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1 Introduction

Phase transitions are one of the most fascinating, and also most perplexing,
phenomena in equilibrium statistical mechanics. On the physics side, many ap-
proximate methods to explain or otherwise justify phase transitions are known
but a complete mathematical understanding is available only in a handful of
simplest of all cases. One set of tractable systems consists of the so called
lattice spin models. Originally, these came to existence as simplified versions
of (somewhat more realistic) models of crystalline materials in solid state
physics but their versatile nature earned them a life of their own in many
other disciplines where complex systems are of interest.

The present set of notes describes one successful mathematical approach
to phase transitions in lattice spin models which is based on the technique
of reflection positivity. This technique was developed in the late 1970s in the
groundbreaking works of F. Dyson, J. Fröhlich, R. Israel, E. Lieb, B. Si-
mon and T. Spencer who used it to establish phase transitions in a host
of physically-interesting classical and quantum lattice spin models; most no-
tably, the classical Heisenberg ferromagnet and the quantum XY model and
Heisenberg antiferromagnet. Other powerful techniques — e.g., Pirogov-Sinai
theory, lace expansion or multiscale analysis in field theory — are available at
present that can serve a similar purpose in related contexts, but we will leave
their review to experts in those areas.

The most attractive feature of reflection positivity — especially, compared
to the alternative techniques — is the simplicity of the resulting proofs. There
are generally two types of arguments one can use: The first one is to derive the
so called infrared bound, which states in quantitative terms that the fluctua-
tions of the spin variables are dominated by those of a lattice Gaussian free
field. In systems with an internal symmetry, this yields a proof of a symmetry-
breaking phase transition by way of a spin-condensation argument. Another
route goes via the so called chessboard estimates, which allow one to imple-
ment a Peierls-type argument regardless of whether the model exhibits an
internal symmetry or not.
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Avid users of the alternative techniques are often quick to point out that
the simplicity of proofs has its price: As a rather restrictive condition, reflec-
tion positivity applies only to a small (in a well defined sense) class of systems.
Fortunately for the technique and mathematical physics in general, the mod-
els to which it does apply constitute a large portion of what is interesting
for physics, and to physicists. Thus, unless one is exclusively after universal
statements — i.e., those robust under rather arbitrary perturbations — the
route via reflection positivity is often fairly satisfactory.

The spectacular success of reflection positivity from the late 1970s was
followed by many interesting developments. For instance, in various joint col-
laborations, R. Dobrushin, R. Kotecký and S. Shlosman showed how chess-
board estimates can be used to prove a phase transition in a class of systems
with naturally-defined ordered and disordered components; most prominently,
the q-state Potts model for q � 1. Another neat application came in the pa-
pers of M. Aizenman from early 1980s in which he combined the infrared
bound with his random-current representation to conclude mean-field critical
behavior in the nearest-neighbor Ising ferromagnet above 4 dimensions. Yet
another example is the proof, by L. Chayes, R. Kotecký and S. Shlosman,
that the Fisher-renormalization scheme in annealed-diluted systems may be
substituted by the emergence of an intermediate phase.

These notes discuss also more recent results where their author had a
chance to contribute to the field. The common ground for some of these is
the use of reflection positivity to provide mathematical justification of “well-
known” conclusions from physics folklore. For instance, in papers by N. Craw-
ford, L. Chayes and the present author, the infrared bound was shown to im-
ply that, once a model undergoes a field or energy driven first-order transition
in mean-field theory, a similar transition will occur in the lattice model pro-
vided the spatial dimension is sufficiently high or the interaction is sufficiently
spread-out (but still reflection positive). Another result — due to L. Chayes,
S. Starr and the present author — asserts that if a reflection-positive quantum
spin system undergoes a phase transition at intermediate temperatures in its
classical limit, a similar transition occurs in the quantum system provided the
magnitude of the quantum spin is sufficiently large.

There have also been recent cases where reflection positivity brought a
definite end to a controversy that physics arguments were not able to resolve.
One instance concerned certain non-linear vector and liquid-crystal models;
it was debated whether a transition can occur already in 2 dimensions. This
was settled in recent work of A. van Enter and S. Shlosman. Another instance
involved spin systems whose (infinite) set of ground states had a much larger
set of symmetries than the Hamiltonian of the model; two competing physics
reasonings argued for, and against, the survival of these states at low tem-
peratures. Here, in papers of L. Chayes, S. Kivelson, Z. Nussinov and the
present author, spin-wave free energy calculations were combined with chess-
board estimates to construct a rigorous proof of phase coexistence of only a
finite number of low-temperature states.
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These recent activities show that the full potential of reflection positivity
may not yet have been fully exhausted and that the technique will continue
to play an important role in mathematical statistical mechanics. It is hoped
that the present text will help newcomers to this field learn the essentials of
the subject before the need arises to plow through the research papers where
the original derivations first appeared.

Organization

This text began as class notes for nine hours of lectures on reflection positivity
at the 2006 Prague School and gradually grew into a survey of (part of)
this research area. The presentation opens with a review of basic facts about
lattice spin models and then proceeds to study two applications of the infrared
bound: a spin-condensation argument and a link to mean-field theory. These
are followed by the classical derivation of the infrared bound from reflection
positivity. The remainder of the notes is spent on applications of a by-product
of this derivation, the chessboard estimate, to proofs of phase coexistence.

The emphasis of the notes is on a pedagogical introduction to reflection
positivity; for this reason we often sacrifice on generality and rather demon-
strate the main ideas on the simplest case of interest. To compensate for the
inevitable loss of generality, each chapter is endowed with a section “Litera-
ture remarks” where we attempt to list the references deemed most relevant
to the topic at hand. The notes are closed with a short section on topics that
are not covered as well as some open problems that the author finds worthy
of some thought.
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am indebted to the participants of the school for comments during the lectures
and to T. Bodineau, A. van Enter, E. Lieb and S. Shlosman for suggestions on
the first draft of the notes. My presence at the school was made possible thanks
to the support from the ESF-program “Phase Transitions and Fluctuation
Phenomena for Random Dynamics in Spatially Extended Systems” and from
the National Science Foundation under the grant DMS-0505356.
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2 Lattice spin models: Crash course

This section prepares the ground for the rest of the course by introducing the
main concepts from the theory of Gibbs measures for lattice spin models. The
results introduced here are selected entirely for the purpose of these notes;
readers wishing a more comprehensive — and in-depth — treatment should
consult classic textbooks on the subject.

