? ϕvL

χ |3|

(
δ3 − δExt◦ + 2|Int|

)
≤ η2κ0Wβ(S), (4.53)

holds true for all0 ∈ 00000000000000 and their associated skeletonsS. By combining this with (4.51)
and (4.45), the bound (4.47) is established withη0 = max{η1, η2}, which we remind is
independent ofκ0.
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With (4.47), the proof is easily concluded. Indeed, a straightforward application of
the skeleton bound to the second term on the right-hand side of (4.46) then shows that

P
+,β,κ√vL
3

(
Ac

∣∣M3(ϕ)
)
≤

∑
S 6=∅

C′L2e−(1−η0
√κ0)Wβ (S). (4.54)

Now, choosingκ0 sufficiently small, we have 1− η0
√κ0 > 2/3. Then we can extract

the termC′e−
1
3Wβ (S) which, choosing theK in s = K log L sufficiently large, can

be made less thanL−2−c6, for any c6 initially prescribed. Invoking Lemma 2.5, the
remaining sum is then estimated by one.ut

4.4.2. Absence of intermediate contours.Lemmas 4.2 and 4.5-4.9 finally put us in the
position to rule out the intermediate contours altogether.

Proof of Theorem 4.1.Recall that our goal is to prove (4.2), i.e.,P+,β
L (Ac

|ML) ≤ L−c0.
Pick anyc0 > 0 andκ0 < 1. Let K0 andL0 be chosen so that Lemmas 4.2, 4.5, 4.6,
and 4.8 hold withsome c1, c2, c3, c5 > 0 for all κ ≤ 2κ0, K ≥ K0 and L ≥ L0.
We also assume thatL0 is chosen so that Lemma 4.7 is valid forκ = 2κ0. We wish
to restrict attention to configuration outside the setsR1

κ0,s,L
,R4

κ0,s,L
andR5

κ0,s,L
, but

sinceR4
κ0,s,L

is essentially included inR2
κ0,s,L

andR3
κ0,s,L

, we might as well focus

on the eventRc, whereR =
⋃5

`=1R`
κ0,s,L

. Fix anyκ ≤ κ0, let s = K log L and let
us introduce the shorthandA = Aκ,s,L . Appealing to the aforementioned lemmas, our
goal will be achieved if we establish the boundP+,β

L (Ac
∩Rc
|ML) ≤ L−2c0.

Let us abbreviateq = κ√vL and let00000000000000 = {0ext
q (σ) : σ ∈ Rc

} be the set of all
collections of external contours that can possibly arise fromRc. Fix 0 ∈ 00000000000000 and recall
our notation Ext◦ for the exterior component of3L induced by the contours in0. To
prove (4.2), it suffices to show that, for all0 ∈ 00000000000000,

P+,β
L

(
Ac
∩Rc

∩ML
∣∣0ext

q (σ) = 0
)
≤ L−2c0 P+,β

L

(
ML

∣∣0ext
q (σ) = 0

)
. (4.55)

Indeed, multiplying (4.55) byP+,β
L (0ext

q (σ) = 0) and summing over all0 ∈ 00000000000000, we
derive that

P+,β
L

(
Ac
∩Rc

∩ML
)
≤ L−2c0 P+,β

L (ML). (4.56)

Thence,P+,β
L (Ac

∩Rc
|ML) ≤ L−2c0 which, in light of the boundP+,β

L (R|ML) ≤

4e−c
√

vL wherec = min{c1, c2, c3, c5}, implies (4.2) onceL is sufficiently large.
It remains to prove (4.55) for all0 ∈ 00000000000000. Let ϕ ≥ 0 be such thatm?

|Ext◦| −
2ϕm? vL is an allowed value ofMExt◦ and consider the corresponding eventMExt◦(ϕ)
(cf. (4.41)). Note that, by the restriction to the complements ofR4

κ0,s,L
andR5

κ0,s,L
,

we only need to considerϕ ∈ [κ0, 1+κ−1
0 ]. We claim that, for all such allowed values

of ϕ, we have

P+,β
L

(
Ac

∣∣{0ext
q (σ) = 0} ∩ML ∩MExt◦(ϕ)

)
= P+,β,q

Ext◦
(
Ac

∣∣MExt◦(ϕ)
)
. (4.57)

Indeed, given that0ext
q (σ) = 0, the eventA depends only on the configurations in Ext◦.

