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A proof of the Gibbs-Thomson formula in the
droplet formation regime

Marek Biskup,1 Lincoln Chayes1 and Roman Kotecḱy2

We study equilibrium droplets in two-phase systems at parameter values cor-
responding to phase coexistence. Specifically, we give a self-contained micro-
scopic derivation of the Gibbs-Thomson formula for the deviation of the pres-
sure and the density away from their equilibrium values which, according to the
interpretation of the classical thermodynamics, appears due to the presence of a
curved interface. The general—albeit heuristic—reasoning is corroborated by a
rigorous proof in the case of the two-dimensional Ising lattice gas.
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1. INTRODUCTION

1.1. The problem

The description of equilibrium droplets for systems with coexisting phases is
one of the outstanding achievements of classical thermodynamics. Standard
treatments of the subject highlight various formulæ relating the linear size of
the droplet to a specific pressure difference. One of these, called theGibbs-
Thomsonformula, concerns the difference between the actual pressure outside
the droplet and the ambient pressure of the system without any droplets. (Or,
in the terminology used in classical textbooks, “above a curved interface” and
“above a planar interface,” respectively.) The standard reasoning behind these
formulæ is based primarily on macroscopic concepts of pressure, surface ten-
sion, etc. But, notwithstanding their elegance and simplicity, these derivations
do not offer much insight into the microscopic aspects of droplet equilibrium.
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The goal of the present paper is to give a self-contained derivation of the Gibbs-
Thomson formula starting from the first principles ofequilibrium statistical
mechanics.

While straightforward on the level of macroscopic thermodynamics, an at-
tempt for a microscopic theory of droplet equilibrium immediately reveals sev-
eral technical problems. First of all, there is no obvious way—in equilibrium—
to discuss finite-sized droplets that are immersed in ana priori infinite system.
Indeed, the correct setting is the asymptotic behavior of finite systems that are
scaling to infinity and that contain droplets whose sizealso scales to infinity
(albeit, perhaps, at a different rate). Second, a statistical ensemble has to be
produced whose typical configurations will feature an equilibrium droplet of a
given linear size. A natural choice is the canonical ensemble with a tiny frac-
tion of extra particles tuned so that a droplet of a given size is induced in the
system. A difficulty here concerns the existence of a minimal droplet size as
will be detailed below. Finally, for the specific problem at hand, the notions of
pressure “above a curved interface” and “above a planar interface” have to be
reformulated in terms of microscopic quantities which allow for a comparison
of the difference between these pressures and the droplet size.

Some of these issues have previously been addressed by the present au-
thors. Specifically, in [4, 5], we studied the droplet formation/dissolution phe-
nomena in the context of the canonical ensemble at parameters corresponding
to phase coexistence and the particle density slightly exceeding the ambient
limiting rarefied density. It was found that, ifV is the volume of the system
andδN is the particle excess, droplets form when the ratio(δN)(d+1)/d/V is
of the order of unity. In particular, there exists a dimensionless parameter1,
proportional to the thermodynamic limit of this ratio, and a non-trivial critical
value1c, such that, for1 < 1c, all of the excess will be absorbed into the
(Gaussian) fluctuations of the ambient gas, while if1 > 1c, a mesoscopic
droplet will form. Moreover, the droplet will only subsume a fractionλ1 < 1
of the excess particles. This fraction gets smaller as1 decreases to1c, yet the
minimum fractionλ1c doesnot vanish. It is emphasized that these minimum
sized droplets are a mesoscopic phenomenon: The linear size of the droplet will
be proportional toV1/(d+1)

� V1/d and the droplet thus occupies a vanishing
fraction of the system. Note that the total volume cannot be taken arbitrary
large if there is to be a fixed-size droplet at all.

The droplet formation/dissolution phenomena have been the subject of in-
tensive study in last few years. The fact thatd/(d + 1) is the correctexponent
for the scale on which droplets first appear was shown rigorously in [15] (see
also [21]); a heuristic derivation may go back at least to [3]. The existence of a
sharpminimal droplet size on the scaleV1/(d+1) was described in [22], more
recently in [4,25] and yet again in [2]. In the context of the 2D Ising system, a
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rigorous justification of the theory outlined in [4] was provided in [5]. We note
that the existence of a minimal droplet size seems to be ultimately related to
the pressure difference “due” to the presence of a droplet as expressed by the
Gibbs-Thomson formula. Indeed, from another perspective (which is more or
less that of [22, 25]), the formation/dissolution phenomena can be understood
on the basis of arguments in which the Gibbs-Thomson formula serves as a
foundation. Finally, we remark that although the generation of droplets is an
inherently dynamical phenomenon (beyond the reach of current methods) it is
possible that, on limited temporal and spatial scales, the equilibrium asymp-
totics is of direct relevance.

The remainder of this paper is organized as follows. In the next subsection
(Section 1.2) we will present an autonomous derivation of the Gibbs-Thomson
formula based on first principles of statistical mechanics. Aside from our own
(modest) appreciation of this approach, Section 1.2 is worthwhile in the present
context because the rigorous analysis develops precisely along these lines. In
Section 2, we will restrict our attention to the 2D Ising lattice gas, define ex-
plicitly the relevant quantities and present our rigorous claims in the form of
mathematical theorems. The proofs will come in Section 3.

1.2. Heuristic derivation

Let us consider a two-phase system at parameter values corresponding to phase
coexistence. We will assume that the two phases are distinguished by their den-
sities and, although the forthcoming derivation is completely general, we will
refer to the dense phase asliquid and to the rarefied phase asgas. Confining
the system to a (d ≥ 2)-dimensional volumeV , we will consider a canon-
ical ensemble at inverse temperatureβ and the number of particles fixed to
the value

N = ρgV + (ρ` − ρg)δV . (1.1)

Here,ρ` andρg are the bulk densities of the liquid and gas, respectively, and
the particle excess isδN = (ρ` − ρg)δV with δV � V . Let w1 denote the
dimensionless interfacial free energy (expressed in multiples ofβ−1), which
represents the cost of an optimally-shaped droplet of unit volume, and letκ
denote the response function,κ =

1
V 〈(N − 〈N〉)2

〉, which is essentially the
isothermal compressibility. Then, as has been argued in [4], if the parameter

1 =
(ρ` − ρg)

2

2κw1

(δV)
d+1

d

V
, (1.2)

is less than a critical value1c =
1
d (d+1

2 )
d+1

d , all of the particle excess will
be absorbed by the background fluctuations, while, for1 > 1c, a fraction of
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the excess particles will condense into a droplet. Moreover, the volume of this
droplet will be (in the leading order)λ1δV , whereλ1 ∈ [0, 1] is the maximal
solution to the equation

d − 1

d
λ−1/d

= 21(1 − λ). (1.3)

Note thatλ1c = 2/(d + 1) as advertised; that is to say, the droplet does not
appear gradually. Furthermore, as is of interest in certain anisotropic situations
where the droplet plays a role of an equilibrium crystal, the droplet has a par-
ticular shape, known as theWulff shape, which optimizes the overall interfacial
free energy for a given volume.

Gibbs-Thomson I: The density.On the basis of the aforementioned claims, we
can already state a version of the Gibbs-Thomson formula for the difference of
densities “due to the presence of a curved interface.” Indeed, since the droplet
only accounts for a fraction,λ1, of the excess particles, the remainder(1 −

λ1)(ρ`−ρg)δV , of these particles reside in the bulk. Supposing that the droplet
subsumes only a negligible fraction of the entire volume, i.e.,δV � V , the gas
surrounding the droplet will thus have the density

ρ̄g = ρg + (1 − λ1)(ρ` − ρg)
δV

V

(
1 + o(1)

)
. (1.4)

Hereo(1) is a quantity tending to zero asV tends to infinity while keeping1
finite (and1 > 1c). Invoking (1.2) and (1.3), this is easily converted into

ρ̄g = ρg +
d − 1

d

κw1

ρ` − ρg

1

(λ1δV)1/d

(
1 + o(1)

)
. (1.5)

Thus, the density of the gas surrounding the droplet will exceed the density
of the ambient gas by a factor inversely-proportional to the linear size of the
droplet. This is (qualitatively) what is stated by the Gibbs-Thomson formula.