2.1 Basic setup

Let us start discussing the setup of the models to which we will direct our
attention throughout this course. The basic ingredients are as follows:

• Lattice: We will take the d-dimensional hypercubic lattice Zd as our un-
derlying graph. This is the graph with vertices at all points in Rd with
integer coordinates and edges between any nearest neighbor pair of ver-
tices; i.e., those at Euclidean distance one. We will use 〈x, y〉 to denote an
(unordered) nearest-neighbor pair.

• Spins: At each x ∈ Zd we will consider a spin Sx, by which we will mean a
random variable taking values in a closed subset Ω of Rν , for some ν ≥ 1.
We will use Sx·Sy to denote a scalar product between Sx and Sy (Euclidean
or otherwise).

• Spin configurations: For Λ ⊂ Zd, we will refer to SΛ := (Sx)x∈Λ as the
spin configuration in Λ. We will be generically interested in describing the
statistical properties of such spin configurations with respect to certain
(canonical) measures.

• Boundary conditions: To describe the law of SΛ, we will not be able to
ignore that some spins are also outside Λ. We will refer to the configura-
tion SΛc of these spins as the boundary condition. The latter will usually
be fixed and may often even be considered a parameter of the game. When
both SΛ and SΛc are known, we will write

S := (SΛ, SΛc) (2.1)

to denote their concatenation on all of Zd.

The above setting incorporates rather varied physical contexts. The spins
may be thought of as describing magnetic moments of atoms in a crystal,
displacement of atoms from their equilibrium positions or even orientation of
grains in nearly-crystalline granular materials.

To define the dynamics of spin systems, we will need to specify the ener-
getics. This is conveniently done by prescribing the Hamiltonian which is a
function on the spin-configuration space ΩZd that tells us how much energy
each spin configuration has. Of course, to have all quantities well defined we
need to fix a finite volume Λ ⊂ Zd and compute only the energy in Λ. The
most general formula we will ever need is
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HΛ(S) :=
∑

A⊂Zd finite
A∩Λ 6=∅

ΦA(S) (2.2)

where ΦA is a function that depends only on SA. To make everything
well defined, we require, e.g., that ΦA is translation invariant and that∑
A30 ‖ΦA‖∞ <∞. (The infinity norm may be replaced by some other norm;

in particular, should the need arise to talk about unbounded spins.) It is often
more convenient to write the above as a formal sum:

H(S) :=
∑
A

ΦA(S) (2.3)

with the above specific understanding whenever a precise definition is desired.
The energy is not sufficient on its own to define the statistical mechanics

of such spin systems; we also need to specify the a priori measure on the
spins. This will be achieved by prescribing a Borel measure µ0 on Ω (which
may or may not be finite). Before the interaction is “switched on,” the spin
configurations will be “distributed” according to the product measure, i.e.,
the a priori law of SΛ is

⊗
x∈Λ µ0(dSx). The full statistical-mechanical law

is then given by a Gibbs measure which (in finite volume) takes the general
form e−βH(S)

∏
x µ0(dSx); cf Sect. 2.3 for more details.

2.2 Examples

Here are a few examples of spin systems:

(1) O(n)-model : Here Ω := Sn−1 = {z ∈ Rn : |z|2 = 1} with µ0 := surface
measure on Sn−1. The Hamiltonian is

H(S) := −J
∑
〈x,y〉

Sx · Sy (2.4)

where the dot denotes the usual (Euclidean) dot-product in Rn and J ≥ 0.
(Note that this comes at no loss as the sign of J can be changed by reversing
the spins on the odd sublattice of Zd.)

Note that if A ∈ O(n) — i.e., A is an n-dimensional orthogonal matrix —
then

ASx ·ASy = Sx · Sy (2.5)

and so H(AS) = H(S). Since also µ0 ◦A−1 = µ0, the model possesses a global
rotation invariance — with respect to a simultaneous rotation of all spins.
(For n = 1 this reduces to the invariance under the flip +1↔ −1.)

Two instances of this model are known by other names: n = 2 is the rotor
model while n = 3 is the (classical) Heisenberg ferromagnet.

(2) Ising model : Formally, this is the O(1)-model. Explicitly, the spin vari-
ables σx take values in Ω := {−1,+1} with uniform a priori measure; the
Hamiltonian is
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H(σ) := −J
∑
〈x,y〉

σxσy (2.6)

Note that the energy is smaller when the spins at nearest neighbors align and
higher when they antialign. (A similar statement holds, of course, for all O(n)
models.) This is due to the choice of the sign J ≥ 0 which makes these models
ferromagnets.

(3) Potts model : This is a generalization of the Ising model beyond two spin
states. Explicitly, we fix q ∈ N and let σx take values in {1, . . . , q} (with a
uniform a priori measure). The Hamiltonian is

H(σ) := −J
∑
〈x,y〉

δσx,σy (2.7)

so the energy is −J when σx and σy “align” and zero otherwise. The q = 2
case is the Ising model and q = 1 may be related to bond percolation on Zd
(via the so called Fortuin-Kasteleyn representation leading to the so called
random-cluster model).

It turns out that the Hamiltonian (2.7) can be brought to the form (2.4).
Indeed, let Ω denote the set of q points uniformly spread on the unit sphere
in Rq−1; we may think of these as the vertices of a q-simplex (or a regular
q-hedron). The cases q = 2, 3, 4 are depicted in this figure:

More explicitly, the elements of Ω are vectors v̂α, α = 1, . . . , q, such that

v̂α · v̂β =

{
1, if α = β,

− 1
q−1 , otherwise.

(2.8)

The existence of such vectors can be proved by induction on q. Clearly, if Sx
corresponds to σx and Sy to σy, then

Sx · Sy =
q

q − 1
δσx,σy −

1
q − 1

(2.9)

and so the Potts Hamiltonian is to within an additive constant of

H(S) := −J̃
∑
〈x,y〉

Sx · Sy (2.10)
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with J̃ := J q−1
q . This form, sometimes referred to as tetrahedral representa-

tion, will be far more useful for our purposes than (2.7).