Moreover,ML ∩MExt◦(ϕ) can be written as an intersection ofMExt◦(ϕ), which also
depend only onσ in Ext◦, and the event{σ: M3L\Ext◦ = m? (|3L |− |Ext◦|)−2m? (1−
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ϕ)vL}, which depends only on the configuration in Int◦. Thus, (4.57) follows from (4.7)
and some elementary manipulations.

By the restriction to the complement ofR1
κ0,s,L

, we have|Ext◦| ≥ L2/2 and|∂Ext◦| ≤
8L for all 0 ∈ 00000000000000. Choosing nowc6 = 2c0 and thenK0 andL0 (if necessary, even big-
ger than before) so that Lemma 4.9 can be applied, the right-hand side of (4.57) can
be bounded byL−c6 = L−2c0 uniformly in 0 ∈ 00000000000000, providedκ is sufficiently small
andL ≥ L0. Using (4.57), we thus have

P+,β
L

(
Ac
∩Rc

∩ML ∩MExt◦(ϕ)
∣∣0q(σ) = 0

)
≤ P+,β

L

(
Ac

∣∣{0ext
q (σ) = 0} ∩ML ∩MExt◦(ϕ)

)
× P+,β

L

(
ML ∩MExt◦(ϕ)

∣∣0q(σ) = 0
)

≤ L−2c0 P+,β
L

(
ML ∩MExt◦(ϕ)

∣∣0q(σ) = 0
)
,

(4.58)

for all ϕ for which m?
|Ext◦| − 2ϕm? vL is an allowed value ofMExt◦ . (In the cases

whenϕ 6∈ [κ0, 1+κ−1
0 ] we haveRc

∩MExt◦(ϕ) = ∅ and the left-hand side vanishes.)
This implies (4.55) by summing over all allowed values ofϕ. ut

5. Proof of main results

Having established the absence of intermediate-size contours, we are now in the posi-
tion to prove our main results.

Proof of Theorem 1.2.Fix aζ > 0 and recall our notationML = {σ: ML = m?
|3L | −

2m? vL}. Our goal is to estimate the conditional probabilityP+,β
L (Ac

κ,s,L ∪B
c
ε,s,L |ML)

by L−ζ . Let c0 > ζ and note that, by Theorem 4.1, we have

P+,β
L (Ac

κ,s,L |ML) ≤ L−c0, (5.1)

providedκ is sufficiently small andL sufficiently large. This means we can restrict our
attention to the eventBc

ε,s,L \ A
c
κ,s,L . Furthermore, we can use Lemmas 4.2, 4.5, 4.6,

and 4.7 to exclude the eventsR1
ϑ,s,L , R2

ϑ,s,L , R3
ϑ,s,L , andR4

ϑ,s,L , providedϑ is suffi-
ciently small. We therefore introduce the eventEε,κ,ϑ defined by

Eε,κ,ϑ = Bc
ε,s,L \ (Ac

κ,s,L ∪R
1
ϑ,s,L ∪R

2
ϑ,s,L ∪R

3
ϑ,s,L ∪R

4
ϑ,s,L), (5.2)

where we have suppresseds= K log L andL from the notation.
On the basis of the aforementioned Lemmas, the proof of Theorem 1.2 will follow

if we can establish that for eachκ > 0 and eachε > 0 there areK0 < ∞, ϑ > 0
andc7 > 0 such that

P+,β
L (Eε,κ,ϑ |ML) ≤ e−c7

√
vL (5.3)

wheneverL is sufficiently large. The proof of (5.3) will be performed by conditioning
on the set ofs-large exterior contours and applying separately the Gaussian estimates
and the skeleton upper bound. The argument will be split into several cases, depending
on which of the bounds (1.14–1.16) constituting the eventBε,s,L fail to hold.