In order to make correspondence with physics literature, let us assume
that the droplet is spherical—which is the case for an isotropic surface tension.
Then we have

w1 = βσ Sd

(Sd

d

)−
d−1

d and λ1δV =
Sd

d
r d (1.6)

whereσ is the surface tension,Sd is the surface area of a unit sphere inRd

andr is the radius of the droplet. Substituting these relations into (1.5), we
will get

ρ̄g = ρg + (d − 1)
βσκ

ρ` − ρg

1

r

(
1 + o(1)

)
. (1.7)
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Of course, all three formulas (1.4), (1.5) and (1.7) represent the leading or-
der asymptotic in 1/r . Higher-order corrections go beyond the validity of the
presented argument.

Remark 1.1. We note that equation (1.7) differs from the usual cor-
responding version of the Gibbs-Thomson formula in which theκ appearing
above is replaced byρg. This is due to the approximationκ ≈ ρg which is
justified only in the ideal-gas limit of the rarefied phase.

Pressures above curved/planar interfaces.Next we turn our attention to the
Gibbs-Thomson formula for the pressure. Here we immediately run into a
complication; while the density is a well-defined object in finite volume, the
pressure, by its nature, is a macroscopic commodity. Thus, strictly speaking,
thepressureshould be discussed in the context of thermodynamic limits.

In the present context we need to define the “pressure of the gas surround-
ing a droplet.” In order to do so, we will consider two canonical ensembles
with thesamenumber of particles given by (1.1), in volumesV andV + 444V ,
where444V � V . From the perspective of equilibrium thermodynamics, these
two situations describe the initial and terminal states of the gas undergoing
isothermal expansion. Standard statistical-mechanical formulas tell us that the
change of the relevant thermodynamic potential (the Helmholtz free energy)
during this expansion is given as the pressure times the difference of the vol-
umes444V . Using ZC(N, V) to denote thecanonicalpartition function ofN
particles in volumeV , we thus define the relevant pressurepV by

pV =
1

β

1

444V
log

ZC(ρgV + (ρ` − ρg)δV, V + 444V)

ZC(ρgV + (ρ` − ρg)δV, V)
. (1.8)

For finite V , 444V , etc., the quantitypV still depends on444V . As it turns out,
this dependence (which we will refrain from making notationally explicit) will
annul in any limitV,444V → ∞ with 444V/∂V → 0, where∂V denotes the
boundary ofV . However, we must consider a limiting procedure for which444V
also does not “disturb” the droplet. This is a slightly delicate subject matter to
which we will return shortly.

Our next goal is to give a mathematical interpretation of the pressure
“above a planar interface.” As it turns out (and as is the standard in all deriva-
tions), here the correct choice is to take simply the pressure of the ambient gas
phase. (See Remark 1.3 for further discussions.) UsingZG(µ, V) to denote
thegrand canonicalpartition function, withµ denoting the chemical potential,
this quantity is defined by the (thermodynamic) limit

p∞ =
1

β
lim

V→∞

1

V
log ZG(µt, V), (1.9)
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Here we have prepositioned the chemical potential to the transitional value,
i.e. µ = µt. By well-known arguments, this limit is independent of howV
tends to infinity provided∂V/V tends to zero asV → ∞.

Since we are ultimately looking for an expression for the differencepV −

p∞, instead of (1.9) we would rather have an expression that takes a form
similar to (1.8). We might try to use the fact that logZG(µt, V) = βp∞V +

O(∂V), but then the boundary term will be much larger than the actual Gibbs-
Thomson correction. We thus have to develop a more precise representation of
the grand canonical partition function. For simplicity, we will restrict ourselves
to the cases whenV is a rectangular box, in which case we expect to have

log ZG(µt, V) = βp∞V + τwall∂V + O
(
V

d−2
d

)
. (1.10)

Hereτwall denotes awall surface tensionwhich depends on the boundary con-
ditions. The error term represents the contribution from lower-dimensional
facets ofV , e.g., edges and corners ofV in d = 3. Such a representation
can be justified using low-temperature expansions, see [8], and/or by invoking
rapid decay of correlations. Of course, this will be discussed in excruciating
detail in Section 3 of the present paper.

Using the representation (1.10), we can now write

βp∞ =
1

444V
log

ZG(µt, V + 444V)

ZG(µt, V)
+ O

(∂(V + 444V) − ∂V + V
d−2

d

444V

)
, (1.11)

which supposes that bothV andV + 444V are rectangular volumes.
Our goal is to limit444V to the values for which the error term is negligi-

ble compared with the anticipated Gibbs-Thomson correction. First, suppos-
ing that444V � V , we find that the difference∂(V + 444V) − ∂V is of the or-
der444V/V1/d. Second, assuming that1 from (1.2) is finite and exceeding1c

(which is necessary to have any droplet at all), we haveδV ∼ Vd/(d+1). These
two observations show that the contribution of∂(V + 444V) − ∂V to the error
term in (1.11) is indeed negligible compared with(δV)−1/d. A similar calcu-
lation shows that the the second part of the error term,V (d−2)/d/444V , on the
right-hand side of (1.11) is negligible compared with(δV)−1/d provided that

444V � V
d−2

d +
1

d+1 . (1.12)

It is easy to check—see formula (1.23)—that (1.12) can be satisfied while
maintaining444V � δV . This observation will be essential in the forthcom-
ing developments.

The formulas (1.8–1.11) can be conveniently subtracted in terms of the
probabilityPV (N) that, in the grand canonical ensemble, there areexactly N
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particles in volumeV . Explicitly, denoting

PV (N) =
eβµt N ZC(N, V)

ZG(µt, V)
, (1.13)

we get

β(pV − p∞) =
1

444V
log

PV+444V (ρgV + (ρ` − ρg)δV)

PV (ρgV + (ρ` − ρg)δV)
+ o

(
(δV)−1/d)

. (1.14)

Here we have applied (1.12) to simplify the error term.

Gibbs-Thomson II: The pressure.Now we are in a position to derive the de-
sired Gibbs-Thomson formula for the pressure. A principal tool for estimating
the ratio of the probabilities in (1.14) will be another result of [4] which tells
us that, in the limitV → ∞,

− logPV
(
ρgV + (ρ` − ρg)δV

)
= w1(δV)

d−1
d

(
8?

1 + o(1)
)
, (1.15)

where8?
1 is the absolute minimum of the function

81(λ) = λ
d−1

d + 1(1 − λ)2 (1.16)

on [0, 1]. SinceρgV + (ρ` − ρg)δV = ρg(V + 444V) + (ρ` − ρg)(α δV), where

α = 1 −
ρg

ρ` − ρg

444V

δV
(1.17)

we also have, again in the limitV → ∞,

− logPV+444V
(
ρgV + (ρ` − ρg)δV

)
= w1(α δV)

d−1
d

(
8?

1(α) + o(1)
)
, (1.18)

where we have introduced the shorthand1(α) = α
d+1

d 1.
Supposing that444V � δV , we can write

8?
1(α) = 8?

1 −
ρg

ρ` − ρg

444V

δV
(1 − λ1)2

+ o(444V/δV) (1.19)

and thus, to the leading order in444V/δV ,

β(pV − p∞)

= w1
ρg

ρ` − ρg

1

(δV)1/d

[
d − 1

d
8?