(4) Liquid-crystal model : There are many models that describe certain gran-
ular materials known to many of us from digital displays: liquid crystals. A
distinguished feature of such materials is the presence of orientational long-
range order where a majority of the grains align with one another despite the
fact that the system as a whole is rotationally invariant. One of the simplest
models capturing this phenomenon is as follows: Consider spins Sx ∈ Sn−1

with a uniform a priori measure. The Hamiltonian is

H(S) := −J
∑
〈x,y〉

(Sx · Sy)2 (2.11)

The interaction features global rotation invariance and the square takes care
of the fact that reflection of any spin does not change the energy (i.e., only
the orientation rather than the direction of the spin matters).

As for the Potts model, the Hamiltonian can again be brought to the form
reminiscent of the O(n)-model. Indeed, given a spin S ∈ Sn−1 with Cartesian
components S(α), α = 1, . . . , n, define an n× n matrix Q by

Qαβ := S(α)S(β) − 1
n
δαβ (2.12)

(The subtraction of the identity is rather arbitrary and more or less unnec-
essary; its goal is to achieve zero trace and thus reduce the number of inde-
pendent variables characterizing Q to n− 1; i.e., as many degrees of freedom
as S has.) As is easy to check, if Q↔ S and Q̃↔ S̃ are related via the above
formula, then

Tr(QQ̃) = (S · S̃)2 − 1
n

(2.13)

Since Q is symmetric, the trace evaluates to

Tr(QQ̃) =
∑
α,β

QαβQ̃αβ (2.14)

which is the canonical scalar product on n× n matrices. In this language the
Hamiltonian takes again the form we saw in the O(n) model.

At this point we pause to remark that all of the above Hamiltonians are
of the following rather general form:

H(S) = +
1
2

∑
x,y

Jx,y|Sx − Sy|2 (2.15)

where (Jxy) is a collection of suitable coupling constants and | · | denotes the
Euclidean norm in Rn. This is possible because, in all cases, the (correspond-
ing) norm of Sx is constant and so adding it to the Hamiltonian has no effect
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on the probability measure. The model thus obtained bears striking similarity
to our last example:

(5) Lattice Gaussian free field : Let Ω := R, µ0 := Lebesgue measure and
let P(x, y) be the transition kernel of a symmetric random walk on Zd;
i.e., P(x, y) = P(0, y − x) = P(0, x − y). In this case we will denote the
variables by φx; the Hamiltonian is

H(φ) :=
1
2

∑
x,y

P(x, y)(φy − φx)2 (2.16)

This can be rewritten as

H(φ) =
(
φ, (1− P)φ

)
L2(Zd)

=: E1−P(φ, φ) (2.17)

where experts on harmonic analysis of Markov chains will recognize E1−P(φ, φ)
to be the Dirichlet form associated with the generator 1 − P of the above
random walk. In the Gibbs measure, the law of the φx’s will be Gaussian with
grad-squared interactions; hence the name of the model.

The sole difference between (2.15) and (2.16) is that, unlike the φx’s, the
spins Sx are generally confined to a subset of a Euclidean space and/or their
a priori measure is not Lebesgue — which will ultimately mean their law is
not Gaussian. One purpose of this course is to show how this formal similarity
can nevertheless be exploited to provide information on the models (2.15).

2.3 Gibbs formalism

Now we are ready to describe the statistical-mechanical properties of the above
models for which we resort to the formalism of Gibbs-Boltzmann distributions.
First we define these in finite volume: Given a finite set Λ ⊂ Zd and a boundary
condition SΛc we define the Gibbs measure in Λ to be the probability measure
on ΩΛ given by

µ
(SΛc )
Λ,β (dSΛ) :=

e−βHΛ(S)

ZΛ,β(SΛc)

∏
x∈Λ

µ0(dSx) (2.18)

Here β ≥ 0 is the inverse temperature — in physics terms, β := 1
kBT

where kB

is the Boltzmann constant and T is the temperature measured in Kelvins —
and ZΛ,β(SΛc) is the normalization constant called the partition function.

To extend this concept to infinite volume we have two options:

(1) Consider all possible weak cluster points of the family {µ(SΛc )
Λ,β } as Λ ↑ Zd

(with the boundary condition possibly varying with Λ) and all convex
combinations thereof.
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(2) Identify a distinguishing property of Gibbs measures and use it to define
infinite volume objects directly.

While approach (1) is ultimately very useful in practical problems, option
(2) is more elegant at this level of generality. The requisite “distinguishing
property” is as follows:

Lemma 2.1 (DLR condition). Let Λ ⊂ ∆ ⊂ Zd be finite sets and let S∆c ∈
Ω∆

c
. Then (for µ(S∆c )

∆,β -a.e. SΛc),

µ
(S∆c )
∆,β

( · ∣∣SΛc

)
= µ

(SΛc )
Λ,β (·) (2.19)

In simple terms, conditioning the Gibbs measure in ∆ on the configuration
in ∆ \ Λ, we get the Gibbs measure in Λ with the corresponding boundary
condition.

This leads to:

Definition 2.2 (DLR Gibbs measures). A probability measure on ΩZd

is called an infinite volume Gibbs measure for interaction H and inverse
temperature β if for all finite Λ ⊂ Zd and µ-a.e. SΛc ,

µ
( · ∣∣SΛc

)
= µ

(SΛc )
Λ,β (·) (2.20)

where µ(SΛc )
Λ,β is defined using the Hamiltonian HΛ.

We will use Gβ to denote the set of all infinite volume Gibbs measures at
inverse temperature β (assuming the model is clear from the context).

Here are some straightforward, nonetheless important consequences of
these definitions:

(1) By Lemma 2.1, any weak cluster point of (µ(SΛc )
Λ,β ) belongs to Gβ .

(2) By the Backward Martingale Convergence Theorem, if Λn ↑ Zd and µ ∈
Gβ , then for µ-a.e. spin configuration S the sequence µ

(SΛc
n

)

Λn,β
has a weak

limit, which then belongs to Gβ .
(3) Gβ is a convex set (and is closed in the topology of weak convergence).

Moreover, µ ∈ Gβ is extremal in Gβ iff µ
(SΛc

n
)

Λn,β
w−→ µ for µ-almost every

spin configuration S.

