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Partition function zeros at first-order phase transi-
tions: Pirogov-Sinai theory

M. Biskup,∗ C. Borgs,† J.T. Chayes† and R. Kotecký‡

This paper is a continuation of our previous analysis [2] of partition functions
zeros in models with first-order phase transitions and periodic boundary condi-
tions. Here it is shown that the assumptions under which the results of [2] were
established are satisfied by a large class of lattice models. These models are
characterized by two basic properties: The existence of only a finite number of
ground states and the availability of an appropriate contour representation. This
setting includes, for instance, the Ising, Potts and Blume-Capel models at low
temperatures. The combined results of [2] and the present paper provide com-
plete control of the zeros of the partition function with periodic boundary con-
ditions for all models in the above class.
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1. INTRODUCTION

1.1. Overview

In the recent papers [1, 2], we presented a general theory of partition function
zeros in models with periodic boundary conditions and interaction depending
on one complex parameter. The analysis was based on a set of assumptions,
called Assumptions A and B in [2], which are essentially statements concern-
ing differentiability properties of certain free energies supplemented by ap-
propriate non-degeneracy conditions. On the basis of these assumptions we
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characterized the topology of the resulting phase diagram and showed that the
partition function zeros are in one-to-one correspondence with the solutions to
specific (and simple) equations. In addition, the maximal degeneracy of the
zeros was proved to be bounded by the number of thermodynamically stable
phases, and the distance between the zeros and the corresponding solutions was
shown to be generically exponentially small in the linear size of the system.

The reliance on Assumptions A and B in [2] permitted us to split the
analysis of partition function zeros into two parts, which are distinct in both
mathematical and physical content: one concerning the zeros of a complex (in
fact, analytic) function—namely the partition function with periodic bound-
ary conditions—subject to specific requirements, and the other concerning the
control of the partition function in a statistical mechanical model depending
on one complex parameter. The former part of the analysis was carried out
in [2]; the latter is the subject of this paper. Explicitly, the principal goal of
this paper can be summarized as follows: We will define a large class of lattice
spin models (which includes several well-known systems, e.g., the Ising and
Blume-Capel models) and show that Assumptions A and B are satisfied for
every model in this class. On the basis of [2], for any model in this class we
then have complete control of the zeros of the partition function with periodic
boundary conditions.

The models we consider are characterized by two properties: the exis-
tence of only a finite number ofground statesand the availability of acon-
tour representation. In our setting, the term ground state will simply mean
a constant—or, after some reinterpretations, a periodic—infinite volume spin
configuration. Roughly speaking, the contour representation will be such that
the contours correspond to finite, connected subsets of the lattice where the spin
configuration differs from any of the possible ground states. A precise defini-
tion of these notions is a bit technical; details will be provided in Section 3.
Besides these properties, there will also be a few quantitative requirements on
the ground state energies and the scaling of the excess contour energy with the
size of the contour—the Peierls condition—see Sections 2.1 and 3.2.

These two characteristic properties enable us to apply Pirogov-Sinai
theory—a general method for determining low-temperature properties of a sta-
tistical mechanical model by perturbing about zero-temperature. The first for-
mulation of this perturbation technique [16, 17] applied to a class of models
with real, positive weights. The original “Banach space” approach of [16, 17]
was later replaced by inductive methods [9], which resulted in a complete clas-
sification of translation-invariant Gibbs states [21]. The inductive techniques
also permitted a generalization of the characterization of phase stability/coexis-
tence to models with complex weights [5]. However, most relevant for our
purposes are the results of [6], dealing with finite-size scaling in the vicinity
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of first-order phase transitions. There Pirogov-Sinai theory was used to derive
detailed asymptotics of finite volume partition functions. The present paper
provides, among other things, a variant of [6] that ensures appropriate differ-
entiability of the so-called metastable free energies as required for the analysis
of partition function zeros.

The remainder of this paper is organized as follows. Section 1.2 out-
lines the class of models of interest. Section 1.3 defines the ground state and
excitation energies and introduces the torus partition function—the main ob-
ject of interest in this paper. Section 2.1 lists the assumptions on the models
and Section 2.2 gives the statements of the main results of this paper. These
immediately imply Assumptions A and B of [2] for all models in the class
considered. Sections 3 and 4 introduce the necessary tools from Pirogov-Sinai
theory. These are applied in Section 5 to prove the main results of the paper.

1.2. Models of interest

Here we define the class of models to be considered in this paper. Most of what
is to follow in this and the forthcoming sections is inspired by classic texts on
spin models, Gibbs states and Pirogov-Sinai theory, e.g., [8,18,20,21].

We will consider finite-state spin models on thed-dimensional hypercu-
bic latticeZd for d ≥ 2. At each sitex ∈ Zd the spin, denoted byσx, will
take values in a finite setS. A spin configurationσ = (σx)x∈Zd is an assign-
ment of a spin to each site of the lattice. The interaction Hamiltonian will
be described using a collection of potentials(83), where3 runs over all fi-
nite subsets ofZd. The83 are functions on configurations fromSZd

with the
following properties:

(1) The value83(σ) depends only onσx with x ∈ 3.

(2) The potential is translation invariant, i.e., ifσ′ is a translate ofσ and3′

is the corresponding translate of3, then83′(σ) = 83(σ′).

(3) There exists anR ≥ 1 such that83 ≡ 0 for all 3 with diameter exceed-
ing R + 1.

Here thediameterof a cubic box withL ×· · ·× L sites is defined to beL while
for a generalA ⊂ Zd it is the diameter of the smallest cubic box containingA.
The constantR is called therange of the interaction.

Remark 1.1. Condition (2) has been included mostly for convenience
of exposition. In fact, all of the results of this paper hold under the assumption
that 83 are periodic in the sense that83′(σ) = 83(σ′) holds for3 andσ
related to3′ andσ′ by a translation from(aZ)d for some fixed integera. This
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is seen by noting that the periodic cases can always be converted to translation-
invariant ones by considering block-spin variables and integrated potentials.

As usual, the energy of a spin configuration is specified by the Hamil-
tonian. Formally, the Hamiltonian is represented by a collection of functions
(βH3) indexed by finite subsets ofZd, whereβH3 is defined by the formula

βH3(σ) =

∑
3′ : 3′∩3 6=∅

83′(σ). (1.1)

(The superfluousβ, playing the role of the inverse temperature, appears only
to maintain formal correspondence with the fundamental formulas of statistical
mechanics.) In light of our restriction to finite-range interactions, the sum is
always finite.

We proceed by listing a few well known examples of models in the above
class. With the exception of the second example, the range of each interaction
is equal to 1:

Ising model. HereS = {−1, +1} and83(σ) 6≡ 0 only for 3 containing a
single site or a nearest-neighbor pair. In this case we have

83(σ) =

{
−hσx, if 3 = {x},

−Jσxσy, if 3 = {x, y} with |x − y| = 1.
(1.2)

Here J is the coupling constant,h is an external field and|x − y| denotes the
Euclidean distance betweenx andy.

Perturbed Ising model.AgainS = {−1, +1}, but now we allow for arbitrary
finite range perturbations. Explicitly,

83(σ) =

{
−hσx, if 3 = {x},

−J3
∏

x∈3 σx if |3| ≥ 2 and diam3 ≤ R + 1.
(1.3)

The coupling constantsJ3 are assumed to be translation invariant (i.e.,J3 =

J3′ if 3 and 3′ are translates of each other). The constanth is again the
external field.

Blume-Capel model.In this caseS = {−1, 0, +1} and83(σ) ≡ 0 unless3
is just a single site or a nearest-neighbor pair. Explicitly, we have

83(σ) =

{
−λσ2

x − hσx, if 3 = {x},

J(σx − σy)
2, if 3 = {x, y} with |x − y| = 1.

(1.4)

Here J is the coupling constant,λ is a parameter favoring±1 against 0-spins
andh is an external field splitting the symmetry between+1 and−1.
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Potts model in an external field. The state space hasq elements,S =

{1, . . . , q} and83 is again nontrivial only if3 is a one-element set or a pair
of nearest-neighbor sites. Explicitly,

83(σ) =

{
−hδσx,1, if 3 = {x},

−Jδσx,σy, if 3 = {x, y} with |x − y| = 1.
(1.5)

Hereδσ,σ′ equals one ifσ = σ′ and zero otherwise,J is the coupling constant
andh is an external field favoring spin value 1. Actually, the results of this pa-
per will hold only for the low-temperature regime (which in our parametriza-
tion corresponds toJ � logq); a more general argument coveringall tem-
peratures (but under the condition thatq is sufficiently large) will be presented
elsewhere [3,4].

Any of the constants appearing in the above Hamiltonian can in principle
be complex. However, not all complex values of, e.g., the coupling constant
will be permitted by our additional restrictions. See Section 2.3 for more dis-
cussion.

1.3. Ground states, excitations and torus partition function

The key idea underlying our formulation is thatconstantconfigurations rep-
resent the potential ground states of the system. (A precise statement of this
fact appears in Assumption C2 below.) This motivates us to define the dimen-
sionlessground state energy density em associated with spinm ∈ S by the
formula

em =

∑
3 : 330

1

|3|
83(σm), (1.6)

where|3| denotes the cardinality of the set3 and whereσm is the spin con-
figuration that is equal tom at every site. By our restriction to finite-range
interactions, the sum is effectively finite.

The constant configurations represent the states with minimal energy; all
other configurations are to be regarded as excitations. Given a spin configura-
tionσ, let BR(σ) denote the union of all cubic boxes3 ⊂ Zd of diameter 2R+1
such that σ is not constant in3. We think of BR(σ) as the set on whichσ is
“bad” in the sense that it is not a ground state at scaleR. The setBR(σ) will
be referred to as theR-boundaryof σ. Then theexcitation energy E(σ) of
configurationσ is defined by

E(σ) =

∑
x∈BR(σ)

∑
3 : x∈3

1

|3|
83(σ). (1.7)
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To ensure that the sum is finite (and therefore meaningful) we will only con-
sider the configurationsσ for which BR(σ) is a finite set.

The main quantity of interest in this paper is the partition function with
periodic boundary conditions which we now define. LetL ≥ 2R + 1, and
let TL denote the torus ofL × L × · · · × L sites inZd, which can be thought
of as the factor ofZd with respect to the action of the subgroup(LZ)d. Let us
consider the HamiltonianβHL : STL → C defined by

βHL(σ) =

∑
3 : 3⊂TL

83(σ), σ ∈ STL , (1.8)

where83 are retractions of the corresponding potentials fromZd to TL . (Here
we use the translation invariance of83.) Then thepartition function with
periodic boundary conditionsin TL is defined by

Zper
L =

∑
σ∈STL

e−βHL (σ). (1.9)

In general,Zper
L is a complex quantity which depends on all parameters of

the Hamiltonian. We note that various other partition functions will play an
important role throughout this paper. However, none of these will be needed
for the statement of our main results in Section 2, so we postpone the additional
definitions and discussion to Section 4.

We conclude this section with a remark concerning the interchangeability
of the various spin states. There are natural examples (e.g., the Potts model)
where several spin values are virtually indistinguishable from each other. To
express this property mathematically, we will consider the situation where
there exists a subgroupG of the permutations ofS such that ifπ ∈ G then
eπ(m) = em and E(π(σ)) = E(σ) for eachm ∈ S and each configurationσ
with finite BR(σ), whereπ(σ) is the spin configuration taking valueπ(σx) at
eachx. (Note thatBR(π(σ)) = BR(σ) for any such permutationπ .) Then we
call two spin statesm andn interchangeableif m andn belong to the same
orbit of the groupG onS.

While this extra symmetry has absolutely no effect on the contour analysis
of the torus partition sum, it turns out that interchangeable spin states cannot
be treated separately in our analysis of partition function zeros. (The precise
reason is that interchangeable spin states would violate our non-degeneracy
conditions; see Assumption C3-C4 and Theorem A3-4 below.) To avoid this
difficulty, we will use the factor setR = S/G instead of the original index
setS when stating our assumptions and results. In accordance with the notation
of [2], we will also user to denote the cardinality of the setR, i.e.,R =

{1, 2, . . . , r }, andqm to denote the cardinality of the orbit corresponding to
m ∈ R.



Partition function zeros at first-order phase transitions 7

2. ASSUMPTIONS AND RESULTS

In this section we list our precise assumptions on the models of interest and
state the main results of this paper.

2.1. Assumptions

We will consider the setup outlined in Sections 1.2–1.3 with the additional
assumption that the parameters of the Hamiltonian depend on one complex pa-
rameterz which varies in some open subsetÕ of the complex plane. Typically,
we will takez = eh or z = e2h whereh is an external field; see the examples
at the end of Section 1.2. Throughout this paper we will assume that the spin
spaceS, the factor setR, the integersqm and the range of the interaction are in-
dependent of the parameterz. We will also assume that the spatial dimensiond
is no less than two.

The assumptions below will be expressed in terms of complex derivatives
with respect toz. For brevity of exposition, let us use the standard notation

∂z =
1
2

(
∂
∂x − i ∂

∂y

)
and ∂z̄ =

1
2

(
∂
∂x + i ∂

∂y

)
(2.1)

for the derivatives with respect toz and z̄, respectively. Herex = <ez and
y = =mz. Our assumptions will be formulated for the exponential weights

ϕ3(σ, z) = e−83(σ,z), ρz(σ) = e−E(σ,z) and θm(z) = e−em(z), (2.2)

where we have now made the dependence onz notationally explicit. In terms
of theθm’s and the quantity

θ(z) = max
m∈R

|θm(z)| (2.3)

we define the setLα(m) by

Lα(m) =
{
z ∈ Õ : |θm(z)| ≥ θ(z)eα

}
. (2.4)

Informally, Lα(m) is the set ofz for whichm is “almost” a ground state of the
Hamiltonian.

Since we want to refer back to Assumptions A and B of [2], we will call
our new hypothesis Assumption C.

Assumption C. There exist a domaiñO ⊂ C and constantsα, M, τ ∈ (0, ∞)
such that the following conditions are satisfied.

(0) For eachσ ∈ SZd
and each finite3 ⊂ Zd, the functionz 7→ ϕ3(σ, z) is

holomorphic inÕ.
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(1) For allm ∈ S, all z ∈ Õ and all` = 0, 1, 2, the ground state weights obey
the bounds ∣∣∂`

zθm(z)
∣∣ ≤ M`θ(z) (2.5)

In addition, the quantityθ(z) is uniformly bounded away from zero iñO.

(2) For every configurationσ with finite R-boundaryBR(σ), the Peierls condi-
tion ∣∣∂`

zρz(σ)
∣∣ ≤

(
M |BR(σ)|

)`(
e−τθ(z)

)|BR(σ)|
(2.6)

holds for allz ∈ Õ and` = 0, 1, 2.

(3) For all distinctm, n ∈ R and allz ∈ Lα(m) ∩ Lα(n), we have∣∣∣∂zθm(z)

θm(z)
−

∂zθn(z)

θn(z)

∣∣∣ ≥ α. (2.7)

(4) If Q ⊂ R is such that|Q| ≥ 3, then for anyz ∈
⋂

m∈QLα(m) we assume
that the complex quantitiesvm(z) = θm(z)−1 ∂zθm(z), m ∈ Q, regarded
as vectors inR2, are vertices of a strictly convex polygon. Explicitly, we
demand that the bound

inf

{ ∣∣∣ vm(z) −

∑
n∈Qr{m}

ωnvn(z)
∣∣∣ : ωn ≥ 0,

∑
n∈Qr{m}

ωn = 1

}
≥ α (2.8)

holds for everym ∈ Q and everyz ∈
⋂

n∈QLα(n).

Assumptions C0-2 are very natural; indeed, they are typically a con-
sequence of the fact that the potentialsϕ3(σ, z)—and hence alsoθm(z)
and ρz(σ)—arise by analytic continuation from the positive real axis. As-
sumptions C3-4 replace the “standard” multidimensional non-degeneracy con-
ditions which are typically introduced to control the topological structure of the
phase diagram, see e.g. [16, 17, 20]. (However, unlike for the “standard” non-
degeneracy conditions, here this control requires a good deal of extra work,
see [2].) Assumption C4 is only important in the vicinity of multiple coexis-
tence points (see Section 3.2); otherwise, it can be omitted.

Remark 2.1. For many models, including the first three of our exam-
ples, the partition function has both zeros and poles, and sometimes even in-
volves non-integer powers ofz. In this situation it is convenient to multiply
the partition function by a suitable power ofz to obtain a function that is an-
alytic in a larger domain. Typically, this different normalization also leads
to a larger domainÕ for which Assumption C holds. Taking, e.g., the Ising
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model withz = e2h, one easily verifies that for low enough temperatures, As-
sumption C holds everywhere in the complex plane—provided we replace the
term−hσx by −h(σx + 1). By contrast, in the original representation (where
ϕ{x}(σ, z) = (

√
z)σx ), one needs to take out a neighborhood of the negative real

axis (or any other ray from zero to infinity) to achieve the analyticity required
by Assumption C0.

Remark 2.2. If we replace the term−hσx in (1.2–1.4) by−h(σx + 1),
Assumption C (withz = e2h for the Ising models, andz = eh for the Blume
Capel and Potts model) holds for all four examples listed in Section 1.2, pro-
vided that the nearest-neighbor couplings are ferromagnetic and the tempera-
ture is low enough. (For the perturbed Ising model, one also needs that the
nearest-neighbor coupling is sufficiently dominant.)