Let us writeEε,κ,ϑ as the disjoint unionE1
ε,κ,ϑ ∪E

2
ε,κ,ϑ , whereE1

ε,κ,ϑ is the set of all

configurations on which one of (1.14) or (1.15) fail and whereE2
ε,κ,ϑ = Eε,κ,ϑ \E1

ε,κ,ϑ .
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Let 00000000000000 = {0ext
s (σ) : σ ∈ Eε,κ,ϑ } be the set of all collections of exterior contours allowed

byEε,κ,ϑ . (Heres= K log L.) Since0s(σ) is non-empty for allσ contributing toBc
ε,s,L ,

we have0 6= ∅ for all 0 ∈ 00000000000000. Let

λ0 = v−1
L |V(0)|. (5.4)

To apply the Gaussian estimate, we need the followingupperbound on the magnetiza-
tion in Ext◦.

Lemma 5.1.Let ε > 0, κ > 0 andϑ > 0 and let the K in s= K log L be sufficiently
large. Then there exists a sequence(κL) with limL→∞ κL = 0 such that for both i=
1, 2, all 0 ∈ 00000000000000 and allσ ∈ML ∩ E i

ε,κ,ϑ ∩ {0
ext
s (σ) = 0}, the magnetization MExt◦ =

MExt◦s,L (σ)(σ) obeys the bound

MExt◦ ≤ 〈MExt◦〉
+,β,s
Ext◦ − 2m? vL(1− λ0 + εi − κL). (5.5)

Hereε1 = 0 andε2 = ε/(2m?).

Proof. Recall the exact definition of Ext◦. The proof is similar in spirit to the reason-
ing (4.29–4.30). First we will address the case of configurations inE1

ε,κ,ϑ . Using the

equalityML = m?
|3L | − 2m? vL and our restriction to the complement ofR1

ϑ,s,L , we
have

ML ≤ m?
|Ext◦| +m?

|V(0)| − 2m?vL + g4ϑ
−1s
√

vL , (5.6)

whereg4ϑ
−1s
√

vL bounds the volume of Ext\ Ext◦ according to Lemma 4.3. Next, in
view of the restriction to(R3

ϑ,s,L)c, we have

MV(0) ≥ −m?
|V(0)| − ϑ−1sv3/4

L − g4ϑ
−1s
√

vL . (5.7)

Finally, sinceMExt◦ ≤ ML − MV(0) + g4ϑ
−1s
√

vL and since (4.34) implies that

m?
|Ext◦| − 〈MExt◦〉

+,β,s
Ext◦ can be bounded by 8α1L onceK is sufficiently large, we have

(5.5) withκL given by

2m?κL = ϑ−1sv−1/4
L + 3g4ϑ

−1sv−1/2
L + 8α1Lv−1

L . (5.8)

SincevL ∼ L4/3, we have limL→∞ κL = 0 as claimed.
Next we will attend to the case of configurations fromE2

ε,κ,ϑ , for which the bound

(1.16) must fail. SinceE2
ε,κ,ϑ is still a subset of(R3

ϑ,s,L)c, we still have the bound (5.7)
at our disposal implying thatMV(0) ≥ −m?

|V(0)| − εvL onceL is sufficiently large.
However, this means that the only way (1.16) can fail is that, in fact, the lower bound

MV(0) ≥ −m?
|V(0)| + εvL (5.9)

holds. Substituting this stronger bound in the above derivation in the place of (5.7), the
desired estimate follows.ut

With Lemma 5.1 in the hand, we are ready to start proving the bound (5.3). We
begin with the Gaussian estimate. By the restriction to the complement ofR2

ϑ,s,L , we
have the boundλ0 ≤ 1− ϑ and thus 1− λ0 + εi − κL ≥ 0 onceL is sufficiently
large. Moreover, since we also discardedR1