Similarly direct is the proof of the following “continuity” property:

(4) Let Hn be a sequence of Hamiltonians converging — in the sup-norm
on the potentials ΦA — to Hamiltonian H, and let βn be a sequence
with βn → β < ∞. Let µn be the sequence of the corresponding Gibbs
measures. Then every (weak) cluster point of (µn) is an infinite-volume
Gibbs measure for the Hamiltonian H and inverse temperature β.
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Note that the fact that Gβ is closed and convex ensures that each element can
be written as a unique convex combination of extreme points (by the Krein-
Millman theorem). The DLR condition permits to extract the corresponding
decomposition probabilistically by conditioning on the σ-algebra of tail events.

Now we give a meaning to the terms that are frequently (though sometimes
vaguely) employed by physicists:

Definition 2.3 (Phase coexistence). We say that the model is at phase
coexistence (or undergoes a first-order phase transition) whenever the param-
eters are such that |Gβ | > 1.

The simplest example where this happens is the Ising model. Let

ΛL := {1, . . . , L}d (2.21)

and consider the Ising model in ΛL with all boundary spins set to +1. (This
is the so called plus boundary condition.) As a consequence of stochastic dom-
ination — which we will not discuss here — µ+

ΛL,β
tends weakly to a measure

µ+ as L→∞. Similarly, for the minus boundary condition, µ−ΛL,β
w−→ µ−. It

turns out that, in dimensions d ≥ 2 there exists βc(d) ∈ (0,∞) such that

β > βc(d) ⇒ µ+ 6= µ− (2.22)

i.e, the model is at phase coexistence, while for β < βc(d), the set of all infinite
volume Gibbs measures is a singleton — which means that the model is in
the uniqueness regime. One of our goals is to prove similar statements in all
of the models introduced above.

2.4 Torus measures

In the above, we always put a boundary condition in the complement of the
finite set Λ. However, it is sometimes convenient to consider other boundary
conditions. One possibility is to ignore the existence of Λc altogether — this
leads to the so called free boundary condition. Another possibility is to wrap Λ
into a graph without a boundary — typically a torus. This is the case of
periodic or torus boundary conditions.

Consider the torus TL, which we define as a graph with vertices (Z/LZ)d,
endowed with the corresponding (periodic) nearest-neighbor relation. For
nearest-neighbor interactions, the corresponding Hamiltonian is defined eas-
ily, but some care is needed for interactions that can be of arbitrary range.
If S ∈ ΩTL we define the torus Hamiltonian HL(S) by

HL(S) := HΛL(periodic extension of S to Zd) (2.23)

where we recall ΛL := {1, . . . , L}d. For H(S) := − 1
2

∑
x,y Jx,ySx · Sy we get
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HL(S) = −1
2

∑
x,y∈TL

J (L)
x,y Sx · Sy (2.24)

where J (L)
x,y are the periodized coupling constants

J (L)
x,y :=

∑
z∈Zd

Jx,y+Lz (2.25)

The Gibbs measure on ΩTL is then defined accordingly:

µL,β(dS) :=
e−βHL(S)

ZL,β

∏
x∈TL

µ0(dSx) (2.26)

where ZL,β is the torus partition function. The following holds:

Lemma 2.4. Every (weak) cluster point of (µL,β)L≥1 lies in Gβ.

Note that there is something to prove here because, due to (2.25), the
interaction depends on L.

2.5 Some thermodynamics

Statistical mechanics combines, in its historical development, molecular theory
with empirical thermodynamics. Many mathematically rigorous accounts of
statistical mechanics thus naturally start the exposition with the notion of the
free energy. We will need this notion only tangentially — it suffices to think
of the free energy as a cumulant generating function — in the proofs of phase
coexistence. The relevant statement is as follows:

Theorem 2.5. For x ∈ Zd let τx be the shift-by-x defined by (τxS)y := Sy−x.
Let g : ΩZd → R be a bounded, local function — i.e., one that depends only
on a finite number of spins — and recall that µL,β denote the torus Gibbs
measures. Then:

(1) The limit

f(h) := lim
L→∞

1
Ld

logEµL,β

{
exp
(
h
∑
x∈TL

g ◦ τx
)}

(2.27)

exists for all h ∈ R and is convex in h.
(2) If µ ∈ Gβ is translation invariant, then

∂f

∂h−

∣∣∣
h=0
≤ Eµ(g) ≤ ∂f

∂h+

∣∣∣
h=0

(2.28)

(3) There exist translation-invariant, ergodic measures µ± ∈ Gβ such that

Eµ±(g) =
∂f

∂h±

∣∣∣
h=0

(2.29)
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Proof of (1), main idea. For compact state-spaces and absolutely-summable
interactions, the existence of the limit follows by standard subadditivity argu-
ments. In fact, the limit will exist and will be the same even if we replace µL,β
in (2.27) by any sequence of Gibbs measures in ΛL with (even L-dependent)
boundary conditions. The convexity of f is a consequence of the Hölder in-
equality applied to the expectation in (2.27). ut
Proof of (2). Let µ ∈ Gβ be translation invariant and abbreviate

ZL(h) := Eµ

{
exp
(
h
∑
x∈ΛL

g ◦ τx
)}

(2.30)

Since logZL is convex in h (again, by Hölder) we have for any h > 0 that

logZL(h)− logZL(0) ≥ ∂

∂h
logZL(h)

∣∣∣
h=0

h

= hEµ

( ∑
x∈ΛL

g ◦ τx
)

= h|ΛL|Eµ(g)
(2.31)

Dividing by |ΛL|, passing to L → ∞ and using that f is independent of the
boundary condition, we get

f(h)− f(0) ≥ hEµ(g) (2.32)

Divide by h and let h ↓ 0 to get one half of (2.28). The other half is proved
analogously. ut
Proof of (3). Let Gβ,h be the set of Gibbs measures for the Hamiltonian
H − (h/β)

∑
x g ◦ τx. A variant of the proof of (2) shows that if µh ∈ Gβ,h is

translation-invariant, then

∂f

∂h−
≤ Eµh(g) ≤ ∂f

∂h+
(2.33)

In particular, if h > 0 we have

Eµh(g) ≥ ∂f

∂h−
≥
h>0

∂f

∂h+

∣∣∣
h=0

(2.34)

by the monotonicity of derivatives of convex functions. Taking h ↓ 0 and
extracting a weak limit from µh, we get a Gibbs measure µ+ ∈ Gβ such that

Eµ+(g) ≥ ∂f

∂h+

∣∣∣
h=0

(2.35)

(The expectations converge because g is a local — and thus continuous, in
the product topology — function.) Applying (2) we verify (2.29) for µ+.