2.2. Main results

Now we are in a position to state our main results, which show that Assump-
tions A and B from [2] are satisfied and hence our conclusions concerning
the partition function zeros hold. The structure of these theorems parallels the
structure of Assumptions A and B. We caution the reader that the precise state-
ment of these results is quite technical. For a discussion of the implications of
these theorems, see Section 2.3. The first theorem establishes the existence of
metastable free energies and their relation to the quantitiesθm.

Theorem A. Let M ∈ (0, ∞) andα ∈ (0, ∞). Then there is a con-
stantτ0 depending onM , α, the number of spin states|S| and the dimensiond
such that if Assumption C holds for the constantsM , α, some open domain
Õ ⊂ C and someτ ≥ τ0, then there are functionsζm : Õ → C, m ∈ R, for
which the following holds:

(1) There are functionssm : Õ → C, m ∈ R, such thatζm(z) can be ex-
pressed as

ζm(z) = θm(z)esm(z) and |sm(z)| ≤ e−τ/2. (2.9)

In particular, the quantityζ(z) = maxm∈R |ζm(z)| is uniformly positive
in Õ.

(2) Each functionζm, viewed as a function of two real variablesx = <ez
andy = =mz, is twice continuously differentiable oñO and satisfies the
Cauchy-Riemann equations∂z̄ζm(z) = 0 for all z ∈ Sm, where

Sm =
{
z ∈ Õ : |ζm(z)| = ζ(z)

}
. (2.10)

In particular,ζm is analytic in the interior ofSm.
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(3) For any pair of distinct indicesm, n ∈ R and anyz ∈ Sm ∩ Sn we have∣∣∣∣∂zζm(z)

ζm(z)
−

∂zζn(z)

ζn(z)

∣∣∣∣≥ α − 2e−τ/2. (2.11)

(4) If Q ⊂ R is such that|Q| ≥ 3, then for anyz ∈
⋂

m∈QSm,

vm(z) =
∂zζm(z)

ζm(z)
, m ∈ Q, (2.12)

are the vertices of a strictly convex polygon inC ' R2.

Theorem A ensures the validity of Assumption A in [2] for any model
satisfying Assumption C withτ sufficiently large. Assumption A, in turn, al-
lows us to establish several properties of the topology of the phase diagram,
see Section 2.3 below for more details.

Following [2], we will refer to the indices inR asphases, and call a phase
m ∈ R stable at zif |ζm(z)| = ζ(z). We will say that a pointz ∈ Õ is a
point of phase coexistenceif there are at least two phasesm ∈ R which are
stable atz. In [2] we introduced these definitions without further motivation,
anticipating, however, the present work which provides the technical justifica-
tion of these concepts. Indeed, using the expansion techniques developed in
Sections 3 and 4, one can show that, for eachm ∈ S that corresponds to a
stable phase inR, the finite volume states withm-boundary conditions tend to
a unique infinite-volume limit〈·〉m in the sense of weak convergence on linear
functionals on local observables. (Here a local observable refers to a func-
tion depending only on a finite number of spins). The limit state is invariant
under translations ofZd, exhibits exponential clustering, and is a small pertur-
bation of the ground stateσm in the sense that〈δσx,k〉m = δm,k + O(e−τ/2) for
all x ∈ Zd.

Remark 2.3. Note that two states〈·〉m and〈·〉m′ are considered as two
different versions of the same phase ifm andm′ are indistinguishable, in accor-
dance with our convention thatR, and notS, labels phases. Accordingly, the
term phase coexistence refers to the coexistence ofdistinguishablephases, and
not to the coexistence of two states labelled by different indices in the same
orbitR. This interpretation of a “thermodynamic phase” agrees with that used
in physics, but disagrees with that sometimes used in the mathematical physics
literature.

While Theorem A is valid in the whole domaiñO, our next theorem will
require that we restrict ourselves to a subsetO ⊂ Õ with the property that
there exists someε > 0 such that for each pointz ∈ O, the discDε(z) of
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radiusε centered atz is contained inÕ. (Note that this condition requiresO
to be a strict subset of̃O, unlessÕ consists of the whole complex plane). In
order to state the next theorem, we will need to recall some notation from [2].
Given anym ∈ R andδ > 0, letSδ(m) denote the region where the phasem
is “almost stable,”

Sδ(m) =
{
z ∈ O : |ζm(z)| > e−δζ(z)

}
. (2.13)

For anyQ ⊂ R, we also introduce the region where all phases fromQ are
“almost stable” while the remaining ones are not,

Uδ(Q) =

⋂
m∈Q

Sδ(m) \

⋃
n∈Qc

Sδ/2(n), (2.14)

with the bar denoting the set closure.

Theorem B. Let M, α, ε ∈ (0, ∞), and letτ ≥ τ0, whereτ0 is the
constant from Theorem A, and letκ = τ/4. Let Õ ⊂ C andO ⊂ Õ be open
domains such that that Assumption C holds inÕ andDε(z) ⊂ Õ for all z ∈ O.
Then there are constantsC0 (depending only onM), M0 (depending onM and
ε), andL0 (depending ond, M , τ andε) such that for eachm ∈ R and each
L ≥ L0 there is a functionζ (L)

m : Sκ/L(m) → C such that the following holds
for all L ≥ L0:

(1) The functionZper
L is analytic inÕ.

(2) Eachζ (L)
m is non-vanishing and analytic inSκ/L(m). Furthermore,∣∣∣∣log

ζ
(L)
m (z)

ζm(z)

∣∣∣∣ ≤ e−τ L/8 (2.15)

and ∣∣∣∣∂z log
ζ

(L)
m (z)

ζm(z)

∣∣∣∣ +

∣∣∣∣∂z̄ log
ζ

(L)
m (z)

ζm(z)

∣∣∣∣ ≤ e−τ L/8 (2.16)

hold for allm ∈ R and allz ∈ Sκ/L(m).

(3) For eachm ∈ R, all ` ≥ 1, and allz ∈ Sκ/L(m), we have∣∣∣∣∂`
zζ

(L)
m (z)

ζ
(L)
m (z)

∣∣∣∣ ≤ (`!)2M`
0. (2.17)

Moreover, for all distinctm, n ∈ R and allz ∈ Sκ/L(m) ∩ Sκ/L(n),∣∣∣∣∂zζ
(L)
m (z)

ζ
(L)
m (z)

−
∂zζ

(L)
n (z)

ζ
(L)
n (z)

∣∣∣∣≥ α − 2e−τ/2. (2.18)
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(4) For anyQ ⊂ R, the difference

ΞQ,L(z) = Zper
L (z) −

∑
m∈Q

qm
[
ζ (L)

m (z)
]Ld

(2.19)

satisfies the bound∣∣∂`
zΞQ,L(z)

∣∣ ≤ `!(C0Ld)`+1ζ(z)Ld
( ∑

m∈R
qm

)
e−τ L/16 (2.20)

for all ` ≥ 0 and allz ∈ Uκ/L(Q).

Theorem B proves the validity of Assumption B from [2]. Together with
Theorem A, this in turn allows us to give a detailed description of the positions
of the partition function zeros for all models in our class, see Section 2.3.

The principal result of Theorem B is stated in part (4): The torus partition
function can be approximated by a finite sum of terms—one for each “almost
stable” phasem ∈ R—which have well controlled analyticity properties. As a
consequence, the zeros of the partition function arise as a result of destructive
interference between almost stable phases, and all zeros are near to the set of
coexistence pointsG =

⋃
m6=n Sm ∩ Sn; see Section 2.3 for further details.

Representations of the form (2.19) were crucial for the analysis of finite-size
scaling near first-order phase transitions [6]. The original derivation goes back
to [5]. In our case the situation is complicated by the requirement of analyticity;
hence the restriction toz ∈ Uκ/L(Q) in (4).

2.3. Discussion

As mentioned previously, Theorems A and B imply the validity of Assump-
tions A and B of [2], which in turn imply the principal conclusions of [2] for
any model of the kind introduced in Section 1.2 that satisfies Assumption C
with τ sufficiently large. Instead of giving the full statements of the results
of [2], we will only describe these theorems on a qualitative level. Readers
interested in more details are referred to Section 2 of [2].

Our first result concerns the set of coexistence points,G =
⋃

m6=n Sm ∩

Sn, giving rise to the complex phase diagram. Here Theorem 2.1 of [2] asserts
thatG is the union of a set of simple, smooth (open and closed) curves such that
exactly two phases coexist at any interior point of the curve, while at least three
phases coexist at the endpoints—these are themultiple points. Moreover, in
each compact set, any two such curves cannot get too close without intersecting
and there are only a finite number of multiple points. These properties are
of course direct consequences of the non-degeneracy conditions expressed in
Theorem A3-4.
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Having discussed the phase diagram, we can now turn our attention to
the zeros ofZper

L . The combined results of Theorems 2.2-2.4 of [2] yield the
following: First, all zeros lie withinO(L−d) of the setG . Second, along
the two-phase coexistence lines with stable phasesm, n ∈ R, the zeros are
within O(e−cL), for somec > 0, of the solutions to the equations

q1/Ld

m |ζm(z)| = q1/Ld

n |ζn(z)|, (2.21)

Ld Arg
(
ζm(z)/ζn(z)

)
= π mod 2π. (2.22)

Consecutive solutions to these equations are separated by distances of or-
der L−d, i.e., there are of the otherLd zeros per unit length of the coexistence
line. Scaling byLd, this allows us to define adensity of zerosalong each two-
phase coexistence line, which in the limitL → ∞ turns out to be a smooth
function varying only over distances of order one.

Near the multiple points the zeros are still in one-to-one correspondence
with the solutions of a certain equation. However, our control of the errors here
is less precise than in the two-phase coexistence region. In any case, all zeros
are at most(r −1)-times degenerate. In addition, for models with an Ising-like
plus-minus symmetry, Theorem 2.5 of [2] gives conditions under which zeros
will lie exactly on the unit circle. This is the local Lee-Yang theorem.

Let us demonstrate these results in the context of some of our examples
from Section 1.2. We will begin with the standard Ising model at low temper-
atures. In this case there are two possible phases, labeled+ and−, with the
corresponding metastable free energies given as functions ofz = e2h by

ζ±(z) = exp
{
±h + e−2d J∓2h

+ O(e−(4d−2)J)
}
. (2.23)

Symmetry considerations now imply that|ζ+(z)| = |ζ−(z)| if and only
if <eh = 0, i.e., |z| = 1, and, as already known from the celebrated Lee-
Yang Circle Theorem [11], the same is true for the actual zeros ofZper

L . How-
ever, our analysis allows us to go further and approximately calculate the solu-
tions to the system (2.21–2.22), which shows that the zeros ofZper

L lie near the
pointsz = ei θk , wherek = 0, 1, . . . , Ld

− 1 and

θk =
2k + 1

Ld
π + 2e−2d J sin

(2k + 1

Ld
π

)
+ O(e−(4d−2)J). (2.24)

Of course, asL increases, higher and higher-order terms ine−J are needed to
pinpoint the location of any particular zero (given that the distance of close ze-
ros is of the orderL−d). Thus, rather than providing the precise location of any
given zero, the above formula should be used to calculate the quantityθk+1−θk,
which is essentially the distance between two consecutive zeros. The resulting



14 Biskup, Borgs, Chayes and Kotecký

Figure 1:A schematic figure of the solutions to (2.21–2.22) giving the approximate
locations of partition function zeros of the Ising model in parameterz which is related
to the external fieldh by z = e2h. The plot corresponds to dimensiond = 2 and torus
sideL = 8. The expansion used for calculating the quantitiesζ± is shown in (2.23).
To make the non-uniformity of the spacing between zeros more apparent, the plot has
been rendered for the choicee2J

= 2.5 even though this is beyond the region where
we can prove convergence of our expansions.

derivation of thedensity of zerosis new even in the case of the standard Ising
model. A qualitative picture of how the zeros span the unit circle is provided
in Fig. 1.

A similar discussion applies to the “perturbed” Ising model, provided
the nearest-neighbor coupling is ferromagnetic and the remaining terms in the
Hamiltonian are small in some appropriate norm. In the case of general multi-
body couplings, the zeros will lie on a closed curve which, generically, is not
a circle. (For instance, this is easily verified for the three-body interaction.)
However, if only even terms in(σx) appear in the Hamiltonian, the models
have the plus-minus symmetry required by Theorem 2.5 of [2] and all of the
zeros will lie exactly on the unit circle. This shows that the conclusions of
the Lee-Yang theorem hold well beyond the set of models to which the classic
proof applies.

Finally, in order to demonstrate the non-trivial topology of the set of zeros,
let us turn our attention to the Blume-Capel model. In this case there are three
possible stable phases, each corresponding to a particular spin value. In terms
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(a) (b) (c)

Figure 2: A picture demonstrating the location of partition function zeros of the
Blume-Capel model. Here the zeros concentrate on two curves, related by the cir-
cle inversion, which may or may not coincide along an arc of the unit circle. There are
two critical values ofλ, denoted byλ±

c , both of ordere−2d J, such that forλ < λ−

c < 0,
the two curves do not intersect; see (a). Onceλ increases throughλ−

c , a common piece
starts to develop which grows asλ increases through the interval [λ−

c , λ+

c ], see (b)
and (c). Finally, both curves collapse on the unit circle atλ = λ+

c > 0 and stay there
for all λ > λ+

c . With the exception of the “bifurcation” points, the zeros lieexactlyon
the unit circle along the shared arc. The non-uniform spacing of the zeros in (b) comes
from the influence of the “unstable” phase near the multiple points.

of the complex parameterz = eh, the corresponding metastable free energies
are computed from the formulas

ζ+(z) = z eλ exp
{

z−1e−2d J−λ
+ dz−2e−(4d−2)J−2λ

+ O(e−4d J)
}

,

ζ−(z) = z−1eλ exp
{

ze−2d J−λ
+ dz2e−(4d−2)J−2λ

+ O(e−4d J)
}

,

ζ0(z) = exp
{
(z+z−1)e−2d J+λ

+ d(z2
+z−2)e−(4d−2)J+2λ

+ O(e−4d J)
}
.

(2.25)
Here it is essential that the energy of the plus-minus neighboring pair exceeds
that of zero-plus (or zero-minus) by a factor of four.

A calculation [1] shows that the zeros lie on two curves which are sym-
metrical with respect to circle inversion and which may coincide along an arc
of the unit circle, depending on the value ofλ; see Fig. 2. Asλ increases, the
shared portion of these curves grows and, for positiveλ exceeding a constant
of ordere−2d J, all zeros will lie on the unit circle. Note that by the methods of
[13], the last result can be established [12] for all temperatures providedλ is
sufficiently large, while our results give the correct criticalλ but only hold for
low temperatures.
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3. CONTOUR MODELS AND CLUSTER EXPANSION

Let us turn to the proofs. We begin by establishing the necessary tools for
applying Pirogov-Sinai theory. Specifically, we will define contours and show
that spin configurations and collections of matching contours are in one-to-
one correspondence. This will induce a corresponding relation between the
contour and spin partition functions. We will also summarize the facts we will
need from the theory of cluster expansions.

3.1. Contours

The goal of this section is to represent spin configurations in terms of contours.
Based on the fact—following from Assumption C—that the constant configu-
rations are the only possible minima of (the real part of) the energy, we will
define contours as the regions where the spin configuration is not constant.

Recalling our assumptionL ≥ 2R+1, letσ be a spin configuration onTL

and letBR(σ) be theR-boundary ofσ. We equipBR(σ) with a graph structure
by placing an edge between any two distinct sitesx, y ∈ BR(σ) wheneverx
and y are contained in a cubic box3 ⊂ TL of diameter 2R + 1 whereσ
is not constant. We will denote the resulting graph byGR(σ). Some of our
definitions will involve the connectivity induced by the graphGR(σ) but we
will also use the usual concept of connectivity onTL (or Zd): We say that a set
of sites3 ⊂ TL is connected if every two sites from3 can be connected by
a nearest-neighbor path on3. Note that the connected components ofBR(σ)
and the (vertex sets corresponding to the) components of the graphGR(σ) are
often very different sets.

Now we are ready to define contours. We start with contours onZd, and
then define contours on the torus in such a way that they can be easily embed-
ded intoZd.

Definition 3.1. A contour on Zd is a pair Y = (suppY, σY)
where suppY is afinite connected subset ofZd and whereσY is a spin config-
uration onZd such that the graphGR(σY) is connected andBR(σY) = suppY.

A contouronTL is a pairY = (suppY, σY) where suppY is a non-empty,
connected subset ofTL with diameter strictly less thanL/2 and whereσY

is a spin configuration onTL such that the graphGR(σY) is connected and
BR(σY) = suppY.

A contour networkon TL is a pairN = (suppN, σN), whereN is a
(possibly empty or non-connected) subset ofTL and whereσN is a spin con-
figuration onTL such thatBR(σN) = suppN and such that the diameter of the
vertex set of each component ofGR(σN) is at leastL/2.

Note that each contour onTL has an embedding intoZd which is unique



Partition function zeros at first-order phase transitions 17

up to translation by multiples ofL. (Informally, we just need to unwrap the
torus without cutting through the contour.) As long as we restrict attention
only to finite contours, the concept of a contour network has no counterpart
onZd, so there we will always assume thatN = ∅.

Having defined contours and contour networks onTL abstractly, our next
task is to identify the contoursY1, . . . , Yn and the contour networkN from a
general spin configuration onTL . Obviously, the supports ofY1, . . . , Yn will be
defined as the vertex sets of the components of the graphGR(σ) with diameter
less thanL/2, while suppN will be the remaining vertices inBR(σ). To define
the corresponding spin configurations we need to demonstrate that the restric-
tion of σ to suppYi (resp., suppN) can be extended to spin configurationsσYi

(resp.,σN) on TL such thatBR(σYi ) = suppYi (resp.,BR(σN) = suppN). It
will turn out to be sufficient to show thatσ is constant on theboundaryof each
connected component ofTL \ BR(σ).