1 +
d + 1

d
1(1 − λ1)2

+ o(1)

]
. (1.20)
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After some manipulations involving (1.16) and (1.3), the square bracket on the
right-hand side turns out to equald−1

d λ
−1/d
1 + o(1). Thus we finally derive

β(pV − p∞) =
d − 1

d

w1ρg

ρ` − ρg

1

(λ1δV)1/d

(
1 + o(1)

)
. (1.21)

In the case of an isotropic surface tension, formula (1.21) again reduces to

pV − p∞ = (d − 1)
σρg

ρ` − ρg

1

r

(
1 + o(1)

)
. (1.22)

This is the (leading order) Gibbs-Thomson correction; the one which is usually
derived [24,29] by invokingthermodynamicconsiderations. We note that here
the gas-densityρg in the numerator is fully justified, cf Remark 1.1.

Remark 1.2. We note that higher orders in 1/r —as predicted by the
“exponential” Gibbs-Thomson formula in classical thermodynamics—go be-
yond the validity of the formulas (1.15) and (1.18). In fact, as a closer look at
theV-dependence ofδV and∂V suggests, these corrections may depend on the
choice of the volumesV andV+444V and on the boundary condition. We further
remark that both formulas (1.5) and (1.21) have been derived for the situation
when a droplet of the dense phase forms inside the low-density phase. How-
ever, a completely analogous derivation works for a droplet of a low-density
phase immersed in a high-density environment (e.g., vapor bubbles in water).

Remark 1.3. Once we have derived the Gibbs-Thomson formula
(1.21), we can also justify our choice ofp∞ for the pressure “above a planar
interface.” First let us note that, in (1.21),p∞ can be viewed as a convenient
normalization constant—subtracting (1.21) for two different volumes, sayV1

and V2, the quantityp∞ completely factors out. Moreover, ifV1 � V2, the
contribution of the droplet inV2 to such a difference will be negligible. Thus,
in the limit whenV2 → ∞ andV1 stays fixed,pV1 − pV2 tends topV1 − p∞ as
expressed in (1.21). Since also the droplet inV2 becomes more and more flat
in this limit, p∞ indeed represents the pressure “above a planar interface.”

This concludes our heuristic derivation of the Gibbs-Thomson formula.
We reiterate that all of the above only makes good sense when444V has been
chosen such that

V1−
2
d +

1
d+1 � 444V � δV ∼ V1−

1
d+1 . (1.23)

As is easily checked, these inequalities represent a non-trivial interval of values
of 444V . In the next sections, where we will rigorously treat the case of the
two-dimensional Ising lattice gas, the inequality on the right-hand side will
be guaranteed by taking444V = ηδV and then performing the limitsV → ∞

followed byη → 0.
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2. RIGOROUS RESULTS

2.1. The model

Throughout the remainder of this paper, we will focus our attention on thetwo-
dimensional Ising lattice gas. The latter refers to a system where each site of
the square latticeZ2 can be either vacant or occupied by one particle. The state
of each site is characterized by means of an occupation numbernx which is
zero for a vacant site and one for an occupied site. The formal Hamiltonian of
the system can be written as

H = −

∑
〈x,y〉

nxny − µ
∑

x

nx. (2.1)

Here 〈x, y〉 denotes a nearest-neighbor pair onZ2 andµ plays the role of a
chemical potential. Note that the Hamiltonian describes particles with a hard-
core repulsion and short-range attraction (with coupling constant set to unity).

The Gibbs measure (or Gibbs state) on particle configurations in a finite
volume3 ⊂ Z2 is defined using the finite-volume version of (2.1) and a bound-
ary condition on the boundary of3. Explicitly, let ∂3 be the set of sites in
Z2

\3 that have a bond into3 and letH3 be the restriction ofH obtained by
considering only pairs{x, y}∩3 6= ∅ in the first sum in (2.1) and sitesx ∈ 3 in
the second sum. Ifn3 ∈ {0, 1}

3 is a configuration in3 andn∂3 is a boundary
condition (i.e., a configuration on the boundary∂3 of 3), and ifH3(n3|n∂3)
is the Hamiltonian for these two configurations, then the probability ofn3 in
the corresponding Gibbs measure is given by

P n∂3,β,µ
3 (n3) =

e−βH3(n3|n∂3)

Z n∂3,β
G (µ, 3)

. (2.2)

Here, as usual,β ≥ 0 is the inverse temperature and the normalization con-
stant,Z n∂3,β

G (µ, 3), is the grand canonical partition function in3 correspond-
ing to the boundary conditionn∂3. We recall that, according to the standard
DLR-scheme [16], the system is atphase coexistenceif (depending on the
boundary conditions and/or the sequence of volumes) there is more than one
infinite-volume limit of the measures in (2.2). Of particular interest in this
work will be the measure inL × L rectangular volumes3L ⊂ Z2 with vacant
(i.e., n∂3L ≡ 0) boundary condition. In this case we will denote the object
from (2.2) byP◦,β,µ

L .
As is well known, the lattice gas model (2.1) is equivalent to the Ising

magnet with the (formal) Hamiltonian

H = −J
∑
〈x,y〉

σxσy − h
∑

x

σx, (2.3)
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coupling constantJ = 1/4, external fieldh = µ − 2 and the Ising spins (σx)
related to the occupation variables (nx) via σx = 2nx − 1. The±-symmetry
of the Ising model also allows us to identify the regions of phase coexistence
of the lattice gas model defined by (2.1): There is a valueβc = 2 log(1 +

√
2)

of the inverse temperature such that forβ > βc andµ = µt = 2, there ex-
ist two distinct translation-invariant, extremal, ergodic, infinite-volume Gibbs
states for the Hamiltonian (2.1)—a “liquid” state characterized by an abun-
dance of particles over vacancies and a “gaseous” state, characterized by an
abundance of vacancies over occupied sites. In the Ising-spin language, these
states correspond to the plus and minus states which in the lattice gas language
translate to the states generated by the fully occupied or vacant boundary con-
ditions. We will use〈−〉

◦

β and〈−〉
•

β to denote the expectation with respect to
the (infinite-volume) “gaseous” and “liquid” state, respectively.

In order to discuss the Gibbs-Thomson formula in this model, we need to
introduce the relevant quantities. Assumingµ = µt andβ > βc, we will begin
by defining the gas and liquid densities:

ρg = ρg(β) = 〈n0〉
◦

β and ρ` = ρ`(β) = 〈n0〉
•

β, (2.4)

wheren0 refers to the occupation variable at the origin. Note that, by the plus-
minus Ising symmetry,〈n0〉

◦

β = 〈1 − n0〉
•

β and thusρ` + ρg = 1. Next we will
introduce the quantityκ which is related to isothermal compressibility:

κ =

∑
x∈Z2

(
〈n0nx〉

◦

β − ρ2
g

)
. (2.5)

The sum converges for allβ > βc by the exponential decay of truncated
particle-particle correlations,|〈nxny〉

◦

β − ρ2
g| ≤ e−|x−y|/ξ , whereξ = ξ(β) <

∞ denotes the correlation length. The latter was proved in [12,28] in the con-
text of the 2D Ising model.

The last object we need to bring into play is the surface tension or the
interfacial free energy. In the 2D Ising model, one can use several equivalent
definitions. Since we will not need any of them explicitly, it suffices if we just
summarize the major concepts as formulated, more or less, in [14,26]: First, for
eachβ > βc, there is a continuous functionτβ : {n ∈ R2 : |n| = 1} → (0, ∞),
called themicroscopic surface tension. Roughly speaking,τβ(n) is the cost
per length of an interface with normal vectorn that separates a “gaseous” and
“liquid” region. This allows to introduce the so calledWulff functionalWβ that
assigns to each rectifiable curveϕ = (ϕt) in R2 the value

Wβ(ϕ) =

∫
ϕ

τβ(nt)dnt . (2.6)
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Herent is the normal vector toϕ at the pointϕt .
The quantityWβ(∂D) expresses the macroscopic cost of a dropletD

with boundary∂D. Indeed, as has been established in the course of last few
years [14, 19–21, 26, 27], the probability in the measureP◦,β,µt

L that a droplet
of “liquid” phase occurs whose shape is “near” that of the setD is given, to
leading order, by exp{−Wβ(∂D)}. Thus the “most favorable” droplet shape is
obtained by minimizingWβ(∂D) over all D with a given volume. UsingW
to denote the minimizing set with aunit volume(which can be explicitly con-
structed [13,17,30]), we define

w1(β) = Wβ(∂W). (2.7)

By well-known properties of the surface tension, we havew1(β) > 0 onceβ >
βc. We note that, as in the heuristic section—see Remark 1.1—the customary
factor 1/β is incorporated intoτβ in our definition of the surface tension.