The measure µ+ is translation invariant and so it remains to show that µ+

can actually be chosen ergodic. To that end let us first prove that
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1
|ΛL|

∑
x∈ΛL

g ◦ τx −→
L→∞

Eµ+(g), in µ+-probability (2.36)

The random variables on the left are bounded by the norm of g and have
expectation Eµ+(g) so it suffices to prove that the limsup is no larger than
the expectation. However, if that were not the case, we would have

µ+
( ∑
x∈ΛL

g ◦ τx >
(
Eµ+(g) + ε

)|ΛL|) > ε (2.37)

for some ε > 0 and some sequence of L’s. But then for all h > 0,

Eµ+

{
exp
(
h
∑
x∈ΛL

g ◦ τx
)}
≥ εe|ΛL|h[Eµ+ (g)+ε] (2.38)

In light of the independence of the limit in (1) on the measure we use — as
discussed in the sketch of the proof of (1) — this would imply

f(h) ≥ h(Eµ+(g) + ε
)

(2.39)

which cannot hold for all h > 0 if the right-derivative of f at h = 0 is to equal
Eµ+(g). Hence (2.36) holds.

By the Pointwise Ergodic Theorem, the convergence in (2.36) actually
occurs — and, by (2.36), the limit equals Eµ+(g) — for µ+-almost every spin
configuration. This implies that the same must be true for any measure in
the decomposition of µ+ into ergodic components. By classic theorems from
Gibbs-measure theory, every measure in this decomposition is also in Gβ and
so we can choose µ+ ergodic. ut

The above theorem is very useful for the proofs of phase coexistence. In-
deed, one can often prove some estimates that via (2.28) imply that f is not
differentiable at h = 0. Then one applies (2.29) to infer the existence of two
distinct, ergodic Gibbs measures saturating the bounds in (2.28). Examples
of this approach will be discussed throughout these notes.

2.6 Literature remarks

This section contains only the minimum necessary to understand the rest of
the course. For a comprehensive treatment of Gibbs-measure theory, we refer
to classic monographs by Ruelle [88], Israel [66], Simon [97] and Georgii [57].
Further general background on statistical mechanics of such systems can be
found in Ruelle’s “blue” book [89]. The acronym DLR derives from the initials
of Dobrushin and the team of Lanford & Ruelle who first introduced the idea
of conditional definition of infinite volume Gibbs measures; cf e.g. [32].

The proof of Theorem 2.5 touches upon the subject of large deviation the-
ory which provides a mathematical framework for many empirical principles
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underlying classical thermodynamics. The connection of course appears in
various disguises in the textbooks [66, 97, 57]; for expositions dealing more
exclusively with large-deviation theory we refer to the books by den Hollan-
der [64], Dembo and Zeitouni [29], and Deuschel and Stroock [30]. For the
Pointwise Ergodic Theorem and other facts from ergodic theory we refer to
the textbooks by, e.g., Krengel [73] and Petersen [86].

Stochastic domination and the FKG inequality — dealing with partial
ordering of spin configurations, functions thereof and thus also measures —
are discussed in, e.g., Georgii [57] or Grimmett [61]. The proof of (2.22) can
alternatively be based on Griffiths’ correlation inequalities (Griffiths [60]). The
phase coexistence in the Ising model at large β was first proved by Peierls via
a contour argument that now bears his name (see Griffiths [59]).

Concerning the historical origin of the various model systems; the O(n)
model goes back to Heisenberg (who introduced its quantum version), the Ising
model was introduced by Lenz and given to Ising as a thesis problem while the
Potts model was introduced by Domb and given to Potts as a thesis problem.
Ironically, the O(1)-model bears Ising’s name even though his conclusions
about it were quite wrong! Apparently, Potts was more deserving.

An excellent reference for mathematical physics of liquid crystals is the
monograph by de Gennes and Prost [56]; other, more combinatorial models
have been considered by Heilmann and Lieb [62] and Abraham and Heil-
mann [1]. The tetrahedral representation of the Potts model can be found
in Wu’s review article [106]; the matrix representation of the liquid-crystal
model is an observation of Angelescu and Zagrebnov [6]. Gradient fields — of
which the GFF is the simplest example — have enjoyed considerable atten-
tion in recent years; cf the review articles by Funaki [52], Velenik [104] and
Sheffield [92]. Another name for the GFF is harmonic crystal.

3 Infrared bound & Spin-wave condensation

The goal of this section is to elucidate the significance of the infrared bound —
postponing its proof and connection with reflection positivity until Section 5
— and the use thereof in the proofs of symmetry breaking via the mechanism
of spin-wave condensation. The presence, and absence, of symmetry breaking
in the O(n)-model with certain non-negative two-body interactions will be
linked to recurrence vs transience of a naturally induced random walk.

3.1 Random walk connections

Consider the model with the Hamiltonian

H = −1
2

∑
x,y

Jxy Sx · Sy (3.1)
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where the spins Sx are a priori independent and distributed according to a
measure µ0 which is supported in a compact set Ω ⊂ Rν . Assume that the
interaction constants satisfy the following requirements:

(I1) Jxx = 0 and Jx,y = J0,y−x
(I2)

∑
x |J0,x| <∞ and

∑
x J0,x = 1

i.e., the coupling constants are translation invariant, absolutely summable
and, for convenience, normalized to have unit strength. We will actually always
restrict our attention to the following specific examples:

• Nearest-neighbor interactions:

Jx,y =

{
1
2d , if |x− y| = 1,
0, otherwise.

(3.2)

• Yukawa potentials:
Jx,y = Ce−µ|x−y|1 (3.3)

with µ > 0 and C > 0.
• Power-law decaying potentials:

Jx,y =
C

|x− y|s1
(3.4)

with s > d and C > 0.

On top of these, we will also permit:

• Any convex combination of the three interactions above (with, of course,
positive coefficients).