Given a set3 ⊂ TL (or 3 ⊂ Zd), let ∂3 denote the external boundary
of 3, i.e.,∂3 = {x ∈ TL : dist(x, 3) = 1}. For the purposes of this section,
we also need to define the set3◦ which is just3 reduced by the boundary of its
complement,3◦

= 3\∂(TL\3). An immediate consequence of Definition 3.1
(and the restriction to 2R + 1 ≥ 3) is the following fact:

Lemma 3.2. Let (3, σ) be either a contour or a contour network
on TL , and let C be a connected component ofTL \ 3◦. Thenσ is con-
stant onC. If (3, σ) is a contour onZd, thenσ is constant on each connected
componentC of Zd

\ 3◦, with 3◦ now defined as3◦
= 3 \ ∂(Zd

\ 3).

Proof. Assume thatσ is not constant onC. Then there must exist a pair
of nearest-neighbor sitesx, y ∈ C such thatσx 6= σy. But thenx and all of its
nearest neighbors lie in3 = BR(σ). SinceC ∩ 3◦

= ∅ andx ∈ C, we are
forced to conclude thatx ∈ 3 \ 3◦. But that contradicts the fact that all of the
neighbors ofx also lie in3. The same proof applies to contours onZd.

Definition 3.3. Let (3, σ) be either a contour or a contour network
on TL and letC be a connected component ofTL \ 3. The common value
of the spin on this component in configurationσ will be called thelabel of C.
The same definition applies to contours onZd, and to connected componentsC
of Zd

\ 3.

Let 3 ⊂ TL be a connected set with diameter less thanL/2. Since the
diameter was defined by enclosure into a “cubic” box (see Sect. 1.2), it follows
that each such3 has a well defined exterior and interior. Indeed, any box of
side less thanL/2 enclosing3 contains less than(L/2)d

≤ Ld/2 sites, so we
can define theexterior of 3, denoted by Ext3, to be the unique component
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of TL \ 3 that contains more thanLd/2 sites. Theinterior Int 3 is defined
simply by putting Int3 = TL\(3∪Ext3). On the other hand, if3 is the union
of disjoint connected sets each with diameter at leastL/2 we define Ext3 = ∅

and Int3 = TL \ 3. These definitions for connected sets imply the following
definitions for contours onTL :

Definition 3.4. Let Y be a contour or a contour network onTL . We
then define theexterior of Y, denoted by ExtY, as the set Ext suppY, and
the interior of Y, denoted by IntY, as the set Int suppY. For eachm ∈ S,
we let Intm Y be the union of all components of IntY with labelm. If Y is a
contour onTL , we say thatY is am-contourif the label of ExtY is m.

Analogous definitions apply to contours onZd, except that the exterior of
a contourY is now defined as the infinite component ofZd

\ suppY, while the
interior is defined as the union of all finite components ofZd

\ suppY.

While most of the following statements can be easily modified to hold
for Zd as well as for the torusTL , for the sake of brevity, we henceforth restrict
ourselves to the torus.

Lemma 3.5. Let R ≥ 1 and fixL > 2R+1. Letσ be a spin configura-
tion onTL and let3 be either the vertex set of a component of the graphGR(σ)
with diameter less thanL/2 or the union of the vertex sets of all components
with diameter at leastL/2. Let 3′ be of the same form with3′

6= 3. Then
exactly one of the following is true:

(1) 3 ∪ Int 3 ⊂ Int 3′ and3′
∪ Ext3′

⊂ Ext3, or

(2) 3′
∪ Int 3′

⊂ Int 3 and3 ∪ Ext3 ⊂ Ext3′, or

(3) 3 ∪ Int 3 ⊂ Ext3′ and3′
∪ Int 3′

⊂ Ext3.

Proof. It is clearly enough to prove the first half of each of the
statements (1–3), since the second half follow from the first by taking com-
plements (for example in (3), we just use that3 ∪ Int 3 ⊂ Ext3′ im-
plies TL \ (3 ∪ Int 3) ⊃ TL \ Ext3′, which is nothing but the statement
that3′

∪ Int 3′
⊂ Ext3 by our definition of interiors and exteriors).

In order to prove the first halves of the statements (1–3), we first assume
that both3 and3′ are vertex sets of components of the graphGR(σ) with di-
ameter less thanL/2. Clearly, since3 and3′ correspond to different compo-
nents ofGR(σ), we have3 ∩ 3′

= ∅. Moreover,3 and3′ are both connected
(as subsets ofTL ) so we have either3 ⊂ Int 3′ or 3 ⊂ Ext3′ andvice versa.
Hence, exactly one of the following four statements is true:

(a) 3 ⊂ Int 3′ and3′
⊂ Int 3, or
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(b) 3 ⊂ Int 3′ and3′
⊂ Ext3, or

(c) 3 ⊂ Ext3′ and3′
⊂ Int 3, or

(d) 3 ⊂ Ext3′ and3′
⊂ Ext3.

We claim that the case (a) cannot happen. Indeed, suppose that3 ⊂ Int 3′

and observe that ifB is a box of size less thanLd/2 such that3′
⊂ B,

then Ext3′
⊃ TL \ B. Hence Int3′

⊂ B. But thenB also encloses3 and
thus Ext3 ∩ Ext3′

⊃ TL \ B 6= ∅. Now 3′
∪ Ext3′ is a connected set in-

tersecting Ext3 but not intersecting3 (because we assumed that3 ⊂ Int 3′).
It follows that3′

∪ Ext3′
⊂ Ext3, and hence Int3′

⊃ 3 ∪ Int 3. But then
we cannot have3′

⊂ Int 3 as well. This excludes the case (a) above, and also
shows that (b) actually gives3 ∪ Int 3 ⊂ Int 3′, which is the first part of the
claim (1), while (c) gives3′

∪ Int 3′
⊂ Int 3, which is the first part of the

claim (2).
Turning to the remaining case (d), let us observe that3′

⊂ Ext3 implies
Int 3 ∩ 3′

⊂ Int 3 ∩ Ext3 = ∅. Since3 ∩ 3′
= ∅ as well, this implies

(3 ∪ Int 3) ∩ 3′
= ∅. But 3 ∪ Int 3 is a connected subset ofTL , so either

3∪ Int 3 ⊂ Int 3′ or 3∪ Int 3 ⊂ Ext3′. Since3 ⊂ Ext3′ excludes the first
possibility, we have shown that in case (d), we necessarily have3 ∪ Int 3 ⊂

Ext3′, which is the first part of statement (3). This concludes the proof of the
lemma for the case when both3 and3′ are vertex sets of components of the
graphGR(σ) with diameter less thanL/2.

Since it is not possible that both3 and3′ are the union of the vertex sets
of all components of diameter at leastL/2, it remains to show the statement
of the lemma for the case when3 is the vertex set of a component of the
graphGR(σ) with diameter less thanL/2, while3′ is the union of the vertex
sets of all components of diameter at leastL/2. By definition we now have
Ext3′

= ∅, so we will have to prove that3 ∪ Int 3 ⊂ Int 3′, or equivalently,
3′

⊂ Ext3. To this end, let us first observe that3 ∩ 3′
= ∅, since3 has

diameter less thanL/2 while all components of3′ have diameter at leastL/2.
Consider the set Int3. Since3 has diameter less thanL/2, we can find a boxB
of side length smaller thanL/2 that contains3, and hence also Int3. But this
implies that none of the components of3′ can lie in Int3 (their diameter is
too large). Since all these components are connected subsets of Int3 ∪ Ext3,
we conclude that they must be part of Ext3. This gives the desired conclusion
3′

⊂ Ext3.

The previous lemma allows us to organize the components ofGR(σ) into a
tree-like structure by regarding3′ to be the “ancestor” of3 (or, equivalently,3
to be a “descendant” of3′) if the first option in Lemma 3.5 occurs. Explicitly,
let WR(σ) be the collection of all sets3 ⊂ TL that are either the vertex set
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of a connected component ofGR(σ) with diameter less thanL/2 or the union
of the vertex sets of all connected components of diameter at leastL/2. We
use30 to denote the latter. If there is no component of diameterL/2 or larger,
we define30 = ∅ and set Int30 = TL .

We now define apartial order on WR(σ) by setting3 ≺ 3′ whenever
3∪Int 3 ⊂ Int 3′. If 3 ≺ 3′, but there is no3′′

∈ WR(σ) such that3 ≺ 3′′
≺

3′, we say that3 is a child of3′ and3′ is a parent of3. Using Lemma 3.5,
one easily shows that no child has more than one parent, implying that the
parent child relationship leads to a tree structure onWR(σ), with root30. This
opens the possibility for inductive arguments from the innermost contours (the
leaves in the above tree) to the outermost contours (the children of the root).
Our first use of such an argument will be to prove that unique labels can be
assigned to the connected components of the complement ofBR(σ) .

Lemma 3.6. Let σ be a spin configuration onTL and let3 be either
the vertex set of a component of the graphGR(σ) with diameter less thanL/2
or the set of sites inBR(σ) that are not contained in any such component. IfC
is a connected component ofTL \ 3◦, thenσ is constant onC ∩ 3.

The proof is based on the following fact which is presumably well known:

Lemma 3.7. Let A ⊂ Zd be a finite connected set with a connected
complement. Then∂Ac is ∗-connected in the sense that any two sitesx, y ∈

∂Ac are connected by a path on∂Ac whose individual steps connect only pairs
of sites ofZd with Euclidean distance not exceeding

√
2.

Proof. The proof will proceed in three steps. In the first step, we will
prove that theedgeboundary ofA, henceforth denoted byδA, is a minimal
cutset. (Here we recall that a set of edgesE′ in a graphG = (V, E) is called
a cutset if the graphG′

= (V, E \ E′) has at least two components, and a
cutsetE′ is called minimal if any proper subset ofE′ is not a cutset.) In the
second step, we will prove that the dual of the edge boundaryδA is a connected
set of facets, and in the third step we will use this fact to prove that∂Ac is ∗-
connected.

Consider thus a setA which is connected and whose complement is con-
nected. LetδA be the edge boundary ofA and letEd be the set of nearest-
neighbor edges inZd. The setδA is clearly a cutset since any nearest-neighbor
path joiningA to Ac must pass through one of the edges inδA. To show thatδA
is also minimal, letE′ be a proper subset ofδA, and lete ∈ δA \ E′. Since
both A andAc are connected, an arbitrary pair of sitesx, y ∈ Zd can be joined
by a path that uses only edges in{e} ∪ (Ed \ δA) ⊂ Ed \ E′. Hence suchE′ is
not a cutset which implies thatδA is minimal as claimed.
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To continue with the second part of the proof, we need to introduce some
notation. As usual, we use the symbolZ∗d to denote the set of all points in
Rd with half-integer coordinates. We say that a setc ⊂ Z∗d is ak-cell if the
vertices inc are the “corners” of ak-dimensional unit cube inRd. A d-cell
c ⊂ Z∗d and a vertexx ∈ Zd are called dual to each other ifx is the center
of c (considered as a subset ofRd). Similarly, a facet f (i.e., a(d − 1)-cell
in Z∗d) and a nearest-neighbor edgee ⊂ Zd are called dual to each other if
the midpoint ofe (considered as a line segment inRd) is the center off . The
boundary∂C of a setC of d-cells inZ∗d is defined as the set of facets that are
contained in an odd number of cells inC, and the boundary∂F of a setF of
facets inZ∗d is defined as the set of(d − 2)-cells that are contained in an odd
number of facets inF . Finally, a set of facetsF is called connected if any two
facets f, f ′

∈ F can be joined by a path of facetsf1 = f, . . . , fn = f ′ in F
such that for alli = 1, . . . , n − 1, the facetsfi and fi +1 share a(d − 2)-cell
in Z∗d.

Note that an arbitrary finite set of facetsF has empty boundary if and
only if there exists a finite set of cubesC such thatF = ∂C, which follows
immediately from the factRd has trivial homology. Using this fact, we now
prove that the setF of facets dual toδA is connected. LetW be the set of
d-cells dual toA, and letF = ∂W be the boundary ofW. We will now prove
that F is a connected set of facets. Indeed, sinceF = ∂W, we have thatF has
empty boundary,∂F = ∅. Assume thatF has more than one component, and
let F̃ ⊂ F be one of them. TheñF andF \ F̃ are not connected to each other,
and hence share no(d − 2)-cells. But this implies that the boundary ofF̃ must
be empty itself, so that̃F is the boundary of some set̃W. This in turn implies
that the dual ofF̃ is a cutset, contradicting the fact thatδA is a minimal cutset.

Consider now two pointsx, y ∈ ∂Ac
⊂ A. Then there are points

x̃, ỹ ∈ Ac such that{x, x̃} and{y, ỹ} are edges inδA. Taking into account the
connectedness of the dual ofδA, we can find a sequence of edgese1 = {x, x̃},
. . . , en = {y, ỹ} in δA such that for allk = 1, . . . , n − 1, the facets dual toek

andek+1 share a(d − 2) cell in Z∗d. As a consequence, the edgesek andek+1

are either parallel, and the four vertices in these two edges form an elementary
plaquette of the form{x, x + n1, x + n2, x + n1 + n2} wheren1 andn1 are
unit vectors in two different lattice directions, orek andek+1 are orthogonal
and share exactly one endpoint. Since bothek andek+1 are edges inδA, each
of them must contains a point in∂Ac, and by the above case analysis, the two
points are at most

√
2 apart. The sequencee1, . . . , en thus gives rise to a se-

quence of (not necessarily distinct) pointsx1, . . . , xn ∈ ∂Ac such thatx = x1,
y = xn and dist(xk, xk+1) ≤

√
2 for all k = 1, . . . , n− 1. This proves that∂Ac

is ∗-connected.
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Proof of Lemma 3.6. Relying on Lemma 3.5, we will prove the
statement by induction from innermost to outermost components of diameter
less thanL/2. Let3 be the vertex set of a component of the graphGR(σ) with
diameter less thanL/2 and supposeBR(σ) ∩ Int 3 = ∅. (In other words,3 is
an innermost component ofBR(σ).) Then the same argument that was used in
the proof of Lemma 3.2 shows that all connected components of Int3 clearly
have the desired property, so we only need to focus on Ext3.

Let us pick two sitesx, y ∈ ∂ Ext3 = 3 ∩ ∂ Ext3 and let3′
= 3 ∪

Int 3. Then3′ is connected with a connected complement and since3 has a
diameter less thanL/2, we may as well think of3′ as a subset ofZd. Now
Lemma 3.7 guarantees that∂(3′)c

= ∂ Ext3 is ∗-connected and hencex andy
are connected by a∗-connected path entirely contained in∂ Ext3. But the
spin configuration must be constant on any box(z+ [−R, R]d) ∩ Zd with z ∈

∂ Ext3 and thus the spin is constant along the path. It follows thatσx = σy.
The outcome of the previous argument is that now we can “rewrite” the

configuration on3′ without changing the rest ofBR(σ). The resulting config-
uration will have fewer connected components of diameter less thanL/2 and,
proceeding by induction, the proof is reduced to the cases when there are no
such components at all. But then we are down to the case when3 simply
equalsBR(σ). Using again the argument in the proof of Lemma 3.2, the spin
must be constant on each connected componentC of TL \ BR(σ)◦.

The previous lemma shows that each component of the graphGR(σ) in-
duces a unique label on every connected componentC of its complement. Con-
sequently, if two contours share such a component—which includes the case
when their supports are adjacent to each other—they must induce the same la-
bel on it. A precise statement of this “matching” condition is as follows. (Note,
however, that not all collections of contours will have this matching property.)

Definition 3.8. We say that the pair(Y, N)—whereY is a set of con-
tours andN is a contour network onTL—is acollection of matching contours
if the following is true:

(1) suppY ∩ suppY′
= ∅ for any two distinctY, Y′

∈ Y and suppY ∩

suppN = ∅ for anyY ∈ Y.

(2) If C is a connected component ofTL \ [(suppN)◦ ∪
⋃

Y∈Y(suppY)◦],
then the restrictions of the spin configurationsσY (andσN) to C are the
same for all contoursY ∈ Y (and contour networkN) with suppY∩C 6=

∅ (suppN ∩ C 6= ∅). In other words, the contours/contour network
intersectingC induce the same label onC.

Here we use the convention that there are altogether|S| distinct pairs(Y, N)
with bothY = ∅ andN = ∅, each of which corresponds to onem ∈ S.
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Definition 3.8 has an obvious analogue for setsY of contours onZd,
where we require that (1) suppY ∩ suppY′

= ∅ for any two distinct
Y, Y′

∈ Y and (2) all contours intersecting a connected componentC of
Zd

\ [
⋃

Y∈Y(suppY)◦] induce the same label onC.
It remains to check the intuitively obvious fact that spin configurations

and collections of matching contours are in one-to-one correspondence:

Lemma 3.9. For each spin configurationσ ∈ STL , there exists a
unique collection(Y, N) of matching contours onTL and for any collection
(Y, N) of matching contours onTL , there exists a unique spin configura-
tion σ ∈ STL such that the following is true:

(1) The supports of the contours inY (of the contour networkN) are the
vertex sets (the union of the vertex sets) of the connected components of
the graphGR(σ) with diameter strictly less than (at least)L/2.