ϑ,s,L , Lemma 2.11 forA = Ext◦ applies.
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Combining this with the observation (4.7) and the bound (5.5), there exists a constant
C <∞ such that

P+,β
L

(
ML ∩E i

ε,κ,ϑ

∣∣0ext
s (σ) = 0

)
≤ C exp

{
−2

(m? vL)2

χ |3L |
(1−λ0+ εi −κL)2

}
(5.10)

holds for all0 ∈ 00000000000000. Next we will estimate the probability that0ext
s (σ) = 0. Let S be

a collection of skeletons corresponding to0. The skeleton upper bound in Lemma 2.4
along with the estimates featured in Lemma 2.5 then yields

P+,β
L

(
0ext

s (σ) = 0
)
≤

∑
S′⊇S

e−Wβ (S′)
≤ C′e−Wβ (S), (5.11)

whereC′ < ∞ and whereS′ corresponds to the skeleton of a full set0s(σ) with
0ext

s (σ) = 0.
To estimate the probability ofML ∩ E i

ε,κ,ϑ ∩ {0
ext
s (σ) = 0}, we will write 00000000000000 as the

union of two disjoint sets,00000000000000 = 000000000000001 ∪000000000000002. Here

000000000000001 =
{
0 ∈ 00000000000000 : ∃S ∼ 0, Wβ(S) ≤ w1

√
λ0vL(1+ εc−2)

}
, (5.12)

wherec is the constant from Lemma 2.8, and000000000000002 = 00000000000000 \000000000000001. First we will study the cases
when0 ∈ 000000000000001. By the restriction to the eventAκ,s,L , we know that diamγ ≥ κ√vL for
all γ ∈ 0. Using thatλ0 ≤ 1− ϑ—recall that we are in the complement ofR2

ϑ,s,L—

we have diamγ ≥ c(εc−2)
√
|V(0)| wheneverκ ≥ ε/c. Moreover, the upper bound

on Wβ(S) from (5.12) along with the estimateWβ(S) ≥ τminκ√vL imply that λ0

is bounded away from zero and thusε
√
|V(0)| = ε

√
λ0vL ≥ s for L sufficiently

large. This verifies the assumptions of Lemma 2.8 withε replaced byεc−2, which then
guarantees that0 is a singleton,0 = {γ0}, and that

inf
z∈R2

dH
(
V(γ0),

√
|V(γ0)|W + z

)
≤
√

ε
√
|V(γ0)|. (5.13)

Now, |V(γ0)| = λ0vL ≤ vL (because, as noted before,λ0 ≤ 1), which means that the
right-hand side is less than

√
εvL and (1.14) holds. But onE i

ε,κ,ϑ the eventBε,s,L must
fail, so we must have either that81(λ0) > 8?

1 + ε, which only applies wheni = 1,
or that (1.16) fails, which only applies wheni = 2.

We claim that, in both cases, there exists anε′ > 0 and anα > 0—both proportional
to ε—such that for someS ∼ 0 andL sufficiently large, we have

(1− α)Wβ(S)+ 2
(m? vL)2

χ |3L |
(1− λ0 + εi − κL)2

≥ w1
√

vL
(
8?

1 + ε′
)
. (5.14)

Indeed, the Wulff variational problem in conjunction with Lemma 2.3, the restriction to
(R1

ϑ,s,L)c and the bound(1− x)1/2
≥ 1− x for x ∈ [0, 1] imply that

Wβ(S) ≥ w1|V(S)|1/2
≥ w1

(
|V(γ0)| − g3ϑ

−1s2√vL

)1/2

≥ w1

√
λ0vL − g3w1

(
ϑ

√
λ0

)−1
s2.

(5.15)



Droplet formation in the 2D Ising model 45

Observing also that the difference 2(m?)2v
3/2
L /(χ |3L |) − w11 → 0 asL → ∞, the

left hand side of (5.14) can be bounded from below by

w1
√

vL81(λ0)− αw1

√
λ0vL − δL

√
vL + 2w11

√
vL(εi − κL)ϑ, (5.16)

whereδL → 0 (as well asκL → 0) with L →∞. (Here we again used that 1−λ0 ≥ ϑ .)
Now, for i = 1 we have81(λ0) > 8?