Note that we are using the `1-distance (rather than the more natural `2-
distance). This is dictated by our methods of proof (see Lemma 5.5). Also
note that the Yukawa potential is in the class of Kac models where the cou-
pling constants take the form Jx,y = γdf(γ(x− y)) for some rapidly decaying
function f : Rd → [0,∞) with unit L1-norm.

A unifying feature of all three interactions is that Jxy ≥ 0 which allows us
to interpret the coupling constants as the transition probabilities of a random
walk on Zd. Explicitly, consider a Markov chain (Xn) on Zd with

Pz(Xn+1 = y|Xn = x) := Jxy (3.5)

where Pz is the law of the chain started at site z. Of particular interest will
be the question whether this random walk is recurrent or transient — i.e.,
whether a walk started at the origin returns there infinitely, or only finitely
many times. Here is a criterion to this matter:

Lemma 3.1. Let Ĵ(k) :=
∑
x J0,xeik·x, k ∈ [−π, π]d. Then (Xn) is transient

if and only if ∫
[−π,π]d

dk
(2π)d

1
1− Ĵ(k)

<∞ (3.6)
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Proof. Recall that a random walk is transient if and only if the first return time
to the origin, τ0 := inf{n > 0: Xn = 0}, is infinite with a positive probability,
i.e., P0(τ0 < ∞) < 1. By the formula E0N = [1 − P0(τ0 < ∞)]−1 — where
E0 is the expectation with respect to P0 — we thus get that transience is
equivalent E0N <∞. To compute the expectation, we note

1{Xn=0} =
∫

[−π,π]d

dk
(2π)d

eik·Xn (3.7)

which via E0eik·Xn = [E0eik·X1 ]n = [
∑
x J0,xeik·x]n = Ĵ(k)n implies

P0(Xn = 0) =
∫

[−π,π]d

dk
(2π)d

Ĵ(k)n (3.8)

Summing over n ≥ 0 yields

E0N =
∑
n≥0

∫
[−π,π]d

dk
(2π)d

Ĵ(k)n =
∫

[−π,π]d

dk
(2π)d

1
1− Ĵ(k)

(3.9)

whereby the claim follows. (A careful proof of the latter identity requires
justification of the exchange of the integral with the infinite sum; one has to
represent the LHS as a power series, perform the sum and justify limits via
appropriate convergence theorems.) ut

As to the above examples, we have:

• n.n. & Yukawa potentials: As k → 0,

1− Ĵ(k) ∼ C|k|2 (3.10)

and so (Xn) is transient iff d ≥ 3.
• Power-law potentials: Here as k → 0,

1− Ĵ(k) ∼ C


|k|s−d, if s < d+ 2,
|k|2 log 1

|k| , if s = d+ 2,

|k|2, if s > d+ 2.
(3.11)

Hence (Xn) is transient iff d ≥ 3 OR s < min{d+ 2, 2d}.
(Note that the walk with s < d+ 2 has a stable-law tail with index of stabil-
ity α = s−d.) A convex combination of the three coupling constants will lead
to a transient walk provided at least one of the interactions involved therein
(with non-zero coefficients) is transient.

3.2 Infrared bound

The principal claim of this section is that the finiteness of the integral in
(3.6) is sufficient for the existence of a symmetry-breaking phase transition in
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many spin systems of the kind (3.1). The reason is the connection of the above
random walk to the Gaussian free field (2.16) (GFF) with P(x, y) := Jxy.
Indeed, consider the field in a square box Λ with, say, zero boundary condition.
It turns out that

CovΛ(φx, φy) =
∑
n≥0

Px(Xn = y, τΛc = y) =: GΛ(x, y) (3.12)

where τΛc is the first exit time of the walk from Λ and GΛ denotes the so
called Green’s function in Λ. In particular, we have

VarΛ(φ0) = GΛ(0, 0) (3.13)

which, as we will see, tends to the integral (3.6) as Λ ↑ Zd. Since EΛ(φ0) = 0
due to our choice of the boundary condition, we conclude{

Law(φ0) : Λ ⊂ Zd
}

is tight iff (Xn) is transient (3.14)

Physicists actually prefer to think of this in terms of symmetry breaking:
Formally, the Hamiltonian of the GFF is invariant under the transformation
φx → φx + c, i.e., the model possesses a global spin-translation symmetry.
The symmetry group is not compact and so, to define the model even in finite
volume, the symmetry needs to be broken by boundary conditions. The exis-
tence of a limit law for φ0 can be interpreted as the survival of the symmetry
breaking in the thermodynamic limit — while non-existence means that the
invariance is restored in this limit.

Our goal is to show that qualitatively the same conclusions hold also for
the O(n)-spin system. Explicitly, we will prove:

Theorem 3.2. Let (Jxy) be one of the 3 interactions above. Then:

Global rotation symmetry
of O(n)-model is broken
at low temperatures

⇐⇒ Random walk driven
by (Jxy) is transient

We begin with the proof of the implication ⇐=. The principal tool will
be our next theorem which, for technical reasons, is formulated for torus
boundary conditions:

Theorem 3.3 (Infrared bound). Let L be an even integer and consider
the model (3.1) on torus TL with Gibbs measure µL,β. Suppose (Jxy) is one
of the three interactions above and let

cL,β(x) := EµL,β (S0 · Sx) (3.15)

Define ĉL,β(k) :=
∑
x∈TL cL,β(x)eik·x. Then

ĉL,β(k) ≤ ν

2β
1

1− Ĵ(k)
, k ∈ T?L \ {0} (3.16)
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where ν is the dimension of the spin vectors and T?L is the reciprocal torus,
T?L := { 2π

L (n1, . . . , nd) : ni = 0, . . . , L− 1}.
The proof will require developing the technique of reflection positivity and

is therefore postponed to Section 5.
Note that cL,β(x) is the spin-spin correlation function which, in light of

translation invariance of µL,β is a function of only the spatial displacement
of the two spins. The result has the following equivalent formulation: For
all (vx) ∈ CTL with

∑
x vx = 0,∑

x,y∈TL

vxv̄yEµL,β (S0 · Sx) ≤ ν

2β

∑
x,y∈TL

vxv̄yGL(x, y) (3.17)

where

GL(x, y) :=
1
Ld

∑
k∈T?L\{0}

eik·(x−y)

1− Ĵ(k)
(3.18)

Observe that the latter is the covariance matrix of the GFF on TL, projected
on the set of configurations with total integral zero (i.e., on the orthogonal
complement of constant functions). This is a meaningful object because while
the φx are not really well defined — due to the absence of the boundary
— the differences φy − φx are. (These differences are orthogonal to constant
functions, of course.) A short formulation of the infrared bound is thus:

The correlation of the spins in models (3.1) with one of the three interac-
tions above is dominated — as a matrix on the orthogonal complement of
constant functions in L2(TL) — by the covariance of a GFF.