(2) The spin configuration corresponding to a collection(Y, N) of match-
ing contours arise by restrictingσY for eachY ∈ Y as well asσN to
the support of the corresponding contour (contour network) and then ex-
tending the resulting configuration by the common label of the adjacent
connected components.

Proof. Let σ be a spin configuration and let3 be a component of the
graphGR(σ) with diameter less thanL/2. Then Lemma 3.6 ensures thatσ is
constant on the boundary∂C of each componentC of 3c. Restrictingσ to 3
and extending the resulting configuration in such a way that the new config-
uration, σ̃, restricted to a component componentC of 3c, is equal to the old
configuration on∂C, the pair(3, σ̃) thus defines a contour. Similarly, if3 is
the union of all components of the graphGR(σ) with diameter at leastL/2
andC is a connected component ofTL \3◦, thenσ is, after removal of all con-
tours, constant onC. The contours/contour network(Y, N) then arise fromσ
in the way described. The supports of these objects are all disjoint, so the last
property to check is that the labels induced on the adjacent connected compo-
nents indeed match. But this is a direct consequence of the construction.

To prove the converse, let(Y, N) denote a set of matching contours and
let σ be defined by the corresponding contour configuration on the support
of the contours (or contour network) and by the common value of the spin
in contour configurations for contours adjacent to a connected component of
TL \ [(suppN)◦ ∪

⋃
Y∈Y(suppY)◦]. (If at least one ofY, N is nonempty, then

this value is uniquely specified because of the matching condition; otherwise,
it follows by our convention that empty(Y, N) carries an extra label.)

It remains to show thatY are the contours andN is the contour network
of σ. Let A be a component of the graphGR(σ). We have to show that it
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coincides with suppY for someY ∈ Y or with a component of suppN (viewed
as a graph). We start with the observation thatA ⊂ suppN ∪ (

⋃
Y∈Y suppY).

Next we note that for eachY ∈ Y, the graphGR(σY) is connected. Since
the restriction ofσY to suppY is equal to the corresponding restriction ofσ,
we conclude that suppY ∩ A 6= ∅ implies suppY ⊂ A, and similarly for
the components of suppN. To complete the proof, we therefore only have to
exclude that suppY ⊂ A for more than one contourY ∈ Y, or that3 ⊂ A for
more than one component3 of suppN, and similarly for the combination of
contours inY and components of suppN.

Let us assume that suppY ⊂ A for more than one contourY ∈ Y. SinceA
is a connected component of the graphGR(σ), this implies that there exists a
box Bz = (z + [−R, R]d) ∩ Zd and two contoursY1, Y2 ∈ Y such thatσ is
not constant onBz, suppY1 ∪ suppY2 ⊂ A andBz is intersecting both suppY1

and suppY2. But this is in contradiction with the fact thatY is a collection
of matching contours (and a configuration on any such box not contained in
the support of one of the contours inY or in a component of suppN must
be constant). In the same way one excludes the case combining suppY with
a component of suppN or combining two components of suppN. Having
excluded everything else, we thus have shown thatA is either the support of
one of the contours inY, or one of the components of suppN.

3.2. Partition functions and Peierls’ condition

A crucial part of our forthcoming derivations concerns various contour parti-
tion functions, so our next task will be to define these quantities. We need some
notation: Let(Y, N) be a collection of matching contours onTL . A contour
Y ∈ Y is called anexternal contour inY if suppY ⊂ ExtY′ for all Y′

∈ Y
different fromY, and we will call two contoursY, Y′

∈ Y mutually external
if suppY ⊂ ExtY′ and suppY′

⊂ ExtY. Completely analogous definitions
apply to a set of matching contoursY on Zd (recall that on Zd, we always
setN = ∅). Note that, by Lemma 3.5, two contours of a configurationσ on
TL are either mutually external or one is contained in the interior of the other.
Inspecting the proof of this Lemma 3.5, the reader may easily verify that this
remains true for configurations onZd, provided the setBR(σ) is finite.

Given a contourY = (suppY, σY) or a contour networkN =

(suppN, σN) let E(Y, z) and E(N, z) denote the corresponding excitation
energiesE(σY, z) and E(σN, z) from (1.7). We then introduce exponen-
tial weights ρz(Y) and ρz(N), which are related to the quantitiesE(Y, z)
andE(N, z) according to

ρz(Y) = e−E(Y,z) and ρz(N) = e−E(N,z). (3.1)
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The next lemma states that the exponential weightsθm(z), ρz(Y) andρz(N)
are analytic functions ofz.

Lemma 3.10. Suppose that Assumption C0 holds, letq ∈ S, let Y be
a q-contour and letN be a contour network. Thenθq(z), ρz(Y) andρz(N) are
analytic functions ofz in Õ.

Proof. By assumption C0, the functionsz 7→ ϕ3(σ, z) =

exp{−83(σ, z)} are holomorphic inÕ. To prove the lemma, we will show
that θq(z), ρz(Y) andρz(N) can be written as products over the exponential
potentialsϕ3(σ, z), with σ = σq, σ = σY andσ = σN , respectively.

Let us start withθq(z). Showing thatθq is the product of exponential
potentialsϕ3(σq, z) is clearly equivalent to showing thateq can be rewritten in
the form

eq =

∑
3∈Ve

83(σq), (3.2)

whereVe is a collection of subsets3 ⊂ TL . But this is obvious from the
definition (1.6) ofeq: just chooseVe in such a way that it contains exactly one
representative from each equivalence class under translations.

Consider now a contourY = (suppY, σY) and the corresponding excita-
tion energyE(Y, z). We will want to show thatE(Y, z) can be written in the
form

E(Y, z) =

∑
3∈VY

83(σY), (3.3)

whereVY is again a collection of subsets3 ⊂ TL . Let 3q = ExtY ∪ Intq Y,
and3m = Intm Y for m 6= q. Consider a pointx ∈ 3m. Sincex /∈ suppY =

BR(σY), the configurationσY must be constant on any subset3 ⊂ TL that has
diameter 2R + 1 or less and contains the pointx, implying that∑

3 : x∈3

1

|3|
83(σY) =

∑
3 : x∈3

1

|3|
83(σm) = em (3.4)

wheneverx ∈ 3m. Using these facts, we now rewriteE(Y, z) as

E(Y, z) = βHL(σY) −

∑
x∈TLrsuppY

∑
3:x∈3

1

|3|
83(σY)

=

∑
3⊂TL

83(σY) −

∑
m∈S

|3m|em

=

∑
3⊂suppY

83(σY) +

∑
m∈S

{( ∑
3⊂TL

3∩3m 6=∅

83(σm)

)
− |3m|em

}
.

(3.5)
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To complete the proof, we note that the sum over all3 with 3 ∩ 3m 6= ∅

contains at least|3m| translates of each3 ⊂ TL contributing to the right hand
side of (3.2). As a consequence, the difference on the right hand side of (3.5)
can be written in the form (3.3), proving thatE(Y, z) is of the form (3.3). The
proof thatρz(N) is an analytic function ofz is virtually identical.

Next we define partition functions in finite subsets ofZd. Fix an indexq ∈

S. Let 3 ⊂ Zd be a finite set and letM(3, q) be the set of all collectionsY
of matching contours inZd with the following properties:

(1) For eachY ∈ Y, we have suppY ∪ Int Y ⊂ 3.

(2) The external contours inY areq-contours.

Note that suppY∪ Int Y ⊂ 3 is implied by the simpler condition that suppY ⊂

3 if Zd
\ 3 is connected, while in the case whereZd

\ 3 is not connected, the
condition suppY ∪ Int Y ⊂ 3 is stronger, since it implies that none of the
contoursY ∈ Y contain any hole of3 in its interior. (Here a hole is defined as
a finite component ofZd

\ 3.) In the sequel, we will say thatY is a contour
in 3 wheneverY obeys the condition suppY ∪ Int Y ⊂ 3.

The contour partition functionin 3 with boundary conditionq is then
defined by

Zq(3, z) =

∑
Y∈M(3,q)

[∏
m∈S

θm(z)|3m(Y)|
] ∏

Y∈Y
ρz(Y), (3.6)

where3m(Y) denotes the union of all components of3 \
⋃

Y∈Y suppY with
labelm, and|3m(Y)| stands for the cardinality of3m(Y).

If we add the condition that the contour networkN is empty, the def-
initions of the setM(3, q) and the partition functionZq(3, z) clearly ex-
tends to any subset3 ⊂ TL , because onTL every contour has a well defined
exterior and interior. However, our goal is to have a contour representation
for the full torus partition function. LetML denote the set of all collections
(Y, N) of matching contours inTL which, according to our convention, in-
clude an extra labelm ∈ S when bothY andN are empty. If(Y, N) ∈ ML

is such a collection, let3m(Y, N) denote the union of the components of
TL \ (suppN ∪

⋃
Y∈Y suppY) with labelm. Then we have:

Proposition 3.11(Contour representation). The partition func-
tion on the torusTL is given by

Zper
L (z) =

∑
(Y,N)∈ML

[∏
m∈S

θm(z)|3m(Y,N)|
]
ρz(N)

∏
Y∈Y

ρz(Y). (3.7)
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In particular, we have

Zper
L (z) =

∑
(∅,N)∈ML

ρz(N)
∏
m∈S

Zm
(
3m(∅, N), z

)
. (3.8)

Proof. By Lemma 3.9, the spin configurationsσ are in one-to-one corre-
spondence with the pairs(Y, N) ∈ ML . Let (Y, N) be the pair corresponding
to σ. Rewriting (1.8) as

βHL(σ) =

∑
x∈TL

∑
3 : 3⊂TL

33x

1

|3|
83(σ), (3.9)

we can now split the first sum into several parts: one for eachm ∈ S corre-
sponding tox ∈ 3m(Y, N), one for eachY ∈ Y corresponding tox ∈ suppY,
and finally, one for the part of the sum corresponding tox ∈ suppN. Invoking
the definitions of the energiesem(z), E(Y, z) andE(N, z), this gives

βHL(σ) =

∑
m∈S

em(z)
∣∣3m(Y, N)

∣∣ +

∑
Y∈Y

E(Y, z) + E(N, z). (3.10)

Strictly speaking, the fact that the excitation energy factors (technically, sums)
over contours and contour networks requires a proof. Since this is straight-
forward using induction as in the proof of Lemma 3.6, starting again with the
innermost contours, we leave the formal proof to the reader. Using the defini-
tions ofθm(z), ρz(Y) andρz(N) and noting that, by Lemma 3.9, the sum overσ
can be rewritten as the sum over(Y, N) ∈ ML , formula (3.7) directly follows.

The second formula, (3.8), formally arises by a resummation of all con-
tours that can contribute together with a given contour networkN. It only
remains to check that ifYm ⊂ Y is the set ofY ∈ Y with suppY ⊂ 3m =

3m(∅, N), thenYm can take any value inM(3m, m). But this follows directly
from Definition 3.8 and the definition ofM(3m, m).

In order to be useful, the representations (3.7) and (3.8) require that con-
tours and contour networks are sufficiently suppressed with respect to the max-
imal ground state weightθ . This is ensured by Assumption C2, which guar-
antees that|ρz(Y)| ≤ θ(z)|Y|e−τ |Y| and |ρz(N)| ≤ θ(z)|N|e−τ |N|, where we
used the symbols|Y| and|N| to denote the cardinality of suppY and suppN,
respectively.

3.3. Cluster expansion

The last ingredient that we will need is thecluster expansion, which will serve
as our principal tool for evaluating and estimating logarithms of various parti-
tion functions. The cluster expansion is conveniently formulated in the context



28 Biskup, Borgs, Chayes and Kotecký

of so-called abstract polymer models [7,10,14,19]. LetK be a countable set—
the set of allpolymers—and let6∼ be therelation of incompatibilitywhich is a
reflexive and symmetric binary relation onK. For eachA ⊂ K, letM(A) be
the set of multi-indicesX : K → {0} ∪ N that are finite,

∑
γ∈K X(γ) < ∞, and

that satisfyX(γ) = 0 wheneverγ 6∈ A. Further, letC(A) be the set of all multi-
indicesX ∈ M(A) with values in{0, 1} that satisfyX(γ)X(γ′) = 0 whenever
γ 6∼ γ′ andγ 6= γ′.

Let z : K → C be a polymer functional. For each finite subsetA ⊂ K, let
us define the polymer partition functionZ(A) by the formula

Z(A) =

∑
X∈C(A)

∏
γ∈K

z(γ)X(γ). (3.11)

In the most recent formulation [7, 14], the cluster expansion corresponds to
a multidimensional Taylor series for the quantity logZ(A), where the com-
plex variables are thez(γ). Hereclustersare simply multi-indicesX ∈ M(K)
for which any nontrivial decomposition ofX leads to incompatible multi-
indices. Explicitly, if X can be written asX1 + X2 with X1, X2 6≡ 0, then
there exist two (not necessary distinct) polymersγ1, γ2 ∈ K, γ1 6∼ γ2, such
thatX1(γ1)X2(γ2) 6= 0.

Given a finite sequence0 = (γ1, . . . , γn) of polymers inK, let n(0) = n
be the length of the sequence0, letG(0) be the set of all connected graphs on
{1, . . . , n} that have no edge between the verticesi and j if γi ∼ γ j , and let
X0 be the multi-index for whichX0(γ) is equal to the number of times thatγ
appears in0. For a finite multi-indexX, we then define

aT(X) =

∑
0 : X0=X

1

n(0)!

∑
g∈G(0)

(−1)|g|, (3.12)

with |g| denoting the number of edges ing, and

zT(X) = aT(X)
∏
γ∈K

z(γ)X(γ). (3.13)

Note thatG(0) = ∅ if X0 is not a cluster, implying, in particular, thatzT(X) =

0 wheneverX is not a cluster. We also use the notationX 6∼ γ wheneverX is a
cluster such thatX(γ′) > 0 for at least oneγ′

6∼ γ.

The main result of [14] (building upon [7]) is then as follows:

Theorem 3.12(Cluster expansion). Let a : K → [0, ∞) be a func-
tion and letz0 : K → [0, ∞) be polymer weights satisfying the bound∑

γ′
∈K

γ′
6∼γ

z0(γ
′) ea(γ′)

≤ a(γ), γ ∈ K. (3.14)
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ThenZ(A) 6= 0 for any finite setA ⊂ K and any collection of polymer
weightsz : K → C in the multidiscDA = {(z(γ)) : |z(γ)| ≤ z0(γ), γ ∈ A}.
Moreover, if we define logZ(A) as the unique continuous branch of the com-
plex logarithm ofZ(A) onDA normalized so that logZ(A) = 0 whenz(γ) = 0
for all γ ∈ A, then

logZ(A) =

∑
X∈M(A)

zT(X) (3.15)

holds for each finite setA ⊂ K. Here the power series on the right hand side
converges absolutely on the multidiscDA. Furthermore, the bounds∑

X∈M(K)
X(γ)≥1

∣∣zT(X)
∣∣ ≤

∑
X∈M(K)

X(γ)
∣∣zT(X)

∣∣ ≤
∣∣z(γ)∣∣ea(γ) (3.16)

and ∑
X∈M(K)

X6∼γ

∣∣zT(X)
∣∣ ≤ a(γ) (3.17)

hold for eachγ ∈ K.

Proof. This is essentially the main result of [14] stated under the
(stronger) condition (3.14), which is originally due to [10, 15]. To make the
correspondence with [14] explicit, let

µ(γ) = log
(
1 + |z(γ)|ea(γ)

)
(3.18)

and note thatµ(γ) ≤ |z(γ)|ea(γ)
≤ z0(γ)ea(γ). The condition (3.14) then guar-

antees that we have
∑

γ′ 6∼γ µ(γ′) ≤ a(γ) and hence

|z(γ)| = (eµ(γ)
− 1)e−a(γ)

≤ (eµ(γ)
− 1) exp

{
−

∑
γ′ 6∼γ

µ(γ′)
}
. (3.19)

This implies that any collection of weightsz : K → C such that|z(γ)| ≤ z0(γ)
for all γ ∈ K will fulfill the principal condition of the main theorem of [14].
Hence, we can conclude thatZ(A) 6= 0 in DA and that (3.15) holds. Moreover,
as shown in [14], both quantities on the left-hand side of (3.16) are bounded by
eµ(γ)

− 1 which simply equals|z(γ)|ea(γ). The bound (3.16) together with the
condition (3.14) immediately give (3.17).

To facilitate the future use of this result, we will extract the relevant con-
clusions into two lemmas. Given a spin stateq ∈ S, let Kq denote the set
of all q-contours inZd. If Y, Y′

∈ Kq, let us callY andY′ incompatibleif
suppY ∩ suppY′

6= ∅. If A is a finite set ofq-contours, we will letZ(A) be the
polymer sum (3.11) defined using this incompatibility relation. Then we have:
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Lemma 3.13. There exists a constantc0 = c0(d, |S|) ∈ (0, ∞) such
that, for allq ∈ S and all contour functionalsz : Kq → C satisfying the condi-
tion

|z(Y)| ≤ z0(Y) = e−(c0+η)|Y| for all Y ∈ Kq, (3.20)

for someη ≥ 0, the following holds for allk ≥ 1:

(1)Z(A) 6= 0 for all finiteA ⊂ Kq with logZ(A) given by (3.15), and∑
X∈M(Kq)

V(X)30, ‖X‖≥k

∣∣zT(X)
∣∣ ≤ e−ηk. (3.21)

Here V(X) =
⋃

Y : X(Y)>0 V(Y) with V(Y) = suppY ∪ Int Y and ‖X‖ =∑
Y∈Kq

X(Y)|Y|.