Remark 2.1. For those more familiar with the magnetic terminology,
let us pause to identify the various quantities in Ising language: First, ifm?(β)
is the spontaneous magnetization, then we haveρg(β) =

1
2(1 − m?(β/4))

andρ`(β) =
1
2(1 + m?(β/4)). Similarly, if χ(β) denotes themagnetic sus-

ceptibility in the Ising spin system, thenκ(β) = κ(β/4)/4. Finally, the quan-
tity w1(β) corresponds exactly to the similar quantity for the spin system at a
quarter of the inverse temperature.

2.2. Known facts

Here we will review some of the rigorous results concerning the 2D Ising lattice
gas in a finite volume and a fixed number of particles. In the language of
statistical mechanics, this corresponds to thecanonicalensemble. The stated
theorems are transcribes of the corresponding results from [5].

Recall our notationP◦,β,µ
L for the Gibbs measure inL × L rectangular

box 3L and vacant boundary conditions on∂3L . Let (vL) be a sequence of
positive numbers tending to infinity in such a way thatv

3/2
L /|3L | tends to a

finite non-zero limit. In addition, suppose that(vL) is such thatρg|3L |+ (ρ` −

ρg)vL is a number from{0, 1, . . . , |3L |} for all L. For any configuration(nx)
in 3L , let NL denote the total number of particles in3L , i.e.,

NL =

∑
x∈3L

nx. (2.8)

Our first theorem concerns the large-deviation asymptotic for the random vari-
ableNL . The following is a rigorous version of the claim (1.15), which, more
or less, is Theorem 1.1 from [5].
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Theorem A. Let β > βc and let the sequence(vL) and the quanti-
ties ρg = ρg(β), ρ` = ρ`(β), κ = κ(β), andw1 = w1(β) be as defined
previously. Suppose that the limit

1 =
(ρ` − ρg)

2

2κw1
lim

L→∞

v
3/2
L

|3L |
(2.9)

exists with1 ∈ (0, ∞). Then

lim
L→∞

1
√

vL
log P◦,β,µt

L

(
NL = ρg|3L | + (ρ` − ρg)vL

)
= −w1 inf

0≤λ≤1
81(λ), (2.10)

where81(λ) =
√

λ + 1(1 − λ)2.

We proceed by a description of the typical configurations in the condi-
tional measure

P◦,β,µt
L

(
·
∣∣NL = ρg|3L | + (ρ` − ρg)vL

)
, (2.11)

which, we note, actually does not depend on the choice of the chemical po-
tential. Our characterization will be based on the notion ofPeierls’ contours:
Given a particle configuration, let us place a dual bond in the middle of each
direct bond connecting an occupied and a vacant site. These dual bonds can be
connected into self-avoiding polygons by applying an appropriate “rounding
rule,” as discussed in [14] and illustrated in, e.g., Fig. 1 of [5]. Given a con-
tour γ, let V(γ) denote the set of sites enclosed byγ. In accord with [5], we
also let diamγ denote the diameter of the setV(γ) in the`2 metric onZ2. If 0
is a collection of contours, we say thatγ ∈ 0 is anexternalcontour if it is not
surrounded by any other contour from0.

While “small” contours are just natural fluctuations within a given phase,
“large” contours should somehow be interpreted as droplets. It turns out that
the corresponding scales are clearly separated with no intermediate contours
present in typical configurations. The following is essentially the content of
Theorem 1.2 and Corollary 1.3 from [5].

Theorem B. Let β > βc and let the sequence(vL) and the quanti-
ties ρg = ρg(β), ρ` = ρ`(β), κ = κ(β), and w1 = w1(β) be as de-
fined previously. Suppose that the limit in (2.9) exists with1 ∈ (0, ∞) and
let 1c =

1
2(3/2)3/2. There exists a numberK = K (β, 1) < ∞ such that, for

eachε > 0 andL → ∞, the following holds with probability tending to one
in the distribution (2.11):

(1) If 1 < 1c, then all contoursγ satisfy diamγ ≤ K log L.
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(2) If 1 > 1c, then there exists a unique contourγ0 with

λ1vL(1 − ε) ≤
∣∣V(γ0)

∣∣ ≤ λ1vL(1 + ε) (2.12)

and
ρ`λ1vL(1 − ε) ≤

∑
x∈V(γ0)

nx ≤ ρ`λ1vL(1 + ε), (2.13)

whereλ1 is the largest solution to the equation

41
√

λ(1 − λ) = 1 (2.14)

in [0, 1]. Moreover, all the other external contoursγ 6= γ0 satisfy diamγ ≤

K log L.

Remark 2.2. We note that, in the case1 = 1c, there is at most one
large external contour satisfying the bounds (2.12–2.13), or no contour be-
yond K log L at all. The details of what exactly happens when1 = 1c have
not, at present, been quantified—presumably, these will depend on the precise
asymptotic of the sequencevL .

Remark 2.3. One additional piece of information we could add about
the contourγ0 is that its macroscopic shape asymptotically optimizes the Wulff
functional, see (2.6–2.7). While the shape of the unique large contour plays no
essential role in this paper (it appears implicitly in the valuew1) we note that
statements of this sort were the basis of the (microscopic)Wulff construction,
initiated in [1, 14] for the case of 2D Ising model and percolation. These 2D
results were later extended in [15, 19–21, 26, 27]. The techniques developed
in these papers have been instrumental for the results of [5], which addresses
the regime that is “critical” for droplet formation. Recently, extensions going
beyond two spatial dimensions have also been accomplished [6, 10, 11]. We
refer to [7] and [5] for more information on the subject.

2.3. Gibbs-Thomson formula(s) for 2D Ising lattice gas

Now we are finally in a position to state our rigorous version of the Gibbs-
Thomson formula for the 2D Ising lattice gas. We will begin with the formula
for the difference of the densities, which is, more or less, an immediate corol-
lary of Theorem B.

Theorem 2.4. Let β > βc and let the sequence(vL) and the quanti-
ties ρg = ρg(β), ρ` = ρ`(β), κ = κ(β), andw1 = w1(β) be as defined
previously. Let1 ∈ (0, ∞) be as in (2.9). Suppose that1 > 1c =

1
2(3/2)3/2

and letλ1 be the largest solution of the equation (2.14) in the interval [0, 1].
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LetAε,L be the set of configurations(nx)x∈3L that contain a unique large exter-
nal contourγ0—as described in Theorem B—obeying (2.12–2.13), and whose
particle density in the exterior ofγ0,

ρext(γ0) =
1

|3L \ V(γ0)|

∑
x∈3LrV(γ0)

nx, (2.15)

satisfies the bounds

1

2

κw1

ρ` − ρg

1

|V(γ0)|
1/2

(1 − ε) ≤ ρext(γ0) − ρg

≤
1

2

κw1

ρ` − ρg

1

|V(γ0)|
1/2

(1 + ε). (2.16)

Then, for eachε > 0, we have

lim
L→∞

P◦,β,µt
L (Aε,L |NL = ρg|3L | + (ρ` − ρg)vL) = 1. (2.17)

Remark 2.5. We note that, up to theε corrections, (2.16) is ex-
actly (1.5) for d = 2. Indeed, by Theorem B we know that|V(γ0)| =

λ1vL(1 + o(1)) and the two formulas are identified by noting thatδV cor-
responds tovL in our setting. Due to the underlying lattice, the Wulff droplet
is undoubtedly not circular for anyβ > βc and the better-known form (1.7) of
the (density) Gibbs-Thomson formula does not apply.