This fact is often referred to as Gaussian domination.

3.3 Spin-wave condensation in O(n)-model

Having temporarily dispensed with the IRB, we will continue in our original
line of thought. Theorem 3.3 implies:

Corollary 3.4 (Spin-wave condensation). Suppose |Sx| = 1. Then

EµL,β

( ∣∣∣ 1
Ld

∑
x∈TL

Sx

∣∣∣2) ≥ 1− ν

2β
GL(0, 0) (3.19)

Proof. Let Ŝk :=
∑
x∈TL Sxeik·x be the Fourier coefficient of the decomposition

of (Sx) into the so called spin waves. The IRB yields

EµL,β |Ŝk|2 ≤
ν

2β
Ld

1− Ĵ(k)
, k ∈ T?L \ {0} (3.20)

On the other hand, Parseval’s identity along with |Sx| = 1 implies
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k∈T?L

|Ŝk|2 = Ld
∑
x∈TL

|Sx|2 = L2d (3.21)

The IRB makes no statement about Ŝ0 so we split it from the rest of the sum:

1
L2d
|Ŝ0|2 = 1− 1

L2d

∑
k∈T?L\{0}

|Ŝk|2 (3.22)

Now take expectation and apply (3.20):

EµL,β

( 1
L2d
|Ŝ0|2

)
≥ 1− ν

2β
1
Ld

∑
k∈T?L\{0}

1
1− Ĵ(k)

(3.23)

In light of (3.18), this is (3.19). ut
With (3.19) in the hand we can apply the same reasoning as for the GFF:

In the transient cases, GL(0, 0) converges to the integral (3.6) and so the right-
hand side has a finite limit. By taking β sufficiently large, the limit is actually
strictly positive. This in turn implies that the zero mode of the spin-wave
decomposition is macroscopically populated — very much like the free Bose
gas at Bose-Einstein condensation. Here is how we pull the corresponding
conclusions from TL onto Zd:

Theorem 3.5 (Phase coexistence in O(n)-model). Consider the O(n)-
model with n ≥ 1 and one of the three interactions above. Let

β0 :=
n

2

∫
[−π,π]d

dk
(2π)d

1
1− Ĵ(k)

(3.24)

Then for any β > β0 and any θ ∈ Sn−1 there exists µθ ∈ Gβ which is trans-
lation invariant and ergodic such that

1
|ΛL|

∑
x∈ΛL

Sx −→
L→∞

m? θ, µθ-a.s. (3.25)

for some m? = m?(β) > 0.

Note that (3.25) implies that the measures µθ are mutually singular with
respect to one another. Note also that β0 is finite — and the statement is not
vacuous — if and only if the associated random walk is transient.
Proof. Suppose, without loss of generality, that we are in the transient case,
i.e., β0 < ∞. The idea of the proof is quite simple: We use (3.19) to show
that the free energy is not differentiable in an appropriately-chosen external
field when this field is set to zero. Then we apply Theorem 2.5 to conclude
the existence of the required distinct, ergodic Gibbs measures.

Fix θ ∈ Sn−1 and define
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f(h) := lim
L→∞

1
Ld

logEµL,β
(
ehθ·Ŝ0

)
(3.26)

(The limit exists by Theorem 2.5.) We want to show that ∂
∂h+ f(0) > 0 (and

thus, by symmetry, ∂
∂h− f(0) < 0). Corollary 3.4 yields

EµL,β
(
L−2d|Ŝ0|2

) ≥ β − β0

β
+ o(1) (3.27)

Since |Ŝ0| ≤ Ld, for any 0 < ε < 1 we have

EµL,β
(
L−2d|Ŝ0|2

) ≤ ε+ µL,β
(|Ŝ0| ≥ εLd

)
(3.28)

and so
µL,β

(
|Ŝ0| ≥ 1

2
β − β0

β
Ld
)
≥ 1

2
β − β0

β
+ o(1) (3.29)

By the O(n) symmetry of the torus measures µL,β , the law of Ŝ0/L
d is rota-

tionally invariant with non-degenerate “radius” distribution. This implies

µL,β

(
θ · Ŝ0 ≥ 1

4
β − β0

β
Ld
)
≥ Cn β − β0

β
+ o(1) (3.30)

where C2 := 1/6 and, in general, Cn > 0 is an explicitly obtainable constant.
But this means that the exponent in the definition of f is at least 1

4
β−β0
β Ld

with uniformly positive probability and so

∂f

∂h+

∣∣∣
h=0
≥ β − β0

4β
(3.31)

Applying Theorem 2.5, for β > β0 and any θ ∈ S1 there exists a translation
invariant, ergodic Gibbs state µθ ∈ Gβ such that

Eµθ (θ · Sx) =
∂f

∂h+

∣∣∣
h=0

> 0 (3.32)

Next we need to show that the states µθ are actually distinct. The Ergodic
Theorem implies

1
|ΛL|

∑
x∈ΛL

Sx −→
L→∞

m?θ̃, µθ-a.s. (3.33)

where θ̃ ∈ Sn−1 and where m? > 0 is the magnitude of the derivative. Note
that, in light of (3.32) and the translation invariance of µθ,

m? θ · θ̃ =
∂f

∂h+

∣∣∣
h=0

(3.34)

The distinctness of µθ will follow once we prove (3.25), i.e., θ = θ̃. (This is, of
course, intuitively obvious because the way we constructed µθ indicates that
the law of Sx under µθ should be biased in the direction of θ.)
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Suppose θ̃ 6= θ. Find a rotation A ∈ O(n) such that Aθ̃ = θ. Let µ̃ be
the measure such that Eµ̃(f(S)) := Eµθ (f(AS)) for all local functions f .
(The existence of such a measure follows from the Kolmogorov Extension
Theorem.) Since both the Hamiltonian and the a priori measure are O(n)-
invariant, we have µ̃ ∈ Gβ . But (3.33) implies Eµθ (Sx) = m? θ̃, and so from
(3.34) we have