(2) Furthermore, if the activitiesz(Y) are twice continuously differentiable
(but not necessarily analytic) functions of a complex parameterz such that
the bounds ∣∣∂wz(Y)

∣∣ ≤ z0(Y) and
∣∣∂w∂w′z(Y)

∣∣ ≤ z0(Y) (3.22)

hold for anyw, w′
∈ {z, z̄} and anyY ∈ Kq, then∑

X∈M(Kq)
V(X)30, ‖X‖≥k

∣∣∂wzT(X)
∣∣ ≤ e−ηk and

∑
X∈M(Kq)

V(X)30, ‖X‖≥k

∣∣∂w∂w′zT(X)
∣∣ ≤ e−ηk.

(3.23)
for anyw, w′

∈ {z, z̄}.

Using, for any finite3 ⊂ Zd, the notationKq,3 = {Y ∈ Kq : suppY ∪

Int Y ⊂ 3} and∂3 for the set of sites inZd
\ 3 that have a nearest neighbor

in 3, we get the following lemma as an easy corollary:

Lemma 3.14. Suppose that the weightsz satisfy the bound (3.20) and
are invariant under the translations ofZd. Then thepolymer pressure sq =

lim3↑Zd |3|
−1 logZ(Kq,3) exists and is given by

sq =

∑
X∈M(Kq) : V(X)30

1

|V(X)|
zT(X). (3.24)

Moreover, the bounds
|sq| ≤ e−η (3.25)

and ∣∣logZ(Kq,3) − sq|3|
∣∣ ≤ e−η

|∂3| (3.26)
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hold. Finally, if the conditions (3.22) on derivatives of the weightsz(Y) are
also met, the polymer pressuresq is twice continuously differentiable inz with
the bounds ∣∣∂wsq

∣∣ ≤ e−η and
∣∣∂w∂w′sq

∣∣ ≤ e−η, (3.27)

valid for anyw, w′
∈ {z, z̄}.

Proof of Lemma 3.13. Let us consider a polymer model where poly-
mers are either a single site ofZd or a q-contour fromKq. (The reason for
including single sites as polymers will become apparent below.) Let the com-
patibility between contours be defined by disjointness of their supports while
that between a contourY and a sitex by disjointness of{x} and suppY ∪ Int Y.
If we let z(γ) = 0 wheneverγ is just a single site, this polymer model is in-
distinguishable from the one considered in the statement of the lemma. Let us
choosec0 so that ∑

Y∈Kq : V(Y)30

e(2−c0)|Y|
≤ 1. (3.28)

To see that this is possible with a constantc0 depending only on the dimension
and the cardinality ofS, we note that each polymer is a connected subset ofZd.
As is well known, the number of such sets of sizen containing the origin grows
only exponentially withn. Since there are only finitely many spin states, this
shows that it is possible to choosec0 as claimed.

Defininga(γ) = 1 if γ is a single site anda(Y) = |Y| if Y is aq-contour
in Kq, the assumption (3.14) of Theorem 3.12 is then satisfied. (Note that
assumption (3.14) requires slightly less than (3.28), namely the analogue of
(3.28) with the exponent of(1 − c0)|Y| instead of(2 − c0)|Y|; the reason why
we chosec0 such that (3.28) holds will become clear momentarily.) Theo-
rem 3.12 guarantees thatZ(A) 6= 0 and (3.15) holds for the corresponding
cluster weightszT. Actually, assumption (3.14) is, for allη ≥ 0, also satisfied
whenz(Y) is replaced byz(Y)eb(Y) with b(Y) = η|Y|, yielding∑

X∈M(K)
X6∼γ

eb(X)
∣∣zT(X)

∣∣ ≤ a(γ) (3.29)

with b(X) = η‖X‖ instead of (3.17). Using (3.29) withγ chosen to be the
polymer represented by the site at the origin and observing that the quantity
b(X) exceedsηk for any cluster contributing to the sum in (3.21), we get the
bound

eηk
∑

X∈M(Kq)
V(X)30, ‖X‖≥k

∣∣zT(X)
∣∣ ≤

∑
X∈M(Kq)

V(X)30

∣∣zT(X)
∣∣eb(X)

≤ 1, (3.30)
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i.e., the bound (3.21).
In order to prove the bounds (3.23), we first notice that, in view of (3.13)

and (3.22) we have∣∣∂wzT(X)
∣∣ ≤ ‖X‖

∣∣zT
0(X)

∣∣ ≤ e‖X‖
∣∣zT

0(X)
∣∣ (3.31)

and ∣∣∂w∂w′zT(X)
∣∣ ≤ ‖X‖

2
∣∣zT

0(X)
∣∣ ≤ e‖X‖

∣∣zT
0(X)

∣∣. (3.32)

Using (3.29) withb(Y) = (η + 1)|Y| (which is also possible since we choose
c0 such that (3.28) holds as stated, instead of the weaker condition where(2 −

c0)|Y| is replaced by(1 − c0)|Y|) we get (3.23) in the same way as (3.21).

Proof of Lemma 3.14. The bound (3.21) fork = 1 immediately
implies that the sum in (3.24) converges with|sq| ≤ e−η. Using (3.15) and
standard resummation techniques, we rewrite the left hand side of (3.26) as∣∣logZ(Kq,3) − sq|3|

∣∣ =

∣∣∣ ∑
X∈M(Kq)
V(X) 6⊂3

|V(X) ∩ 3|

|V(X)|
zT(X)

∣∣∣. (3.33)

Next we note that for any clusterX ∈ M(Kq), the setV(X) is a connected
subset ofZd, which follows immediately from the observations that suppY ∪

Int Y is connected for all contoursY, and that incompatibility of two contours
Y, Y′ implies that suppY∩suppY′

6= ∅. Since only clusters withV(X)∩3 6= ∅

andV(X) ∩ 3c
6= ∅ contribute to the right hand side of (3.33), we conclude

that the right hand side of (3.33) can be bounded by a sum over clustersX ∈ Kq

with V(X) ∩ ∂3 6= ∅. Using this fact and the bound (3.21) withk = 1, (3.26)
is proved.

Similarly, using the bounds (3.23) in combination with explicit expression
(3.24) in terms of absolutely converging cluster expansions, the claims (3.27)
immediately follow.

Remark 3.15. The proof of Lemma 3.13 holds without changes if we
replace the set of allq-contours inZd by the set of allq-contours on the
torusTL . This is not true, however, for the proof of the bound (3.26) from
Lemma 3.14 since one also has to take into account the difference between
clusters wrapped around the torus and clusters inZd. The corresponding mod-
ifications will be discussed in Section 4.4.

4. PIROGOV-SINAI ANALYSIS

The main goal of this section is to develop the techniques needed to control the
torus partition function. Along the way we will establish some basic proper-
ties of the metastable free energies which will be used to prove the statements
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concerning the quantitiesζm. Most of this section concerns the contour model
onZd. We will return to the torus in Sections 4.4 and 5.

All of the derivations in this section are based on assumptions that are
slightly more general than Assumption C. Specifically, we only make state-
ments concerning a contour model satisfying the following three conditions
(which depend on two parameters,τ andM):

(1) The partition functionsZq(3, z) andZper
L (z) are expressed in terms of the

energy variablesθm(z) and contour weightsρz as stated in (3.6) and (3.7),
respectively.

(2) The weightsρz of contours and contour networks are translation invariant
and are twice continuously differentiable functions onÕ. They obey the
bounds ∣∣∂`

z∂
¯̀

z̄ρz(Y)
∣∣ ≤ (M |Y|)`+

¯̀
e−τ |Y|θ(z)|Y|, (4.1)

and ∣∣∂`
z∂

¯̀

z̄ρz(N)
∣∣ ≤ (M |N|)`+

¯̀
e−τ |N|θ(z)|N| (4.2)

as long as̀ , ¯̀ ≥ 0 and` + ¯̀ ≤ 2.

(3) The energy variablesθm are twice continuously differentiable functions on
Õ and obey the bounds∣∣∂`

z∂
¯̀

z̄θm(z)
∣∣ ≤ (M)`+

¯̀
θ(z) (4.3)

as long as̀ , ¯̀ ≥ 0 and` + ¯̀ ≤ 2. We will assume thatθ(z) is bounded
uniformly from below throughoutÕ. However, we allow that some of
theθm vanish at somez ∈ Õ.

In particular, throughout this section we will not require that any of the quanti-
tiesθm, ρz(Y) or ρz(N) is analytic inz.

4.1. Truncated contour weights

The key idea of contour expansions is that, for phases that are thermo-
dynamically stable, contours appear as heavily suppressed perturbations of the
corresponding ground states. At the points of the phase diagram where all
ground states lead to stable phases, cluster expansion should then allow us to
calculate all important physical quantities. However, even in these special cir-
cumstances, the direct use of the cluster expansion on (3.6) is impeded by the
presence of the energy termsθm(z)|3m(Y)| and, more seriously, by the require-
ment that the contour labels match.

To solve these problems, we will express the partition function in a form
which does not involve any matching condition. First we will rewrite the sum
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in (3.6) as a sum over mutually external contoursYext times a sum over col-
lections of contours which are contained in the interior of one of the con-
tours in Yext. For a fixed contourY ∈ Yext, the sum over all contours in-
side Intm Y then contributes the factorZm(Intm Y, z), while the exterior of the
contours inYext contributes the factorθm(z)| Ext |, where Ext= Ext3(Yext) =⋂

Y∈Yext(ExtY ∩ 3). As a consequence, we can rewrite the partition function
(3.6) as

Zq(3, z) =

∑
Yext

θq(z)| Ext |
∏

Y∈Yext

{
ρz(Y)

∏
m

Zm(Intm Y, z)
}
, (4.4)

where the sum goes over all collections of compatible externalq-contours in3.
At this point, we use an idea which originally goes back to [9]. Let us

multiply each term in the above sum by 1 in the form

1 =

∏
Y∈Yext

∏
m

Zq(Intm Y, z)

Zq(Intm Y, z)
. (4.5)

Associating the partition functions in the denominator with the corresponding
contour, we get

Zq(3, z) =

∑
Yext

θq(z)| Ext |
∏

Y∈Yext

(
θq(z)|Y|Kq(Y, z)Zq(Int Y, z)

)
, (4.6)

whereKq(Y, z) is given by

Kq(Y, z) = ρz(Y) θq(z)−|Y|
∏
m∈S

Zm(Intm Y, z)

Zq(Intm Y, z)
. (4.7)

Proceeding by induction, this leads to the representation

Zq(3, z) = θq(z)|3|
∑

Y∈C(3,q)

∏
Y∈Y

Kq(Y, z), (4.8)

whereC(3, q) denotes the set of all collections of non-overlappingq-contours
in 3. Clearly, the sum on the right hand side is exactly of the form needed
to apply cluster expansion, provided the contour weights satisfy the necessary
convergence assumptions.

Notwithstanding the appeal of the previous construction, a bit of caution
is necessary. Indeed, in order for the weightsKq(Y, z) to be well defined, we
are forced to assume—or prove by cluster expansion, provided we somehow
know that the weightsKq have the required decay—thatZq(Intm Y, z) 6= 0. In
the “physical” cases when the contour weights are real and positive (and the
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ground-state energies are real-valued), this condition usually follows automati-
cally. However, here we are considering contour models with general complex
weights and, in fact, our ultimate goal is actually to look at situations where a
partition function vanishes.

Matters get even more complicated whenever there is a ground state which
fails to yield a stable state (which is what happens at a generic point of the
phase diagram). Indeed, for such ground states, the occurrence of a large con-
tour provides a mechanism for flipping from an unstable to a stable phase—
which is the favored situation once the volume gain of free energy exceeds the
energy penalty at the boundary. Consequently, the relative weights of (large)
contours in unstable phases are generally large, which precludes the use of the
cluster expansion altogether. A classic solution to this difficulty is to mod-
ify the contour functionals for unstable phases [5, 6, 21]. We will follow the
strategy of [6], where contour weights are truncated with the aid of a smooth
mollifier.

To introduce the truncated contours weights, let us consider aC2(R)-
function x 7→ χ(x), such that 0≤ χ(·) ≤ 1, χ(x) = 0 for x ≤ −2 and
χ(x) = 1 for x ≥ −1. Let c0 be the constant from Lemma 3.13. Usingχ
as a regularized truncation factor, we shall inductively define new contour
weights K̃ ′

q(·, z) so that|K̃ ′
q(Y, z)| ≤ e−(c0+τ/2)|Y| for all q-contoursY. By

Lemma 3.13, the associated partition functionsZ′
q(·, z) defined by

Z′

q(3, z) = θq(z)|3|
∑

Y∈C(3,q)

∏
Y∈Y

K̃ ′

q(Y, z) (4.9)

can then be controlled by cluster expansion. (Of course, later we will show that
K̃ ′

q(·, z) = Kq(·, z) and Z′
q(3, z) = Zq(3, z) whenever the ground stateq

gives rise to a stable phase.)
Let θq(z) 6= 0, letY be aq-contour in3, and suppose thatZ′

m(3′, z) has
been defined by (4.9) for allm ∈ S and all3′ $ 3. Let us further assume by
induction thatZ′

q(3′, z) 6= 0 for all m ∈ S and all3′ $ 3. We then define a
smoothed cutoff functionφq(Y, z) by

φq(Y, z) =

∏
m∈S

χq;m(Y, z), (4.10)

where

χq;m(Y, z) = χ

(
τ

4
+

1

|Y|
log

∣∣∣∣ Z′
q(Int Y,z)θq(z)|Y|

Z′
m(Int Y,z)θm(z)|Y|

∣∣∣∣) . (4.11)

Hereχq;m(Y, z) is interpreted as 1 ifθm(z) or Z′
m(Int Y, z) is zero.
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As a consequence of the above definitions and the fact that Intm Y $ 3
for all m ∈ S, the expressions

K ′

q(Y, z) = ρz(Y) θq(z)−|Y|φq(Y, z)
∏
m∈S

Zm(Intm Y, z)

Z′
q(Intm Y, z)

(4.12)

and

K̃ ′

q(Y, z) =

{
K ′

q(Y, z), if |K ′
q(Y, z)| ≤ e−(c0+τ/2)|Y|,

0, otherwise,
(4.13)

are meaningful for allz with θq(z) 6= 0. By Lemma 3.13 we now know that
Z′

q(3, z) 6= 0 and the inductive definition can proceed.
In the exceptional caseθq(z) = 0, we let K̃ ′

q(·, z) = K ′
q(·, z) ≡ 0 and

Z′
q(·, z) ≡ 0. Note that this is consistent withφq(Y, z) ≡ 0.

Remark 4.1. Theorem 4.3 stated and proved below will ensure that
|K ′

q(Y, z)| < e−(c0+τ/2)|Y| for all q-contoursY and allq ∈ S, providedτ ≥

4c0 + 16. Hence, as it turns outa posteriori, the second alternative in (4.13)
never occurs and, once we are done with the proof of Theorem 4.3, we can
safely replacẽK ′

q everywhere byK ′
q. The additional truncation allows us to

define and use the relevant metastable free energies before stating and proving
the (rather involved) Theorem 4.3. An alternative strategy would be to define
scale dependent free energies as was done e.g. in [6].

4.2. Metastable free energies

Let us rewriteZ′
q(3, z) as

Z′

q(3, z) = θq(z)|3|Z ′

q(3, z) (4.14)

where
Z ′

q(3, z) =

∑
Y∈C(3,q)

∏
Y∈Y

K̃ ′

q(Y, z). (4.15)

We then define
ζq(z) = θq(z)esq(z), (4.16)

where

sq(z) = lim
|3|→∞, |∂3|

|3|
→0

1

|3|
logZ ′

q(3, z) (4.17)

By Lemma 3.14, the partition functionsZ ′
q(3, z) and the polymer pressure

sq(z) can be analyzed by a convergent cluster expansion, leading to the follow-
ing lemma.
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Lemma 4.2. For eachq ∈ S and eachz ∈ Õ, the van Hove limit
(4.17) exists and obeys the bound

|sq(z)| ≤ e−τ/2. (4.18)

If 3 is a finite subset ofZd andθq(z) 6= 0, we further have thatZ′
q(3, z) 6= 0

and ∣∣log
(
ζq(z)−|3|Z′

q(3, z)
)∣∣ ≤ e−τ/2

|∂3|, (4.19)

while ζq(z) = 0 andZ′
q(3, z) = 0 if θq(z) = 0.

Proof. Recalling the definition of compatibility betweenq-contours
from the paragraph before Lemma 3.13,C(3, q) is exactly the set of all com-
patible collections ofq-contours in3. Using the bound (4.13), the state-
ments of the lemma are now direct consequences of Lemma 3.14, the defi-
nition (4.16), the representation (4.14) forZ′

q(3, z) and the fact that we set
K̃ ′

q(Y, z) = 0 if θq(z) = 0.

The logarithm ofζq(z)—or at least its real part—has a natural interpre-
tation as themetastable free energyof the ground stateq. To state our next
theorem, we actually need to define these (and some other) quantities explic-
itly: For eachz ∈ Õ and eachq ∈ S with θq(z) 6= 0, let

fq(z) = − log |ζq(z)|,

f (z) = min
m∈S

fm(z),

aq(z) = fq(z) − f (z).

(4.20)

If θq(z) = 0, we set fq(z) = ∞ andaq = ∞. (Note that supz∈Õ f (z) < ∞

by (4.16), the bound (4.18) and our assumption thatθ(z) = maxq |θq(z)| is
bounded away from zero.)