In order to state our version of the Gibbs-Thomson formula for the pres-
sure, we will first need to define the pressure “above a curved interface”—not
to mention the planar interface. We will closely follow the heuristic definitions
(1.8–1.11). Let us consider a sequence(3′

L) of squares inZ2 satisfying

3′

L ⊃ 3L but 3′

L 6= 3L (2.18)

for all L. Let Z◦,β
C (N, 3) denote thecanonicalpartition function in3 with N

particles, inverse temperatureβ and the vacant boundary condition. This quan-
tity is computed by summing the Boltzmann factor,

exp

{
β

∑
〈x,y〉

x,y∈3

nxny

}
, (2.19)

over all configurations(nx) with
∑

x∈3 nx = N. Then we let

pL =
1

β

1

|3′

L \ 3L |
log

Z◦,β
C (ρg|3L | + (ρ` − ρg)vL , 3′

L)

Z◦,β
C (ρg|3L | + (ρ` − ρg)vL , 3L)

. (2.20)



A microscopic theory of Gibbs-Thomson formula 15

As in the heuristic section, the quantitypL depends on the sequences(3′

L),
(vL), inverse temperatureβ, and also the boundary condition—all of which is
notationally suppressed.

For the pressure “above a planar interface,” again we will simply use
the pressure of the pure (gaseous) phase. If3 ⊂ Z2 is a finite set, we
let Z◦,β

G (µ, 3) denote thegrand canonicalpartition function in3 correspond-
ing to the chemical potentialµ and vacant boundary condition. Recalling that
µt = 2, we define

p∞ =
1

β
lim

L→∞

1

|3L |
log Z◦,β

G (µt, 3L), (2.21)

where the limit exists by standard subadditivity arguments.
Suppose that1 > 1c and let us consider the eventBε,L collecting all

configurations in3L that have a unique “large” contourγ0, as described in
Theorem B, such that, in addition to (2.12–2.13), the volumeV(γ0) satisfies
the inequalities

1

2

ρgw1

ρ` − ρg

1

|V(γ0)|
1/2

(1 − ε) ≤ β(pL − p∞)

≤
1

2

ρgw1

ρ` − ρg

1

|V(γ0)|
1/2

(1 + ε). (2.22)

Somewhat informally, the eventBε,L represents the configurations for which
the Gibbs-Thomson formula for pressure holds up to anε error. The next theo-
rem shows that, asL → ∞, these configurations exhaust all of the conditional
measure (2.11):

Theorem 2.6. Let β > βc and let the sequence(vL) and the quanti-
ties ρg = ρg(β), ρ` = ρ`(β), κ = κ(β), andw1 = w1(β) be as defined
previously. Let1 ∈ (0, ∞) be as in (2.9). Suppose that1 > 1c =

1
2(3/2)3/2

and letλ1 be the largest solution to (2.14) in [0, 1]. For eachε > 0, there
exists a numberη0 > 0 such that if(3′

L) is a sequence of squares inZ2 satis-
fying (2.18) and

lim
L→∞

|∂3′

L | − |∂3L |

|3′

L \ 3L |

√
vL = 0 and lim

L→∞

|3′

L \ 3L |

vL
= η, (2.23)

with η ∈ (0, η0], then

lim
L→∞

P◦,β,µt
L

(
Bε,L |NL = ρg|3L | + (ρ` − ρg)vL

)
= 1. (2.24)
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Remark 2.7. As before, since|V(γ0)| = λ1vL(1+o(1)), the equality
(2.24) is a rigorous version of (1.21) for the case at hand. The rate at which
the limit in (2.24) is achieved depends—among other things—on the rate of
the convergence in (2.23). We note that the constraints (2.23) correspond to
the bounds in (1.23). In particular, there is a non-trivial set of sequences(3′

L)
for which both limits in (2.23) are exactly as prescribed. Finally, the restriction
that η > 0 in (2.23) is due to the fact that from [5] we have essentially no
control on the rate of convergence in (2.10). Thus, to allow the second limit
in (2.23) to be zero, we would have to do a little extra work in order to clarify
the rate at which the limits in (2.23) and (2.10) are achieved.

3. PROOFS OF MAIN RESULTS

3.1. Proofs of Theorems 2.4 and 2.6

In this section we provide the proofs of our main results. We will commence
with Theorem 2.4:

Proof of Theorem 2.4. The proof closely follows the heuristic cal-
culation from Section 1.2. Fix anε > 0 and let us restrict our attention to
particle configurations containing a unique external contourγ0 and satisfying
the bounds (2.12–2.13). Recall the definition (2.8) of the quantityNL . We will
show that, under the condition

NL = ρg|3L | + (ρ` − ρg)vL , (3.1)

any such configuration is, for a suitableε′ > 0, contained inAε′,L for all L.
Introduce the quantity

Next(γ0) =

∑
x∈3LrV(γ0)

nx. (3.2)

The inequalities in (2.13) then directly imply∣∣Next(γ0) − (NL − ρ`λ1vL)
∣∣ ≤ ερ`λ1vL . (3.3)

Since we work with a measure conditioned on the event (3.1), we can write

NL − ρ`λ1vL = ρg
(
|3L | − λ1vL

)
+ (ρ` − ρg)(1 − λ1)vL . (3.4)

But |3L |−λ1vL = |3L \V(γ0)|+(|V(γ0)|−λ1vL) and by (2.12), the second
term is no larger thanελ1vL . Combining the previous estimates, we derive the
bound∣∣Next(γ0) − ρg|3L \ V(γ0)| − (ρ` − ρg)(1 − λ1)vL

∣∣ ≤ ελ1vL , (3.5)



A microscopic theory of Gibbs-Thomson formula 17

where we also used (inessentially) thatρ` + ρg = 1.
The first two terms in the absolute value on the left-hand side represent the

difference betweenρext(γ0) andρg while the third term is exactly the Gibbs-
Thomson correction. Indeed, dividing (3.5) by|3L \ V(γ0)| and noting that,
by definition,Next(γ0) = ρext(γ0)|3L \ V(γ0)|, we get∣∣∣∣ρext(γ0) − ρg − (ρ` − ρg)

(1 − λ1)vL

|3L \ V(γ0)|

∣∣∣∣ ≤
ελ1vL

|3L \ V(γ0)|
. (3.6)

Since both the Gibbs-Thomson correction—which arises from the last term
in the above absolute value—and the error term on the right-hand side are
proportional tovL/|3L \ V(γ0)|, the desired bound (2.16) will follow with
someε > 0 once we show that

(ρ` − ρg)
(1 − λ1)vL

|3L \ V(γ0)|
=

1

2

κw1

ρ` − ρg

1
√

λ1vL

(
1 + o(1)

)
, L → ∞. (3.7)

To prove (3.7), we note that|3L \ V(γ0)|/|3L | = 1 + o(1), which using (2.9)
allows us to write

vL

|3L \ V(γ0)|
=

2κw1

(ρ` − ρg)2

1
√

vL

(
1 + o(1)

)
, L → ∞. (3.8)

Using (2.14) in the form1(1 − λ1) = 1/(4
√

λ1), we get rid of the factor
of 1, whereby (3.7) follows. Since theo(1) term in (3.7) is uniformly small
for all configurations satisfying (2.12–2.13), the bounds (2.16) hold onceL is
sufficiently large.