1 + ε from which (5.14) follows onceα < ε and
L is sufficiently large. Fori = 2, we use81(λ0) ≥ 8?

1 and get the same conclusion
since (5.16) now contains the positive term 2w11ε2

√
vL ∝ ε

√
vL .

By putting (5.10) and (5.11) together, applying (5.14), choosingK ≥ K0(α, β) and
invoking Lemma 2.5 to bound the sum over all skeletonsS, we find that

P+,β
L

(
ML ∩ Eε,κ,ϑ ∩ {0

ext
s (σ) ∈ 000000000000001}

)
≤ 2CC′ exp

{
−w1
√

vL
(
8?

1 + ε′
)}

. (5.17)

wheneverL is sufficiently large. (Here the embarrassing factor “2” comes from com-
bining the corresponding estimates fori = 1 andi = 2.)

Thus, we are down to the cases0 ∈ 000000000000002, which means that for every skeletonS ∼ 0,
we haveWβ(S) > w1

√
λ0vL(1+ εc−2). Moreover, sinceEε,ϑ,κ ⊂ Aκ,s,L , all s-large

contours that we have to consider actually satisfy that diamγ ≥ κ√vL . In particular,
we also have thatWβ(S) ≥ τminκ√vL . Combining these bounds we derive that, for
somec′ > 0 and regardless of the value ofλ0,

Wβ(S) ≥ w1
(√

λ0 + c′
)√

vL . (5.18)

Disregarding the factorεi in (5.10) and performing similar estimates as in the derivation
of (5.17), we find that (5.14) holds again for someα > 0. Hence an analogue of (5.17)
is valid also for all0 ∈ 000000000000002. A combination of these estimates in conjunction with
Theorem 3.1 show that, indeed, (5.3) is true with ac7 proportional toε. This finishes
the proof. ut

The previous proof immediately provides us with the proof of the other main results:

Proof of Theorem 1.1.In light of Theorem 3.1, we need to prove an appropriate upper
bound onP+,β

L (ML), whereML = {σ: ML = m?
|3L | − 2m? vL}. First we note

that for L sufficiently large, the probabilityP+,β
L (ML) is comparable withP+,β

L (FL),
whereFL is the event

FL =ML ∩Aκ,s,L ∩ Bε,s,L ∩
(
R1

ϑ,s,L ∪R
3
ϑ,s,L ∪R

4
ϑ,s,L

)c (5.19)

with ε, κ, ϑ as in the proof of Theorem 1.2. But onFL , we have at most one large
contour and the skeleton and Gaussian upper bounds readily give us that

P+,β
L (FL) ≤ Ce−w1

√
vL (8?

1−ε′). (5.20)

for someC < ∞ and someε′ > 0 proportional toε. From here and Theorem 3.1, the
claim (1.11) follows by lettingL →∞ andε ↓ 0. ut

Our last task is to prove Corollary 1.3.

Proof of Corollary 1.3.By Proposition 2.1, if1 < 1c, the unique minimizer of81(λ)
is λ = 0. Thus, forε > 0 sufficiently small andL large enough, the contour volumes
are restricted to a small number timesvL . Since (1.14) says that the contour volume
is proportional to the square of its diameter, this (eventually) forces diamγ < κ√vL
for any fixedκ > 0. But that contradicts the fact thatAκ,s,L holds for aκ sufficiently
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small. Hence, no such intermediateγ exists and all contours have a diameter smaller
thanK log L.

In the cases1 > 1c, the function81(λ) is minimized only by a non-zeroλ (which
is, in fact, larger than 2/3) and so the scenarios without large contours are exponentially
suppressed. Since, again, diamγ > κ√vL for all potential contours, Theorem 1.2 guar-
antees that there is only one such contour and it obeys the bounds (1.14) and (1.15). All
the other contours have diameter less thanK log L. ut
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