In accord with our previous definition, a phaseq is stable atz if aq(z) = 0.
We will also say that aq-contourY is stable at zif K ′

q(Y, z) = Kq(Y, z). As
we will see, stability of the phaseq implies that allq-contours are stable. Now
we can formulate an analogue of Theorem 3.1 of [5] and Theorem 1.7 of [21].

Theorem 4.3. Suppose thatτ ≥ 4c0 + 16 wherec0 is the constant
from Lemma 3.13, and let̃ε = e−τ/2. Then the following holds for allz ∈ Õ:

(i) For all q ∈ S and allq-contoursY, we have|K ′
q(Y, z)| < e−(c0+τ/2)|Y|

and, in particular,̃K ′
q(Y, z) = K ′

q(Y, z).

(ii) If Y is aq-contour withaq(z) diamY ≤
τ
4, thenK ′

q(Y, z) = Kq(Y, z).
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(iii) If aq(z) diam3 ≤
τ
4, thenZq(3, z) = Z′

q(3, z) 6= 0 and∣∣Zq(3, z)
∣∣ ≥ e− fq(z)|3|−ε̃|∂3|. (4.21)

(iv) If m ∈ S, then
|Zm(3, z)| ≤ e− f (z)|3|e2ε̃|∂3|. (4.22)

Before proving Theorem 4.3, we state and prove the following simple
lemma which will be used both in the proof of Theorem 4.3 and in the proof of
Proposition 4.6 in the next subsection.

Lemma 4.4. Let m, q ∈ S, let z ∈ Õ and letY be aq-contour.

(i) If φq(Y, z) > 0, then

aq(| Int Y| + |Y|) ≤ (τ/4 + 2 + 4e−τ/2)|Y|. (4.23)

(ii) If φq(Y, z) > 0 andχq;m(Y, z) < 1, then

am(| Int Y| + |Y|) ≤ (1 + 8e−τ/2)|Y|. (4.24)

Proof of Lemma 4.4. By the definitions (4.10) and (4.11), the condi-
tion φq(Y, z) > 0 implies that

max
n∈S

log

∣∣∣∣∣ Z′
n(Int Y, z)θn(z)|Y|

Z′
q(Int Y, z)θq(z)|Y|

∣∣∣∣∣ ≤ (2 + τ/4)|Y|. (4.25)

Next we observe thatφq(Y, z) > 0 impliesθq(z) 6= 0. Since the maximum in
(4.25) is clearly attained for somen with θn(z) 6= 0, we may use the bound
(4.19) to estimate the partition functions on the left hand side of (4.25). Com-
bined with (4.16), (4.18), (4.20) and the estimate|∂ Int Y| ≤ |Y|, this immedi-
ately gives the bound (4.23).

Next we use that the conditionχq;m(Y, z) < 1 implies that

log

∣∣∣∣∣ Z′
m(Int Y, z)θm(z)|Y|

Z′
q(Int Y, z)θq(z)|Y|

∣∣∣∣∣ ≥ (1 + τ/4)|Y|. (4.26)

Since (4.26) is not consistent withθm(z) = 0, we may again use (4.19), (4.16),
(4.18) and (4.20) to estimate the left hand side, leading to the bound

( fq − fm)(| Int Y| + |Y|) ≥ (τ/4 + 1 − 4e−τ/2)|Y|. (4.27)
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Combining (4.27) with (4.23) and expressingam asaq − ( fq − fm), one easily
obtains the bound (4.24).

As in [5], Theorem 4.3 is proved using induction on the diameter of3
andY. The initial step for the induction, namely, (i-ii) for diamY = 1—which
is trivially valid since no such contours exist—and (iii-iv) for diam3 = 1,
is established by an argument along the same lines as that which drives the
induction, so we just need to prove the induction step. LetN ≥ 1 and suppose
that the claims (i-iv) have been established (or hold automatically) for allY′, 3′

with diamY′, diam3′ < N. Throughout the proof we will omit the argumentz
in fm(z) andam(z).

The proof of the induction step is given in four parts:

Proof of (i). Let Y be such that diamY = N. First we will show that
the second alternative in (4.13) does not apply. By the bounds (4.1) and (4.18),
we have that

∣∣ρz(Y)θq(z)−|Y|
∣∣ ≤ e−τ |Y|

(
θ(z)

|θq(z)|

)|Y|

≤ e−(τ−2ε̃)|Y|eaq|Y|, (4.28)

while the inductive assumption (iv), the bound (4.19) and the fact that∑
m | Intm Y| = | Int Y| and

∑
m |∂ Intm Y| = |∂ Int Y| ≤ |Y|, imply that∣∣∣∣∣∏

m∈S

Zm(Intm Y, z)

Z′
q(Intm Y, z)

∣∣∣∣∣ ≤ eaq| Int Y|e3ε̃|Y|. (4.29)

Assuming without loss of generality thatφq(Y, z) > 0 (otherwise there is
nothing to prove), we now combine the bounds (4.28) and (4.29) with (4.23)
and the fact that̃ε = e−τ/2

≤ 2/τ ≤ 1/8, to conclude that|K ′
q(Y, z)| ≤

e−( 3
4τ−

5
2−5ε̃)|Y| < e−( 3

4τ−4)|Y|. By the assumptionτ ≥ 4c0+16, this is bounded
by e−(c0+τ/2)|Y|, as desired.

Proof of (ii). Let diamY = N and suppose thatY is a q-contour
satisfyingaq diamY ≤ τ/4. Using the bounds (4.18) and (4.19), the definitions
(4.16) and (4.20), and the fact that|∂ Int Y| ≤ |Y| we can conclude that

max
m∈S

1

|Y|
log

∣∣∣∣∣ Z′
m(Int Y, z)θm(z)|Y|

Z′
q(Int Y, z)θq(z)|Y|

∣∣∣∣∣ ≤ aq
| suppY ∪ Int Y|

|Y|
+ 4ε̃ ≤

τ

4
+ 1.

(4.30)
In the last inequality, we used the bound| suppY ∪ Int Y| ≤ |Y| diamY, the
assumption thataq diamY ≤ τ/4 and the fact that 4̃ε ≤ 1. We also used that
aq < ∞ implies θq 6= 0, which justifies the use of the bound (4.19). By the
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definitions (4.10) and (4.11), the bound (4.30) implies thatφq(Int Y, z) = 1. On
the other hand,Zq(Intm Y, z) = Z′

q(Intm Y, z) for all m ∈ S by the inductive
assumption (iii) and the fact that diam Intm Y < diamY = N. Combined with
the inductive assumption (i), we infer that̃K ′

q(Y, z) = K ′
q(Y, z) = Kq(Y, z).

Proof of (iii). Let 3 ⊂ Zd be such that diam3 = N andaq diam3 ≤

τ/4. By the fact that (ii) is known to hold for all contoursY with diamY ≤ N,
we have thatK ′

q(Y, z) = Kq(Y, z) for all Y in 3, implying thatZq(3, z) =

Z′
q(3, z). Invoking (4.19) and (4.20), the bound (4.21) follows directly.

Proof of (iv). Let 3 be a subset ofZd with diam3 = N. Following [5,
21], we will apply the cluster expansion only to contours that are sufficiently
suppressed and handle the other contours by a crude upper bound. Given a
compatible collection of contoursY, recall thatinternal contours are those
contained in IntY of some otherY ∈ Y while the others areexternal. Let us
call anm-contourY smallif am diamY ≤ τ/4; otherwise we will call itlarge.
The reason for this distinction is that ifY is small then it is automatically stable.

Bearing in mind the above definitions, let us partition any collection of
contoursY ∈ M(3, m) into three setsYint

∪ Yext
small∪ Yext

largeof internal, small-
external and large-external contours, respectively. FixingYext

largeand resumming
the remaining two families of contours, the partition functionZm(3, z) can be
recast in the form

Zm(3, z) =

∑
Ỹ

Zsmall
m (Ext, z)

∏
Y∈Ỹ

{
ρz(Y)

∏
n∈S

Zn(Intn Y)
}
. (4.31)

Here the sum runs over all sets̃Y of mutually external largem-contours in3,
the symbol Ext= Ext3(Ỹ) denotes the set

⋂
Y∈Ỹ(ExtY∩3) andZsmall

m (Ext, z)
is the partition sum in Ext induced bỹY. Explicitly, Zsmall

m (3, z) is the quantity
from (3.6) with the sum restricted to the collectionsY ∈ M(3, m) for which
all external contours are small according to the above definition.

In the special case whereθm(z) = 0, all contours are large by definition
(recall thatam = ∞ if θm vanishes) and the partition functionZsmall

m (3, z) is
defined to be zero unless3 = ∅, in which case we set it to one. We will not
pay special attention to the caseθm = 0 in the sequel of this proof, but as the
reader may easily verify, all our estimates remain true in this case, and can be
formally derived by considering the limitam → ∞.

Using the inductive assumption (iv) to estimate the partition functions
Zn(Intn Y), the Peierls condition (4.1) to bound the activitiesρz(Y), and the
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bound (4.18) to estimateθ(z) by e− f eε̃, we get∏
Y∈Ỹ

{
ρz(Y)

∏
n∈S

Zn(Intn Y)
}

≤

∏
Y∈Ỹ

{
e−τ |Y|e− f (| Int Y|+|Y|)+3ε̃|Y|

}
= e− f |3\Ext |

∏
Y∈Ỹ

e−(τ−3ε̃)|Y|.
(4.32)

Next we will estimate the partition functionZsmall
m (Ext, z). Since all smallm-

contours are stable by the inductive hypothesis, this partition function can
be analyzed by a convergent cluster expansion. Let us consider the ratio of
Zsmall

m (Ext, z) andZ′
m(Ext, z). Expressing the logarithm of this ratio as a sum

over clusters we obtain a sum over clusters that contain at least one contour of
size|Y| ≥ diamY > τ/am ≥ 2/am. Using the bound (3.21) withη = τ/2 we
conclude that ∣∣∣ Zsmall

m (Ext, z)

Z′
m(Ext, z)

∣∣∣ ≤ e| Ext |e−τ/am
. (4.33)

Combined with Lemma 4.2 and the definitions (4.20), this gives∣∣∣Zsmall
m (Ext, z)

∣∣∣ ≤ e−( fm−e−τ/am)| Ext | eε̃|∂3|
∏
Y∈Ỹ

eε̃|Y|. (4.34)

We thus conclude that the left hand side of (4.31) is bounded by

|Zm(3, z)| ≤ max
Ỹ

(
e−(am/2)| Ext |

∏
Y∈Ỹ

e−(τ/4)|Y|

)
× e− f |3|eε̃|∂3|

∑
Ỹ

e−b| Ext |
∏
Y∈Ỹ

e−(3τ/4−4ε̃)|Y|,
(4.35)

whereb = am/2 − e−τ/am. Note thatb ≥ e−τ/am which is implied by the fact
that 4e−τ/am ≤ 4am/τ ≤ am.

For the purposes of this proof, it suffices to bound the first factor in
(4.35) by 1. In a later proof, however, we will use a more subtle bound.
To bound the second factor, we will invoke Zahradnı́k’s method (see [21,
Main Lemma] or [5, Lemma 3.2]): Consider the contour model with weights
K̂ (Y) = e−(3τ/4−4)|Y| if Y is a largem-contour andK̂ (Y) = 0 otherwise.
Let Ẑ(3) be the corresponding polymer partition function in3—see (3.11)—
and letϕ be the corresponding free energy. ClearlyẐ(3) ≥ 1 so that−ϕ ≥ 0.
Since 3τ/4−4 ≥ c0+τ/2, we can use Lemmas 3.13 and 3.14 to obtain further
bounds. For the free energy, this gives 0≤ −ϕ ≤ min{ε̃, e−τ/am} because the
weights of contours smaller than 2/am identically vanish. Sinceb ≥ e−τ/am,
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this allows us to bound the sum on the right hand side of (4.35) by∑
Ỹ

eϕ| Ext |
∏
Y∈Ỹ

e−(3τ/4−4ε̃)|Y|
≤

∑
Ỹ

eϕ| Ext |
∏
Y∈Ỹ

{
eϕ|Y|e−(3τ/4−5ε̃)|Y|

}
. (4.36)

Using Lemma 3.14 once more, we have thatẐ(Int Y)eϕ| Int Y|eε̃|Y|
≥ 1. Insert-

ing into (4.36), we obtain∑
Ỹ

e−b| Ext |
∏
Y∈Ỹ

e−(3τ/4−4ε̃)|Y|

≤

∑
Ỹ

eϕ(| Ext |+
∑

Y∈Ỹ(| Int Y|+|Y|))
∏
Y∈Ỹ

{
Ẑ(Int Y)K̂ (Y)

}
= eϕ|3|

∑
Ỹ

∏
Y∈Ỹ

{
Ẑ(Int Y)K̂ (Y)

}
.

(4.37)

Consider, on the other hand, the polymer partition functionẐ(3) in the repre-
sentation (3.11). Resuming all contours but the external ones, we obtain pre-
cisely the right hand side of (4.37), except for the factoreϕ|3|. This shows
that the right hands side of (4.37) is equal tôZ(3)eϕ|3| which—again by
Lemma 3.14—is bounded byeε̃|∂3|. Putting this and (4.35) together we ob-
tain the proof of the claim (iv).

4.3. Differentiability of free energies

Our next item of concern will be the existence of two continuous and bounded
derivatives of the metastable free energies. To this end, we first prove the
following proposition, which establishes a bound of the form (4.22) for the
derivatives of the partition functionsZm(3, z).

Proposition 4.5. Let τ andM be the constants from (4.1) and (4.3),
let ε̃ = e−τ/2, and suppose thatτ ≥ 4c0 + 16 wherec0 is the constant from
Lemma 3.13. Then∣∣∣∂`

z∂
¯̀

z̄Zm(3, z)
∣∣∣ ≤ e− f (z)|3|

(
2M |3|

)`+ ¯̀

e2ε̃|∂3|, (4.38)

holds for allz ∈ Õ, all m ∈ S, and all`, ¯̀ ≥ 0 with ` + ¯̀ ≤ 2.

Proof. Again, we proceed by induction on the diameter of3. We start
from the representation (4.4) which we rewrite as

Zm(3, z) =

∑
Yext

∏
x∈Ext

θm(z)
∏

Y∈Yext

Z(Y, z), (4.39)
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where we abbreviatedZ(Y, z) = ρz(Y)
∏

n Zn(Intn Y, z). Let 1 ≤ ` < ∞

be fixed (later, we will use that actually,` ≤ 2) and let us consider the im-
pact of applying∂`

z on Zm(3, z). Clearly, each of the derivatives acts either
on some ofθm’s, or on some of theZ(Y, z)’s. Let kx be the number of times
the termθm(z) is differentiated “atx,” and let iY be the number of times the
factorZ(Y, z) is differentiated. Letk = (kx) andi = (iY) be the corresponding
multiindices. The resummation of all contoursY for which iY = 0 andkx = 0
for all x ∈ suppY ∪ Int Y then contributes a factorZm(Ext3(Yext

) \ 3′, z),
where we usedYext

to denote the set of all thoseY ∈ Yext for which iY > 0,
Ext3(Yext

) = 3 \
⋃

Y∈Yext(suppY ∪ Int Y), and3′
= {x : kx > 0}. (Re-

member the requirement that no contour in Ext3(Yext
) \ 3′ surrounds any of

the “holes.”) Using this notation, the result of differentiating can be concisely
written as

∂`
zZm(3, z) =

∑
Yext

∑
3′⊂Ext3(Yext

)

Zm(Ext3(Yext
) \ 3′, z)

×

∑
k,i

k+i=`

`!

k! i!

∏
x∈3′

∂kx
z θm(z)

∏
Y∈Yext

∂iY
z Z(Y, z). (4.40)

Here the first sum goes over all collections (including the empty one)Yext

of mutually external contours in3 and the third sum goes over all pairs of
multiindices(k, i), kx = 1, 2, . . . , x ∈ 3′, iY = 1, 2, . . . , Y ∈ Yext

. (The
terms with |3′

| + |Yext
| > ` vanish.) We writek + i = ` to abbreviate∑

x kx +
∑

Y iY = ` and use the symbolsk! and i! to denote the multi-index
factorials

∏
x kx! and

∏
Y iY!, respectively.

We now use (4.3) and (4.18) to bound|∂kx
z θm(z)| by (M)kxeε̃e− f (z).

Employing (4.1) and (4.18) to bound the derivatives ofρz(Y), and the in-
ductive hypothesis to bound the derivatives ofZm(Intm Y, z), we estimate
|∂iY

z Z(Y, z)| by [2M |V(Y)|]iYe−(τ−3ε̃)|Y|e− f (z)|V(Y)| (recall thatV(Y) was de-
fined as suppY ∪ Int Y). Finally, we may use the bound (4.22) to estimate

|Zm(Ext3(Yext
) \ 3′, z)| ≤ e2ε̃|∂(Ext3(Yext

)\3′)e− f (z)| Ext3(Yext
)\3′

|. (4.41)

Combining these estimates and invoking the inequality

|∂(Ext3(Yext
) \ 3′)| ≤ |∂3| + |3′

| +

∑
Y∈Yext

|Y|, (4.42)
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we get∣∣∣∂`
zZm(3, z)

∣∣∣ ≤ e2ε̃|∂3|e− f (z)|3|
∑
Yext

∑
3′⊂Ext3(Yext

)

∑
k,i

k+i=`

`!

k! i!