In order to prove our Gibbs-Thomson formula for the pressure, we will
need the following representation of the grand canonical partition function:

Theorem 3.1. Let β > βc and let p∞ be as in (2.21). There exists a
numberτ ◦

wall ∈ R and, for eachθ ∈ (1, ∞), also a constantC(β, θ) < ∞

such that ∣∣log Z◦,β
G (µt, 3) − βp∞|3| − τ ◦

wall|∂3|
∣∣ ≤ C(β, θ) (3.9)

holds for all rectangular volumes3 ⊂ Z2 whose aspect ratio lies in the inter-
val (θ−1, θ).

Clearly, Theorem 3.1 is a rigorous version of the formula (1.10). Such
things are well known in the context of low-temperature expansions, see,
e.g., [8]. Here we are using expansion techniques in conjunction with cor-
relation inequalities to get the claim “down toβc.” However, the full argument
would detract from the main line of thought, so the proof is postponed to Sec-
tion 3.2.
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Proof of Theorem 2.6. We will again closely follow the heuristic
derivation from Section 1.2. First we note that, using Theorem 3.1, we have∣∣∣∣βp∞ −

1

|3′

L \ 3L |
log

Z◦,β
G (µt, 3

′

L)

Z◦,β
G (µt, 3L)

∣∣∣∣
≤ |τ ◦

wall|
|∂3′

L | − |∂3L |

|3′

L \ 3L |
+

2C(β, θ)

|3′

L \ 3L |
. (3.10)

Introducing the shorthand

P3(N) = P◦,β,µt
3

( ∑
x∈3

nx = N
)
, (3.11)

invoking the assumption on the left of (2.23) and applying (2.20), this allows
us to write

β(pL − p∞) =
1

|3′

L \ 3L |
log

P3′

L
(ρg|3L | + (ρ` − ρg)vL)

P3L (ρg|3L | + (ρ` − ρg)vL)
+ o(v

−1/2
L ),

(3.12)
asL → ∞. Now, by Theorem A we have

logP3L

(
ρg|3L |+ (ρ` −ρg)vL

)
= −w1

(
8?

1 +o(1)
)√

vL , L → ∞, (3.13)

where8?
1 is the absolute minimum of81(λ) for λ ∈ [0, 1]. As to the corre-

sponding probability for3′

L , we first note that

ρg|3L | + (ρ` − ρg)vL = ρg|3
′

L | + (ρ` − ρg)αLvL , (3.14)

where

αL = 1 −
ρg

ρ` − ρg

|3′

L \ 3L |

vL
. (3.15)

By our assumption on the right-hand side of (2.23),αL converges to a numberα
given byα = 1 −

ρg
ρ`−ρg

η. Again using Theorem A, we can write

logP3L

(
ρg|3L | + (ρ` − ρg)vL

)
= −w1

(
8?

α3/21
+ o(1)

)√
α
√

vL , (3.16)

as L → ∞. A simple calculation—of the kind leading to (1.20)—now
shows that

√
α8?

α3/21
− 8?

1 =
η

2

ρg

ρ` − ρg

1
√

λ1
+ O(η2), η ↓ 0, (3.17)

while (2.23) implies that
√

vL

|3′

L \ 3L |
=

1
√

vL

1

η

(
1 + o(1)

)
, L → ∞. (3.18)
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Plugging these equations, along with (3.13) and (3.16), into (3.12), we have

β(pL − p∞) =
1

2

ρgw1

ρ` − ρg

1
√

λ1vL

(
1 +

o(1)

η
+ O(η)

)
, (3.19)

whereo(1) denotes a quantity tending to zero asL → ∞ while O(η) is
a quantity independent ofL and tending to zero at least as fast asη in the
limit η ↓ 0. Equation (3.19) shows that, onceL is sufficiently large, a particle
configuration satisfying the bounds (2.12) from Theorem B will also satisfy the
bounds (2.22). The limit (2.24) is then a simple conclusion of Theorem B.

3.2. Representation of the partition function

The goal of this section is to prove Theorem 3.1. As already mentioned, we
will employ two basic techniques: cluster expansion and correlation inequali-
ties. The basic strategy of the proof is as follows. First we pick a large negative
numberµ0 < µt and use cluster expansion to establish a corresponding repre-
sentation for the partition functionZ◦,β

G (µ0, 3L). Then, as a second step, we
invoke correlation inequalities to prove a similar representation for the ratio of
the partition functionsZ◦,β

G (µ0, 3L) andZ◦,β
G (µt, 3L). Essential for the sec-

ond step will be the GHS inequality and the exponential decay of correlations
for all β > βc. Combining these two steps, the desired representation will be
proved.

Let p∞(µ) denote the pressure corresponding to the chemical potentialµ,
which is defined by the limit as in (2.21) whereµt is replaced byµ. (Through-
out this derivation, we will keepβ fixed and suppress it notationally whenever
possible.) The first step in the above strategy can then be formulated as follows:

Lemma 3.2. Let β > βc and let p∞(µ) be as defined above. For
eachθ ∈ (1, ∞) and each sufficiently large negativeµ0, there exists a number
τ ◦

1 (µ0) ∈ R and a constantC1(β, µ0, θ) < ∞ such that∣∣log Z◦,β
G (µ0, 3) − βp∞(µ0)|3| − τ ◦

1 (µ0)|∂3|
∣∣ ≤ C1(β, µ0, θ) (3.20)

holds for each rectangular volume3 ⊂ Z2 whose aspect ratio lies in the inter-
val (θ−1, θ).

To implement the second step of the proof, we need to study the ratio of
the partition functions with chemical potentialsµt andµ0. Let 3 be a finite
rectangular volume inZ2 and let〈−〉

◦,β,µ
3 denote the expectation with respect

to the measure in (2.2) with vacant boundary condition. LetN3 =
∑

x∈3 nx.
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For anyµ0 < µt we then have

log
Z◦,β

G (µt, 3L)

Z◦,β
G (µ0, 3L)

=

∫ µt

µ0

〈N3〉
◦,β,µ
3 dµ (3.21)

and

β
(
p∞(µt) − p∞(µ0)

)
=

∫ µt

µ0

〈n0〉
◦,β,µdµ. (3.22)

where〈−〉
◦,β,µ denotes the infinite-volume limit (which we are assured exists)

of the state〈−〉
◦,β,µ
3 . (Note that (3.22) is true withany infinite-volume Gibbs

state substituted.) Combining (3.21–3.22), we thus get

log
Z◦,β

G (µt, 3L)e−βp∞(µt)|3|

Z◦,β
G (µ0, 3L)e−βp∞(µ0)|3|

=

∫ µt

µ0

(
〈N3〉

◦,β,µ
3 − |3|〈n0〉

◦,β,µ
)
dµ. (3.23)

To derive the desired representation, we need to show that the integrand is
proportional to|∂3|, up to an error which does not depend on3. This estimate
is provided in the following lemma:

Lemma 3.3. Let β > βc and θ ∈ (1, ∞). There exists a constant
C2(β, θ) < ∞ and a bounded functionτ ◦

2 : (−∞, µt]→ R such that∣∣〈N3〉
◦,β,µ
3 − |3|〈n0〉

◦,β,µ
− |∂3|τ ◦

2 (µ)
∣∣ ≤ C2(β, θ), (3.24)

holds for eachµ ∈ (−∞, µt] and each rectangular volume3 ⊂ Z2 whose
aspect ratio lies in the interval(θ−1, θ).