×

∏
x∈3′

(Me3ε̃)kx
∏

Y∈Yext

(
2M |V(Y)|

)iYe−(τ−5ε̃)|Y|. (4.43)

Let us now consider the case` = 1 and` = 2. For` = 1, the sum on the
right hand side of (4.43) can be rewritten as∑

x∈3

(
Me3ε̃

+

∑
Y : x∈V(Y)⊂3

2Me−(τ−5ε̃)|Y|

)
, (4.44)

while for ` = 2, it becomes∑
x,y∈3

{(
Me3ε̃)2

+ 2Me3ε̃2M
∑

Y : x∈3\V(Y)
y∈V(Y)⊂3

e−(τ−5ε̃)|Y|

+ (2M)2
∑
Yext

∏
Y∈Yext

e−(τ−5ε̃)|Y|

}
,

(4.45)

where the last sum goes over sets of mutually external contoursYext
in 3 such

that {x, y} ⊂
⋃

Y∈Yext V(Y) and{x, y} ∩ V(Y) 6= ∅ for eachY ∈ Yext
. Note

that the last condition can only be satisfied ifYext
contains either one or two

contours. Introducing the shorthand

S =

∑
Y : 0∈V(Y)⊂Zd

e−(τ−5ε̃)|Y| (4.46)

we bound the expression (4.44) by(e3ε̃
+ 2S)M |3|, and the expression (4.45)

by (e6ε̃
+ 4e3ε̃ S+ 4(S+ S2))M2

|3|
2. Recalling thatc0 was defined in such a

way that the bound (3.28) holds, we may now use the fact thatτ −5ε̃−c0 ≥
1
2τ

to boundS by e−2ε̃. Sinceε̃ ≤ 1/8, this implies that the above two terms can
be estimated by(e3/8

+
1
4e−2)M |3| ≤ 2M |3| and(e6/8

+
1
2e3/8−2

+
1
2(e−2

+

1
8e−4))M2

|3|
2

≤ 4M2
|3|

2, as desired.
This completes the proof for the derivatives with respect toz. The proof

for the derivatives with respect tōz and the mixed derivatives is completely
analogous and is left to the reader.

Next we will establish a bound on the first two derivatives of the contour
weights K ′

q. Before formulating the next proposition, we recall the defini-
tions of the polymer partition functionZ ′

q(3, z) and the polymer pressuresq

in (4.17) and (4.15) .
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Proposition 4.6. Let τ andM be the constants from (4.1) and (4.3),
let c0 be the constant from Lemma 3.13, and letε̃ = e−τ/2. Then there exists
a finite constantτ1 ≥ 4c0 + 16 depending only onM , d and |S| such that
if τ ≥ τ1, the contour weightsK ′

q(Y, ·) are twice continuously differentiable in

Õ. Furthermore, the bounds∣∣∂`
z∂

¯̀

z̄K ′

q(Y, z)
∣∣ ≤ e−(c0+τ/2)|Y| (4.47)

and ∣∣∂`
z∂

¯̀

z̄Z
′

q(3, z)
∣∣ ≤ |3|

`+ ¯̀
esq(z)|3|+ε̃|∂3| (4.48)

hold for all q ∈ S, all z ∈ Õ, all q-contoursY, all finite 3 ⊂ Zd and all
`, ¯̀ ≥ 0 with ` + ¯̀ ≤ 2.

Proposition 4.6 immediately implies that the polymer pressuressq are
twice continuously differentiable and obey the bounds of Lemma 3.14. For
future reference, we state this in the following corollary.

Corollary 4.7. Let τ1 be as in Proposition 4.6. Ifτ ≥ τ1 andq ∈

S, thensq is a twice continuously differentiable function iñO and obeys the
bounds ∣∣∂wsq

∣∣ ≤ e−τ/2 and
∣∣∂w∂w′sq

∣∣ ≤ e−τ/2, (4.49)

valid for anyw, w′
∈ {z, z̄} and anyz ∈ Õ.

Proof of Proposition 4.6. Let τ ≥ τ1 ≥ 4c0 + 16. Then Theorem 4.3
is at our disposal. It will be convenient to cover the setÕ by the open sets

Õ
(q)
1 = {z ∈ Õ : |θq(z)| < e−(τ/4+2+6ε̃)θ(z)} (4.50)

and
Õ

(q)
2 = {z ∈ Õ : |θq(z)| > e−(τ/4+2+8ε̃)θ(z)}. (4.51)

We first note thatK ′
q(Y, z) = 0 if z ∈ Õ

(q)
1 . Indeed, assumingK ′

q(Y, z) 6= 0 we
necessarily haveφq(Y, z) > 0, which, by (4.23), implies thataq ≤ τ/4+2+4ε̃
and thus logθ(z) − log |θq(z)| ≤ τ/4 + 2 + 6ε̃, which is incompatible with

z ∈ Õ
(q)
1 . Hence, the claims trivially hold iñO(q)

1 and it remains to prove that

K ′
q(Y, ·) is twice continuously differentiable inO(q)

2 , and that (4.47) and (4.48)

hold for all z ∈ Õ
(q)
2 . As in the proof of Theorem 4.3 we will proceed by

induction on the diameter ofY and3. Let N ≥ 1 and suppose thatK ′
q(Y, ·) ∈

C2(Õ
(q)
2 ) and obeys the bounds (4.47) for allq ∈ S and all q-contoursY

with diamY < N, and that (4.48) holds for allq ∈ S and all3 ⊂ Zd with
diam3 < N − 1.
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We start by proving thatK ′
q(Y, ·) ∈ C2(Õ

(q)
2 ) wheneverY is aq-contour

Y of diameterN. To this end, we first observe that iñO(q)
2 , we have that

θq(z) 6= 0 and hence alsoZ′
q(Int Y, z) 6= 0. Using the inductive assumption,

this implies that the quotient

Qm,Y(z) =
Z′

m(Int Y, z)θm(z)|Y|

Z′
q(Int Y, z)θq(z)|Y|

(4.52)

is twice continuously differentiable inÕ(q)
2 , which in turn implies that

χq;m(Y, z) is twice continuously differentiable. Combined with the cor-
responding continuous differentiability ofρz(Y), θq(z), Zm(Intm Y, z), and
Z′

q(Intm Y, z), this proves the existence of two continuous derivatives ofz 7→

K ′
q(Y, z) with respect to bothz andz̄.

Next we prove the bound (4.48) for diam3 = N − 1. As we will see,
these bounds follow immediately from the inductive assumptions (4.47) and
Lemma 3.14. Indeed, letzq(Y) = K ′

q(Y, z) if diamY ≤ N − 1, andzq(Y) = 0
if diamY > N − 1. The inductive assumptions (4.47) then guarantee the
conditions (3.22) of Lemma 3.14. Combining the representation (3.15) for
logZ ′

q(3, z) with the estimate (3.23) from Lemma 3.14 we thus conclude that∣∣∂`
z∂

¯̀

z̄ logZ ′

q(3, z)
∣∣ ≤ |3|ε̃, (4.53)

while (3.26) gives the bound∣∣Z ′

q(3, z)
∣∣ ≤ esq|3|+ε̃|∂3|. (4.54)

Combining these bounds with the estimatesε̃|3| ≤ |3| andε̃2
|3|

2
+ ε̃|3| ≤

|3|
2, we obtain the desired bounds (4.48).

Before turning to the proof of (4.47) we will show that forz ∈ Õ
(q)
2 , the

bound (4.48) implies∣∣∂`
z∂

¯̀

z̄Z′

q(3, z)
∣∣ ≤

(
M1eτ/4+3

|3|

)`+ ¯̀

e− fq(z)|3|+ε̃|∂3| (4.55)

with M1 = 1 + M . Indeed, invoking the assumption (4.3), the definition of
Õ

(q)
2 , and the fact that̃ε ≤ 1/8, we may estimate the first and second derivative

of θq(z)|3| by

∣∣∣∂`
z∂

¯̀

z̄θq(z)|3|

∣∣∣ ≤

(
M |3|

θ(z)

|θq(z)|

)`+ ¯̀

|θq(z)||3|

≤

(
M |3|eτ/4+3

)`+ ¯̀

|θq(z)||3|. (4.56)
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Combined with (4.14) and (4.48) this gives (4.55).
Let Y be aq-contour with diamY = N, and let us consider the deriva-

tives with respect toz; the other derivatives are handled analogously. By the
assumption (4.1) and the bound (4.18), we have∣∣∂`

zρz(Y)
∣∣ ≤ |Y|

`M`e−(τ−2ε̃)|Y|eaq|Y|
|θq(z)||Y|, (4.57)

while (4.3) and the assumption thatz ∈ Õ
(q)
2 (cf (4.56)) yields∣∣∂`

zθq(z)−|Y|
∣∣ ≤ (|Y| + 1)`(Meτ/4+3)`|θq(z)

∣∣−|Y|
. (4.58)

Further, combining the bound (4.55) with Theorem 4.3 and Proposition 4.5 we
have ∣∣∣∣∂`

z

∏
m∈S

Zm(Intm Y, z)

Z′
q(Intm Y, z)

∣∣∣∣
≤ | Int Y|

`
(
2M + 2M1e2ε̃|Y|e3+τ/4)`

e3ε̃|Y|eaq| Int Y|. (4.59)

Finally, let us consider one of the factorsχq;m(Y, z). To bound its derivative,
we may assume thatz is an accumulation point ofz′ with χq;m(Y, z′) < 1
(otherwise its derivative is zero), so by Lemma 4.4(ii) we have thatam ≤ 1+8ε̃
and thus logθ(z) − log |θm(z)| ≤ 1 + 10ε̃ < τ/4 + 2 + 8ε̃, implying that
z ∈ Õ(m)

2 . We may therefore use the bounds (4.56) and (4.55) to estimate the
derivatives ofχq;m(Y, z), yielding the bound∣∣∂`

zχq;m(Y, z)
∣∣ ≤ C(| Int Y| + |Y|)`

(
4M1e3+τ/4e2ε̃|Y|

)`
(4.60)

whereC is a constant bounding both the first and the second derivative of the
mollifier functionχ . Combining all these estimates, we obtain a bound of the
form∣∣∂`

zK ′

q(Y, z)
∣∣ ≤ C̃(| Int Y| + |Y|)`e`τ/4e−(τ−c̃ε̃)|Y|eaq(| Int Y|+|Y|) (4.61)

with a constantC̃ that depends onM and the number of spin states|S|, and a
constantc̃ that depends only on|S|. Using the bound (4.23) and the fact that
è τ/4

≤ e(τ/8)|Y| (note that|Y| ≥ (2R+1)d > 4 by our definition of contours),
we conclude that∣∣∂`

zK ′

q(Y, z)
∣∣ ≤ C̃(| Int Y| + |Y|)`e−(5τ/8−3−c̃ε̃)|Y|. (4.62)

Increasingτ1 if necessary to absorb all of the prefactors, the bound (4.47) fol-
lows.

We close the subsection with a lemma concerning the Lipschitz continuity
of real-valued functionsz 7→ f (z) andz 7→ e−aq(z) on Õ:
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Lemma 4.8. Let τ1 be as in Proposition 4.6 and let̃M1 = 4M + 1.
If τ ≥ τ1, q ∈ S, and ifz, z0 ∈ Õ are such that [z0, z]= {sz+ (1 − s)z0 : 0 ≤

s ≤ 1} ⊂ Õ, then
| f (z0) − f (z)| ≤ M̃1|z − z0| (4.63)

and ∣∣e−aq(z)
− e−aq(z0)

∣∣ ≤ 2M̃1|z − z0| eM̃1|z−z0|. (4.64)

Proof. Let ζq(z) be the quantity defined in (4.16), and letε̃ = e−τ/2.
Combining the assumption (4.3) with the bounds (4.49) and (4.18), we get the
estimate ∣∣∂wζq(z)

∣∣ ≤ (Me2ε̃
+ ε̃)e− f (z), w,w′

∈ {z, z̄}. (4.65)

With the help of the boundMe2ε̃
+ ε̃ ≤ 2M + 1/2 = M̃1/2, we conclude that

|e− fq(z1) − e− fq(z2)| ≤ M̃1

∫
[z1,z2]

e− f (z′)
|dz′

|, z1, z2 ∈ [z0, z], (4.66)

where |dz′
| denotes the Lebesgue measure on the interval [z0, z]. Using

that f = maxq fq, this implies

|e− f (z1) − e− f (z2)| ≤ M̃1

∫
[z1,z2]

e− f (z′)
|dz′

|, z1, z2 ∈ [z0, z]. (4.67)

Now if (4.63) is violated, i.e., when| f (z) − f (z0)| ≥ (M̃1 + ε)|z − z0|, then
the same is true either about the first or the second half of the segment [z0, z] .
This shows that there is a sequence of intervals [z1,n, z2,n] of length 2−n

|z0−z|
where | f (z1,n) − f (z2,n)| ≥ (M̃1 + ε)|z1,n − z2,n|. But that would be in
contradiction with (4.67) which implies that

lim
n→∞

| f (z1,n) − f (z2,n)|

|z1,n − z2,n|
= lim

n→∞

|e− f (z1,n)
− e− f (z2,n)

|∫
[z1,n,z2,n] e− f (z′) |dz′|

≤ M̃1, (4.68)

where we use the mean-value Theorem and a compactness argument to infer
the first equality. Hence, (4.63) must be true after all.

To prove (4.64), we combine the triangle inequality and the bound
fq(z0) ≥ f (z0) with (4.66) and (4.67) to conclude that

|e−aq(z)
− e−aq(z0)| =

∣∣e f (z)e− fq(z)
− e f (z0)e− fq(z0)

∣∣
≤ e f (z)

|e− fq(z)
− e− fq(z0)| +

e− fq(z0)

e− f (z)e− f (z0)
|e− f (z0) − e− f (z)

|

≤ 2M̃1

∫ z

z0

e f (z)− f (z′)
|dz′

|.

(4.69)

Bounding f (z) − f (z′) by M̃1|z − z0|, we obtain the bound (4.64).
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4.4. Torus partition functions

In this subsection we consider the partition functionsZq(3, z), defined for
3 ⊂ TL in (3.6). Since all contours contributing toZq(3, z) have diameter
strictly less thanL/2, the partition functionZq(3, z) can be represented in
the form (4.8), withKq(Y, z) defined by embedding the contourY into Zd.
Let Z′

q(3, z) be the corresponding truncated partition function, defined with
weights K ′

q(Y, z) given by (4.12). Notice, however, that even though every
contourY ⊂ 3 can be individually embedded intoZd, the relation of incom-
patibility is formulated on torus. The polymer partition functionZ ′

q(3, z) and
Z′

q(3, z) can then again be analyzed by a convergent cluster expansion, bear-
ing in mind, however, the torus incompatibility relation. The torus analogue of
Lemma 4.2 is then as follows:

Lemma 4.9. Assume thatτ ≥ τ1, whereτ1 is the constant from Propo-
sition 4.6 and letq ∈ S andz ∈ Õ be such thatθq(z) 6= 0. Then∣∣∣∂`

w log
(
ζq(z)−|3|Z′

q(3, z)
)∣∣∣ ≤ e−τ/2

|∂3| + 2|3|e−τ L/4 (4.70)

for any3 ⊂ TL , anyz ∈ Õ, ` = 0, 1, andw ∈ {z, z̄}.

Proof. Let us write Z′
q(3, z) in the form (4.14). Taking into ac-

count the torus compatibility relation when comparing the cluster expansion
for logZ ′

q(3, z) with the corresponding terms contributing tosq|3|, we see
that the difference stems not only from clusters passing through the boundary
∂3, but also from the clusters that are wrapped around the torus in the former
as well as the clusters that cannot be placed on the torus in the latter. For such
clusters, however, we necessarily have

∑
Y X(Y)|Y| ≥ L/2. Since the func-

tional z(Y) = K ′
q(Y, z) satisfies the bound (3.20) withη = τ/2, we may use

the bound (3.21) to estimate the contribution of these clusters. This yields∣∣∣logZ ′

q(3, z) − sq|3|

∣∣∣ ≤ e−τ/2
|∂3| + 2|3|e−τ L/4, (4.71)

which is (4.70) for̀ = 0. To handle the casè= 1, we just need to recall that,
by Proposition 4.6, the functionalz(Y) = K ′

q(Y, z) satisfies the bounds (3.22)
with η = τ/2. Then the desired estimate for` = 1 follows with help of (3.23)
by a straightforward generalization of the above proof of (4.71).

Next we provide the corresponding extension of Theorem 4.3 to the torus:

Theorem 4.10. Let τ ≥ 4c0 + 16 wherec0 is the constant from
Lemma 3.13, and let us abbreviateε̃ = e−τ/2. For all z ∈ Õ, the following
holds for all subsets3 of the torusTL :
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(i) If aq(z) diam3 ≤
τ
4, thenZq(3, z) = Z′

q(3, z) 6= 0 and∣∣Zq(3, z)
∣∣ ≥ e− fq(z)|3|e−ε̃|∂3|−2|3|e−τ L/4

. (4.72)

(ii) If m ∈ S, then

|Zm(3, z)| ≤ e− f (z)|3|+2ε̃|∂3|+4|3|e−τ L/4
. (4.73)

(iii) If m ∈ S, then

|Zm(TL , z)| ≤ e− f (z)Ld
max

{
e−am(z)Ld/2, e−τ Ld−1/4}e4Lde−τ L/4

.
(4.74)

Remark 4.11. The bounds (4.72) and (4.73) are obvious generaliza-
tions of the corresponding bounds in Theorem 4.3 to the torus. But unlike in
Proposition 4.6, we will not need to prove the bounds for the derivatives with
respect toz. When such bounds will be needed in the next section, we will
invoke analyticity inz and estimate the derivatives using Cauchy’s Theorem.