Lemma 3.2 will be proved in Section 3.3 and Lemma 3.3 in Section 3.4.
With the two lemmas in the hand, the proof of Theorem 3.1 is easily concluded:

Proof of Theorem 3.1. Let θ ∈ (1, ∞) and let3 be a rectangular
volume whose aspect ratio lies in the interval(θ−1, θ). Fix µ0 to be so large
(and negative) that Lemma 3.2 holds and letQ1(µ0) denote the quantity in the
absolute value in (3.20). For eachµ ∈ [µ0, µt], let Q2(µ) denote the quantity
inside the absolute value in (3.24). Let us define

τ ◦

wall = τ ◦

1 (µ0) +

∫ µt

µ0

τ ◦

2 (µ)dµ. (3.25)

A simple calculation combining (3.20), (3.24) with (3.23) then shows that

log Z◦,β
G (µ, 3)−βp∞(µt)|3|−τ ◦

wall|∂3| = Q1(µ0)+

∫ µt

µ0

Q2(µ)dµ. (3.26)

Using (3.20) and (3.24), we easily establish that the absolute value of the
quantity on right-hand side is no larger thanC(β, θ) = C1(β, µ0, θ) + (µt −

µ0)C2(β, θ).
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3.3. Cluster expansion

Here we will rewrite the grand canonical partition function in terms of a poly-
mer model, then we will collect a few facts from the theory of cluster ex-
pansions and assemble them into the proof of Lemma 3.2. The substance of
this section is very standard—mostly siphoned from [23]—so the uninterested
reader may wish to consider skipping the entire section on a first reading.

We begin by defining the polymer model. Given a configurationn3 in 3,
let us call two distinct sites ofZ2 connected if they are nearest-neighbors and
are both occupied in the configurationn3. A polymer is then defined as a
connected component of occupied sites. Two polymers are calledcompatible
if their union is not connected. A collection of polymers is called compatible if
each distinct pair of polymers within the collection is compatible. Clearly, the
compatible collections of polymers are in one-to-one correspondence with the
particle configurations. Finally, let us introduce some notation: We writeP 6∼

P′ if the polymersP andP′ are not compatible and say that the polymerP is
in 3 if P ⊂ 3.

Let P be a polymer containingN(P) sites and occupying both endpoints
of E(P) edges inZ2. We define the Boltzmann weight ofP by the formula

ζβ,µ(P) = eβE(P)+µN(P). (3.27)

As is straightforward to verify, the partition functionZ◦,β
G (µ, 3) can be writ-

ten as

Z◦,β
G (µ, 3) =

∑
P

∏
P∈P

ζβ,µ(P), (3.28)

where the sum runs over all compatible collectionsP of polymers in3.
This reformulation of the partition function in the language of compati-

ble polymer configurations allows us to bring to bear the machinery of cluster
expansion. Following [23], the next key step is a definition of acluster, gener-
ically denoted byC, by which we will mean a finite non-empty collection of
polymers that is connected when viewed as a graph with vertices labeled by
polymersP ∈ C and edges connecting pairs of incompatible polymers. (Thus,
if C contains but a single polymer it is automatically a cluster. IfC contains
more than one polymer, then any non-trivial division ofC into two disjoint
subsets has some incompatibility between some pair chosen one from each of
the subsets.) In accord with [23], a clusterC is incompatible with a polymerP,
expressed byC 6∼ P, if C ∪ {P} is a cluster.

In order to use this expansion, we need to verify the convergence criterion
from [23]. In present context this reads as follows: For someκ ≥ 0 and any
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polymerP, ∑
P′ : P′ 6∼P

ζβ,µ(P′)e(1+κ)N(P′)
≤ N(P). (3.29)

Sinceζβ,µ(P) ≤ e(µ+2β)N(P) is true, this obviously holds ifµ is sufficiently
large and negative. The main result of [23] then says that each clusterC can be
given a weightζβ,µ(C) (which is defined less implicitly in [23]), such that for
all finite volumes3 ⊂ Z2 we have

log Z◦,β
G (µ, 3) =

∑
C∈C3

ζβ,µ(C), (3.30)

whereC3 denotes the set of all clusters arising from polymers in3. Moreover,
this expansion is accompanied by the bound∑

C : C6∼P

∣∣ζβ,µ(C)
∣∣eκN(C)

≤ N(P), (3.31)

whereN(C) denotes the sum ofN(P′) over allP′ constitutingC. With (3.30–
3.31) in hand, we are now ready to prove the first part of the representation
of Z◦,β

G (µ, 3):

Proof of Lemma 3.2. First, we will introduce a convenient resumma-
tion of (3.30). For each polymerP, let N (P) be the set of sites constitutingP.
Similarly, for each clusterC, let N (C) be the union ofN (P) over allP con-
stitutingC. For each finiteA ⊂ Z2, we let

ϑβ,µ(A) =

∑
C : N (C)=A

ζβ,µ(C). (3.32)

Clearly, the weightsϑβ,µ are invariant with respect to lattice translations and
rotations, having inherited this property fromζβ,µ. Moreover, as is easily
checked,ϑβ,µ(A) = 0 unlessA is a connected set. The new weights allow
us to rewrite (3.30) and (3.31) in the following form:

log Z◦,β
G (µ, 3) =

∑
A: A⊂3

ϑβ,µ(A), (3.33)

with ∑
A: 0∈A
|A|≥n

∣∣ϑβ,µ(A)
∣∣ ≤ e−κn (3.34)

for eachn ≥ 0. Here|A| denotes the number of sites inA.
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Now we are in a position to identify the relevant quantities. First, the
limiting version of the expression (3.33) suggests that the pressure should be
given by the formula

βp∞(µ) =

∑
A: 0∈A

1

|A|
ϑβ,µ(A). (3.35)

To define the constantτ ◦

1 (µ) representing the wall surface tension, letH denote
the upper half-plane inZ2, i.e., H = {(x1, x2) ∈ Z2 : x2 > 0}, and letL be
the “line” in Z2 corresponding to the boundary ofH, i.e., L = {(x1, x2) ∈

Z2 : x2 = 0}. Then we define

τ ◦

1 (µ) = −

∑
A: 0∈A
A∩L6=∅

|A ∩ H|

|A|

ϑβ,µ(A)

|A ∩ L|
. (3.36)

Clearly, in order to contribute toτ ◦

1 (µ), the setA would have to have bothA∩H
and A \ H nonempty. On the basis of (3.34) it can be shown that the sums in
(3.35) and (3.36) converge once (3.29) holds with aκ > 0.

Combining (3.33) with (3.35), we can now write that

log Z◦,β
G (µ, 3) =

∑
x∈3

∑
A: x∈A
A⊂3

1

|A|
ϑβ,µ(A)

= βp∞(µ)|3| −

∑
x∈3

∑
A: x∈A
A6⊂3

1

|A|
ϑβ,µ(A).

(3.37)

Using the fact thatA is a connected set and thusA ∩ 3 6= ∅ and A \ 3 6= ∅

imply that A ∩ ∂3 6= ∅, the second term on the right-hand side can further be
written as

−

∑
A: A6⊂3

|A ∩ 3|

|A|
ϑβ,µ(A) = −

∑
x∈∂3

∑
A: x∈A

|A ∩ 3|

|A|

ϑβ,µ(A)

|A ∩ ∂3|

= τ ◦

1 (µ)|∂3| +

∑
x∈∂3

∑
A: x∈A

1

|A|

(
|A ∩ Hx|

|A ∩ Lx|
−

|A ∩ 3|

|A ∩ ∂3|

)
ϑβ,µ(A). (3.38)

Here Hx denotes the half-plane inZ2 that contains3 and whose boundary
Lx = ∂Hx includes the portion of the boundary∂3 that containsx. (Remember
that 3 is a rectangular set and thus its boundary∂3 splits into four disjoint
subsets—the sides of3.)

Let Q1(µ) denote the (complicated) second term on the right-hand side
of (3.38). LetA be the collection of all finite connected setsA ⊂ Z2. Notice
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that, whenever a setA ∈ A intersects∂3 in only one of its sides andA∩∂3 =

A ∩ Lx, then alsoA ∩ 3 = A ∩ Hx, and the corresponding term in (3.38)
vanishes. It follows that, in order for the setA to contribute to thex-th term
of Q1(µ), it must contain at least as many sites as is the`∞-distance fromx to
the sides of∂3 not containingx. Thus, for a givenx ∈ ∂3, a setA ⊂ Z2 can
only contribute toQ1(µ) if A ∈ A and|A| ≥ dist(x, ∂3 \ Lx).

Since|A ∩ 3|, |A ∩ Hx| ≤ |A| and |A ∩ ∂3|, |A ∩ Lx| ≥ 1 for any A
contributing toQ1(µ), we can use (3.34) to get the bound∣∣Q1(µ)

∣∣ ≤

∑
x∈∂3

∑
A∈A , x∈A

|A|≥dist(x,∂3\Lx)

∣∣ϑβ,µ(A)
∣∣ ≤

∑
x∈∂3

e−κ dist(x,∂3\Lx). (3.39)

Choosingκ > 0, letting G(κ) =
∑

∞

n=1 e−κn < ∞, and usingL1, L2 ∈

[θ−1L , θ L] to denote the lengths of the sides of∂3, we can bound the right
hand side by 8G(κ) + 2L1e−κL2 + 2L2e−κL1, yielding |Q1(µ)

∣∣ ≤ 8G(κ) +

4θ Le−
κ
θ L . This in turn can be bounded uniformly inL by a constant that

depends only onθ and we thus get the claim of Lemma 3.2.

3.4. Correlation bounds

This section will be spent on proving Lemma 3.3. We begin by recalling the
relevant correlation bounds. Let us extend our notation〈−〉

◦,β,µ
3 for the ex-

pectation with respect to the Gibbs measure in3 also to the cases when3 is
not necessarily finite. (It turns out that, by FKG monotonicity, such a state is
uniquely defined as a limit of finite-volume Gibbs states along any sequence of
finite volumes increasing to3.) We will use the notation

〈nx; ny〉
◦,β,µ
3 = 〈nxny〉

◦,β,µ
3 − 〈nx〉

◦,β,µ
3 〈ny〉

◦,β,µ
3 (3.40)

for the truncated correlation function. This correlation function has the follow-
ing properties:

(1) For eachµ < µ′
≤ µt and3 ⊂ 3′, and allx, y ∈ Z2,

〈nx; ny〉
◦,β,µ
3 ≤ 〈nx; ny〉

◦,β,µ′

3′ . (3.41)

(2) For eachβ > βc there exists aξ = ξ(β) < ∞ such that

0 ≤ 〈nx; ny〉
◦,β,µ
3 ≤ e−|x−y|/ξ (3.42)

for all µ ≤ µt, all 3 ⊂ Z2 and all x, y ∈ Z2. Here |x − y| denotes
the`∞ distance betweenx andy.
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Both (1) and (2) are reformulations of well-known properties of the truncated
correlation functions for Ising spins. Namely, (1) is a simple consequence of
the GHS inequality [18], while (2) is a consequence of (1) and the fact that the
infinite-volume truncated correlation function atµ = µt decays exponentially
onceβ > βc. The latter was in turn proved in [12,21].

A simple consequence of the above observations is the following lemma:

Lemma 3.4. Let β > βc. Then there exist constantsα1 = α1(β) ∈

(0, ∞) andα2 = α2(β) ∈ (0, ∞) such that

0 ≤ 〈nx〉
◦,β,µ
3′ − 〈nx〉

◦,β,µ
3 ≤ α1e−α2 dist(x,3′r3) (3.43)

holds for allµ ≤ µt, all (not necessarily finite) volumes3 ⊂ 3′
⊂ Z2 and

all x ∈ 3.

Proof. See, e.g., formula (2.2.6) from [21]; the original derivation goes
back to [9].

Now we can start proving Lemma 3.3:

Proof of Lemma 3.3. We begin by a definition of the quantityτ ◦

2 (µ).
Let H be the upper half-plane inZ2, see Section 3.3. Then we define

τ ◦

2 (µ) =

∑
`≥1

(
〈n(0,`)〉

◦,β,µ
H − 〈n0〉

◦,β,µ

Z2

)
, (3.44)

where(x1, x2) is a notation for a generic point inZ2. By Lemma 3.4, the sum
converges with aµ-independent rate (of course, providedµ ≤ µt).

Let 3 be a rectangular volume inZ2 with aspect ratio in the inter-
val (θ−1, θ). Let us cyclically label the sides of3 by numbers 1, . . . , 4, and
defineH1, . . . , H4 to be the half-planes inZ2 containing3 and sharing the
respective part of the boundary with3. Let us partition the sites of3 into four
sets31, . . . , 34 according to whichH j the site is closest to. We resolve the
cases of a tie by choosing theH j with the lowestj . Now we can write

〈N3〉
◦,β,µ
3 − |3|〈n0〉

◦,β,µ

Z2 =

4∑
j =1

∑
x∈3 j

(
〈nx〉

◦,β,µ
3 − 〈nx〉

◦,β,µ
H j

)
+

4∑
j =1

∑
x∈3 j

(
〈nx〉

◦,β,µ
H j

− 〈n0〉
◦,β,µ

Z2

)
. (3.45)

If it were not for the restrictionx ∈ 3, the second term on the right-hand
side would have the structure needed to apply (3.44). To fix this problem,
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let S j , with j = 1, . . . , 4, denote the half-infinite slab obtained as the intersec-
tion H j −1 ∩ H j ∩ H j +1, where it is understood thatH0 = H4 andH5 = H1.
Clearly,3 j ⊂ S j for all j = 1, . . . , 4. Then we have

4∑
j =1

∑
x∈3 j

(
〈nx〉

◦,β,µ
H j

− 〈n0〉
◦,β,µ

Z2

)
= τ ◦

2 (µ)|∂3| −

4∑
j =1

∑
x∈S j (3)r3 j

(
〈nx〉

◦,β,µ
H j

− 〈n0〉
◦,β,µ

Z2

)
. (3.46)

It remains to show that both the first term on the right-hand side of (3.45) and
the second term on the right-hand side of (3.46) are bounded by a constant
independent ofµ and3 with the above properties. As to the first term, we note
that, by Lemma 3.4,∣∣〈nx〉

◦,β,µ
3 − 〈nx〉

◦,β,µ
H j

∣∣ ≤ α1e−α2 dist(x,H j \3), (3.47)

which after summing overx ∈ 3 j gives a plain constant. Concerning the

second contribution to the error, we note that〈nx〉
◦,β,µ
H j

− 〈n0〉
◦,β,µ

Z2 is again

exponentially small in dist(x, Z2
\ H j ). As a simple argument shows, this

makes the sum overx ∈ S j \ 3 j finite uniformly in 3 with a bounded aspect
ratio. This concludes the proof.
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14. R.L. Dobrushin, R. Kotecḱy and S.B. Shlosman,Wulff construction. A global shape from
local interaction, Amer. Math. Soc., Providence, RI, 1992.

15. R.L. Dobrushin and S.B. Shlosman, In:Probability contributions to statistical mechan-
ics, pp. 91-219, Amer. Math. Soc., Providence, RI, 1994.

16. H.-O. Georgii,Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathemat-
ics, vol. 9, Walter de Gruyter & Co., Berlin, 1988.

17. J.W. Gibbs,On the equilibrium of heterogeneous substances(1876), In:Collected Works,
vol. 1., Longmans, Green and Co., 1928.

18. R.B. Griffiths, C.A. Hurst and S. Sherman,Concavity of magnetization of an Ising ferro-
magnet in a positive external field, J. Math. Phys.11 (1970) 790–795.

19. D. Ioffe,Large deviations for the 2D Ising model: a lower bound without cluster expan-
sions, J. Statist. Phys.74 (1994) 411–432.

20. D. Ioffe,Exact large deviation bounds up to Tc for the Ising model in two dimensions,
Probab. Theory Rel. Fields102(1995) 313–330.

21. D. Ioffe and R.H. Schonmann,Dobrushin-Kotecḱy-Shlosman theorem up to the critical
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