Proof of (i). Since all contours can by definition be embedded intoZd,
Theorem 4.3(ii) guarantees thatK ′

q(Y, z) = Kq(Y, z) for all q-contours in3
and henceZq(3, z) = Z′

q(3, z). Then (4.72) follows by Lemma 4.9 and the
definition of fq.

Proof of (ii). We will only indicate the changes relative to the proof of
part (iv) of Theorem 4.3. First, since all contours can be embedded intoZd, we
have that a corresponding bound— namely, (4.22)—holds for the interiors of
all contours in3. This means that all of the derivation (4.31–4.35) carries over,
with the exception of the factoreε̃|∂3| in (4.34) and (4.35) which by Lemma 4.9
should now be replaced byeε̃|∂3|+2|3|e−τ L/4

. In order to estimate the last sum
in (4.35), we will again invoke the trick described in (4.36–4.37). This brings
in yet another factoreε̃|∂3|+2|3|e−τ L/4

. From here (4.73) follows.

Proof of (iii). The estimate is analogous to that in (ii); the only differ-
ence is that now we have to make use of the extra decay from the maximum
in (4.35). (Note that for3 = TL we have|∂3| = 0 and|3| = Ld.) Fol-
lowing [5], this is done as follows: IfY is a contour, a standard isoperimetric
inequality yields

|Y| ≥
1

2d
|∂(suppY ∪ Int Y)| ≥ | suppY ∪ Int Y|

d−1
d . (4.75)
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Hence, if̃Y is a collection of external contours inTL and Ext is the correspond-
ing exterior set, we have

∑
Y∈Ỹ

|Y| ≥

∑
Y∈Ỹ

| suppY ∪ Int Y|
d−1

d

≥

(∑
Y∈Ỹ

| suppY ∪ Int Y|

) d−1
d

=
(
Ld

− | Ext |
) d−1

d . (4.76)

Writing | Ext | = (1 − x)Ld where x ∈ [0, 1], the maximum in (4.35) is
bounded by

sup
x∈[0,1]

exp
{
−

am

2
Ld(1 − x) −

τ

4
Ld−1x

d−1
d

}
. (4.77)

The function in the exponent is convex and the supremum is thus clearly domi-
nated by the bigger of the values atx = 0 andx = 1. This gives the maximum
in (4.74).

Apart from the partition functionsZm(TL , z), we will also need to deal
with the situations where there is a non-trivial contour network. To this end,
we need a suitable estimate on the difference

Zbig
L (z) = Zper

L (z) −

∑
m∈S

Zm(TL , z). (4.78)

This is the content of the last lemma of this section.

Lemma 4.12. There exists a constantc̃0 depending only ond and|S|

such that forτ ≥ 4c̃0 + 16 and allz ∈ Õ, we have

|Zbig
L (z)| ≤ Lde−τ L/4e5Lde−τ L/4

ζ(z)Ld
. (4.79)

Proof. Let c0 be the constant from Lemma 3.13, and letc̃0 =

c̃0(d, |S|) ≥ c0 be such that∑
3⊂TL

(|S|e−c0)|3|
≤ Ld, (4.80)

where the sum goes over all connected subsets3 of the torusTL (the existence
of such a constant follows immediately from the fact that the number of con-
nected subsets3 ⊂ Zd that contain a given pointx and have sizek is bounded
by ad-dependent constant raised to the powerk).
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The proof of the lemma is now a straightforward corollary of Theo-
rem 4.10. Indeed, invoking the representation (3.8) we have

Zbig
L (z) =

∑
(∅,N)∈ML

N 6=∅

ρz(N)
∏
m∈S

Zm
(
3m(∅, N), z

)
, (4.81)

where3m(∅, N) is defined before Proposition 3.11. Using (4.2) and (4.73) in
conjunction with the boundsθ(z) ≤ ζ(z)e2ε̃ and

∑
m∈S |∂3m(∅, N)| ≤ |N|,

we get

|Zbig
L (z)| ≤ ζ(z)Ld

e4Lde−τ L/4 ∑
(∅,N)∈ML

N 6=∅

e−(τ−4ε̃)|N|. (4.82)

Taking into account that each connected component of suppN has size at least
L/2, the last sum can be bounded by

∑
(∅,N)∈ML

N 6=∅

e−(τ−4ε̃)|N|
≤

∞∑
n=1

1

n!
Sn

≤ SeS (4.83)

where

S =

∑
3⊂TL

|3|≥L/2

(
|S|e−(τ−4ε̃)

)|3|

(4.84)

is a sum over connected sets3 ⊂ TL of size at leastL/2. Extracting a factor
e−τ L/4 from the right hand side of (4.84), observing thatτ/2 − 4ε̃ ≥ c̃0, and
recalling that̃c0 was defined in such a way that (4.80) holds, we get the estimate
S ≤ Lde−τ L/4. Combined with (4.82) and (4.83) this gives the desired bound
(4.79).

5. PROOFS OF MAIN RESULTS

We are finally in a position to prove our main results. Unlike in Section 4, all
of the derivations will assume the validity of Assumption C. Note that the as-
sumptions (4.1–4.3) follow from Assumptions C0-C2, so all results from Sec-
tion 4 are at our disposal. Note also thatρz(Y), ρz(N) andθm(z) are analytic
functions ofz by Lemma 3.10, implying that the partition functionsZm(3, ·)
andZper

L are analytic functions ofz.
We will prove Theorems A and B for

τ0 = max{τ1, 4c̃0 + 16, 2 log(2/α)} (5.1)
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where τ1 is the constant from Proposition 4.6,̃c0 is the constant from
Lemma 4.12 andα is the constant from Assumption C. Recall thatτ1 ≥

4c0 + 16, so forτ ≥ τ0 we can use all results of Section 4.
First, we will attend to the proof of Theorem A:

Proof of Theorem A. Most of the required properties have already
been established. Indeed, letζq be as defined in (4.16). Then (2.9) is exactly
(4.18) which proves part (1) of the Theorem A.

In order to prove that∂z̄ζq(z) = 0 wheneverz ∈ Sq, we recall that
ζq(z) = θq(z)esq(z) whereθq(z) is holomorphic inÕ andsq(z) is given in terms
of its Taylor expansion in the contour activitiesK ′

q(Y, z). Now, if aq(z) = 0—
which is implied byz ∈ Sq—thenK ′

q(Y, z) = Kq(Y, z) for anyq-contourY
by Theorem 4.3. But∂z̄Kq(Y, z) = 0 by the fact thatρz(Y), Zq(Intm Y, z) and
Zm(Intm Y, z) are holomorphic andZq(Intm Y, z) 6= 0. Sincesq is given in
terms of an absolutely converging power series in theKq’s, we thus also have
that∂z̄esq(z)

= 0. Hence∂z̄ζq(z) = 0 for all z ∈ Sq.
To prove part (3), letz ∈ Sm ∩ Sn for some distinct indicesm, n ∈ R.

Using Lemma 4.2 we then have

θm(z) ≥ θ(z)e−2e−τ/2
(5.2)

and similarly forn. Sinceα ≥ 2e−τ0/2
≥ 2e−τ/2, we thus havez ∈ Lα(m) ∩

Lα(n). Using the first bound in (4.49), we further have∣∣∣∣∂zζm(z)

ζm(z)
−

∂zζn(z)

ζn(z)

∣∣∣∣≥ ∣∣∂zem(z) − ∂zen(z)
∣∣ − 2e−τ/2. (5.3)

Applying Assumption C3, the right hand side is not less thanα − 2e−τ/2.
Part (4) is proved analogously; we leave the details to the reader.

Before proving Theorem B, we prove the following lemma.

Lemma 5.1. Let ε > 0, let τ1 be the constant from Proposition 4.6,
and let

s(L)
q (z) =

1

|3|
logZ ′

q(TL , z) (5.4)

and
ζ (L)

q (z) = θq(z)es(L)
q (z). (5.5)

Then there exists a constantM0 depending only onε andM such that∣∣∂`
zζ

(L)
q (z)

∣∣ ≤ (`!)2(M0)
`
∣∣ζ (L)

q (z)
∣∣ (5.6)

holds for allq ∈ S, all ` ≥ 1, all τ ≥ τ1, all L ≥ τ/2 and allz ∈ Õ with
aq(z) ≤ τ/(4L) and dist(z, Õc) ≥ ε.
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Proof. We will prove the lemma withe the help of Cauchy’s theorem.
Starting with the derivatives ofθq, let ε0 = min{ε, 1/(4M̃1)} where M̃1 =

1+4M is the constant from Lemma 4.8, and letz′ be a point in the discDε0(z)
of radiusε0 aroundz. Using the bounds (4.18) and (4.63), we now bound

∣∣θq(z′)
∣∣ ≤ eε̃− f (z′)

≤ eε̃+M̃1ε0e− f (z)

≤ eε̃+M̃1ε0+aq(z)e− fq(z)
≤ |θq(z)|e2ε̃+M̃1ε0+aq(z). (5.7)

With the help of Cauchy’s theorem and the estimatesε̃ ≤ 1/8, M̃1ε ≤ 1/4 and
aq(z) ≤ 1/2, this implies∣∣∂`

zθq(z)
∣∣∣∣θq(z)

∣∣ ≤ `!ε−`
0 e1/4+1/4+1/2

≤ `!(2ε−1
0 )`. (5.8)

In order to bound the derivatives ofs(L)
q , let us consider a multiindexX con-

tributing to the cluster expansion ofs(L)
q , and letk = maxY : X(Y)>0 diamY.

Defining

εk = min{ε, (20eM̃1k)−1
}, (5.9)

where M̃1 = 1 + 4M is the constant from Lemma 4.8, we will show that
the weightK ′

q(Y, ·) of any contourY with X(Y) > 0 is analytic inside the
disc Dεk(z) of radiusεk aboutz. Indeed, let|z − z′

| ≤ εk. Combining the
assumptionaq(z) ≤ τ/(4L) ≤ 1/2 with Lemma 4.8, we have

e−aq(z′)
≥ e−aq(z)

− 2eM̃1εk ≥ 1 − aq(z) − 2eM̃1εk

≥ 1 −
6

5
max{aq(z), 10eM̃1εk} ≥ e−2 max{aq(z),10eM̃1εk}.

(5.10)

Here we used the fact thatx + y ≤
6
5 max{x, 5y} wheneverx, y ≥ 0 in the last

but one step, and the fact thate−2x
≤ 1 − (1 − e−1)2x ≤ 1 −

6
5x whenever

x ≤ 1/2 in the last step. We thus have proven that

aq(z′) ≤ max{2aq(z), 20eM̃1εk} ≤ max
{

τ
2L , 1

k

}
≤

τ

4k
, (5.11)

so by Theorem 4.3,K ′
q(Y, z′) = Kq(Y, z′) and Zq(Intm Y, z′) 6= 0 for all

m ∈ S and z′
∈ Dεk(z). As a consequence,K ′

q(Y, ·) is analytic inside the
discDεk(z), as claimed.

At this point, the proof of the lemma is an easy exercise. Indeed,
combining Cauchy’s theorem with the bound|K ′

q(Y, z′)| ≤ e−(τ/2+c0)|Y|
≤
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e−c0|Y|e−(τ/2) diamY, we get the estimate∣∣∣∣∣∂`
z

∏
Y

K ′

q(Y, z′)X(Y)

∣∣∣∣∣ ≤ `! ε`
k

∏
Y

e−(c0+τ/2)|Y|X(Y)

≤ `! ε−`
k e−(τ/2)k

∏
Y

e−c0|Y|X(Y). (5.12)

Boundingε−`
k e−(τ/2)k by ε−`

1 k`e−k
≤ (`e−1ε−1

1 )`, we conclude that∣∣∣∂`
z

∏
Y

K ′

q(Y, z′)X(Y)
∣∣∣ ≤ `!(`e−1ε−1

1 )`
∏
Y

e−c0|Y|X(Y). (5.13)

Inserted into the cluster expansion fors(L)
q , this gives the bound∣∣∣∂`

zs
(L)
q (z)

∣∣∣ ≤ `!(`e−1ε−1
1 )`, (5.14)

which in turn implies that∣∣∂`
ze

s(L)
q (z)

∣∣ ≤ `!(`e−1ε−1
1 )`2`

∣∣es(L)
q (z)

∣∣. (5.15)

Combining this bound with the bound (5.8), we obtain the bound (5.6) with a
constantM0 that depends only onε andM̃1, and hence only onε andM .

Next we will prove Theorem B. Recall the definitions of the setsSε(m)
andUε(Q) from (2.13) and (2.14) and the fact that in Theorem B, we setκ =

τ/4.

Proof of Theorem B(1–3). Part (1) is a trivial consequence of the fact
thatθm(z), ρz(N) andρz(Y) are analytic functions ofz throughoutÕ.

In order to prove part (2), we note thatz ∈ Sκ/L(q) implies that
aq(z) ≤ κ/L = τ/(4L) and hence by Theorem 4.3(ii) we have thatK ′

q(Y, z) =

Kq(Y, z) for any q-contour contributing toZq(TL , z). This immediately im-

plies that the functionss(L)
q and ζ

(L)
q (z) defined in (5.4) and (5.5) are ana-

lytic function in Sκ/L(q). Next we observe thatτ ≥ 4c̃0 + 16 implies that
τ L/8 ≥ τ/8 ≥ log 4 and hence 4e−τ L/4

≤ e−τ L/8. Sincez ∈ Sκ/L(q) im-
pliesaq(z) < ∞ and henceθq(z) 6= 0, the bounds (2.15–2.16) are then direct
consequences of Lemma 4.9 and the fact that∂TL = ∅.

The bound (2.17) in part (3) finally is nothing but the bound (5.6) from
Lemma 5.1, while he bound (2.18) is proved exactly as for Theorem A. Note
that so far, we only have used thatτ ≥ τ0, except for the proof of (2.17), which
through the conditions from Lemma 5.1 requiresL ≥ τ/2, and give a constant
M0 depending onε andM .
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Proof of Theorem B(4). We will again rely on analyticity and
Cauchy’s Theorem. LetQ ⊂ R and letQ′

⊂ S be the set of correspond-
ing interchangeable spin states. Clearly, ifm and n are interchangeable,
thenζ

(L)
m = ζ

(L)
n and, recalling thatqm denotes the set of spins correspond-

ing tom ∈ R, we have

ΞQ(z) = Zper
L (z) −

∑
n∈Q′

[
ζ (L)

n (z)
]Ld

= Zper
L (z) −

∑
n∈Q′

Z′

n(TL , z). (5.16)

Pick az0 ∈ Uκ/L(Q). Forn ∈ Q′, we then havean(z0) ≤ τ/(4L), and by the
argument leading to (5.11) we have thatan(z) ≤ τ/(2L) providedτ/(4L) ≤

1/2 and 2eM̃1|z− z0| ≤
1
5

τ
4L . On the other hand, ifm ∈ S \Q′, thenam(z0) ≥

τ/(8L), and by a similar argument, we get thatam(z) ≥ τ/(16L) if τ/(8L) ≤ 1
and 2eM̃1|z− z0| ≤

1
10

τ
8L . Noting thatτ ≥ τ̃0 impliesτ ≥ 4c0 + 16 ≥ 16, we

now set
ε(L)

= min{ε, (10eM̃1Ld)−1
}. (5.17)

For z ∈ Dε(L)(z0) and n ∈ Q′, we then havean(z)
L
2 ≤ τ/4 and hence

Z′
n(TL , z) = Zn(TL , z), implying in particular that

ΞQ(z) = Zbig
L (z) +

∑
m∈SrQ′

Zm(TL , z). (5.18)

Note that this implies, in particular, thatΞQ(·) is analytic inDε(L)(z0).
Our next goal is to prove a suitable bound on the right hand side of (5.18).

By Lemma 4.12, the first term contributes no more than 2Ldζ(z)Ld
e−τ L/4,

providedτ ≥ 4c̃0 + 16 andL is so large that 5Lde−τ L/4
≤ log 2. On the

other hand, sincez ∈ Dε(L)(z0) implies that thatam(z) ≥ τ/(16L) for all
m 6∈ Q′, the bound (4.74) implies that eachZm(TL , z) on the right hand
side of (5.18) contributes less than 2ζ(z)Ld

e−τ Ld−1/32 onceL is so large that
4Lde−τ L/4

≤ log 2. By putting all of these bounds together and using that
ζ(z)Ld

≤ ζ(z0)
Ld

eM̃1|z−z0|Ld
≤ e1/(10e)ζ(z0)

Ld
by the bound (4.63) and our

definition ofε(L), we get that

|ΞQ(z)| ≤ 5|S|Ldζ(z0)
Ld

e−τ Ld−1/32 (5.19)

wheneverz ∈ Dε(L)(z0) andL is so large thatL ≥ τ/2 and 5Lde−τ L/4
≤ log 2.

IncreasingL if necessary to guarantee thatε(L)
= (10eM̃1Ld)−1 and applying

Cauchy’s theorem to bound the derivatives ofΞQ(z), we thus get∣∣∣∂`
zΞQ(z)

∣∣∣
z=z0

≤ `!(10eM̃1)
`5|S|Ld(`+1)ζ(z0)

Ld
e−τ Ld−1/32 (5.20)

providedL ≥ L0, whereL0 = L0(d, M, τ, ε) is chosen in such a way that for
L ≥ L0, we haveL ≥ τ/2, 5Lde−τ L/4

≤ log 2 and(10eM̃1Ld)−1
≤ ε. Since
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z0 ∈ Uκ/L(Q) was arbitrary and|S| =
∑

m∈R qm, this proves the desired
bound (2.20) withC0 = 10eM̃1 = 10e(1 + 4M).
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