Eµ̃(θ · Sx) = Eµθ (θ ·ASx) = m? |θ|2 >
θ̃ 6=θ

m? θ · θ̃ =
∂f

∂h+

∣∣∣
h=0

(3.35)

As µ̃ is a Gibbs measure, this contradicts the general bounds in Theorem 2.5.
Hence, we must have θ = θ̃ after all. ut

The above statement and proof are formulated for the specific case of the
O(n) model. A similar proof will apply the existence of a symmetry-breaking
phase transition at low temperatures in the Ising, Potts and the liquid-crystal
models in all transient dimensions. As the Ising and Potts model have only a
discrete set of spin states, a symmetry-breaking transition will occur generally
in all dimensions d ≥ 2. However, this has to be proved by different methods
than those employed above (e.g., by invoking chessboard estimates).

Our next goal is to establish the complementary part of Theorem 3.2, i.e.,
the implication =⇒, which asserts the absence of symmetry breaking in the
recurrent cases. This argument predates the other direction by 20 years and
bears the name of its discoverers:

Theorem 3.6 (Mermin-Wagner theorem). Let n ≥ 2 and consider the
O(n)-model with non-negative interactions constants (Jx,y) satisfying the con-
ditions (I1,I2) from Sect. 3.1. Suppose the corresponding random walk is re-
current. Then every µ ∈ Gβ is invariant under any simultaneous (i.e., homo-
geneous) rotation of all spins.

Proof. We will show that the spins can be arbitrarily rotated at an arbitrary
small cost of the total energy. (This is why we need n ≥ 2.) We will have to
work with inhomogeneous rotations to achieve this, so let ϕx be a collection
of numbers with {x : ϕx 6= 0} finite and let iR be a unit element of the Lie
algebra o(n), i.e., eiRα is a rigid rotation of the unit sphere by angle α about a
particular axis. Let ωϕ be the map on configuration space acting on individual
spins via

ωϕ(Sx) := eiϕxRSx, x ∈ Zd (3.36)

To investigate the effect of such an inhomogeneous rotation on the Hamilto-
nian, note that

ωϕ(Sx) · ωϕ(Sy) = Sx · ei(ϕy−ϕx)RSy

= Sx · Sy − Sx · [1− ei(ϕy−ϕx)R]Sy
(3.37)

Hence the energy of a configuration in any block Λ ⊃ {x : ϕx 6= 0} trans-
forms as
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HΛ(ωϕ(S)) = HΛ(S) +4H (3.38)

where
4H :=

1
2

∑
x,y

Jxy Sx · [1− ei(ϕy−ϕx)R]Sy (3.39)

Using that 4H depends only on the portion of the spin configuration in Λ, a
simple application of the DLR condition shows that, for any local function f ,

Eµ(f ◦ ωϕ) = Eµ(fe−β4H) (3.40)

We will now let ϕx → α in a specific way that ensures 4H → 0; this will
permit us to extract the desired conclusion by limiting arguments.

First we will need to control the ϕ-dependence of 4H, so we expand the
exponential:

4H =− i
2

∑
x,y

Jxy (Sx ·RSy)(ϕy − ϕx)

+
1
4

∑
x,y

Jxy (RSx ·RSy)(ϕy − ϕx)2 + · · ·
(3.41)

In the first term we note that the self-adjointness of R — valid by the choice
of iR as an element of the Lie algebra — implies that Jxy (Sx · RSy) is sym-
metric under the exchange of x and y. Since (ϕy − ϕx) is antisymmetric and
finitely supported, the sum is zero. Estimating the remainder by the quadratic
term, we thus get

|4H| ≤ C
∑
x,y

Jxy(ϕy − ϕx)2 = 2CE1−J(ϕ,ϕ) (3.42)

for some constant C < ∞. Here we used that (RSx · RSy) is bounded and
recalled the definition of the Dirichlet form E1−J(·, ·) of the random walk
driven by the (Jx,y)’s.

Our next task will be to control the Dirichlet form under the condition
that ϕ tends to α in every finite set. To that end we fix 0 < R <∞ and set

ϕx := αPx(τ0 < τΛc
R

) (3.43)

This function equals α at x = 0, zero on Λc
R and is harmonic (with respect to

the generator of the random walk) in ΛR \ {0}. A calculation shows

E1−J(ϕ,ϕ) =
∑
x

ϕx
∑
y

Jx,y(ϕx − ϕy)

=
harmonic or
zero in {0}c

α
∑
y

J0,y(α− ϕy)
(3.44)

But the recurrence of the associated random walk implies that ϕy → α as R→
∞ for every y and since the Jxy’s are summable, the right-hand side tends to
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zero by the Dominated Convergence Theorem. Thus 4H → 0 as R→∞ and
so applying R→∞ to (3.40) with the choice (3.43) yields

Eµ(f ◦ ωα) = Eµ(f) (3.45)

for every continuous local function f . Thereby we conclude that µ is invariant
under simultaneous rotation of all spins. ut

3.4 Literature remarks

The content of the entire section is very classical. The Infrared Bound (and
its proof based on reflection positivity) was discovered in the seminal work of
Fröhlich, Simon and Spencer [50] from 1976 where it was also applied to prove
a phase transition in the O(n)-model (as well as the isotropic Heisenberg and
other models). Dyson, Lieb and Simon [38] showed how to adapt the method
to a (somewhat more limited) class of quantum spin models. The technique
was further developed and its applications extended in two papers of Fröhlich,
Israel, Lieb and Simon [46, 47].

Thanks to the representation (2.12), the proof of a long-range order in
the liquid-crystal model, derived by Angelescu and Zagrebnov [6], follows the
same route as for the O(n) model. However, the type of long-range order that
is concluded for the actual spin system is different. Indeed, let µ be a (weak)
cluster point of the torus states. Then

lim
L→∞

1
|ΛL|

∑
x∈ΛL

[
(S0 · Sx)2 − 1/n

]
> 0 (3.46)

with a positive probability under µ. (The limit exists by the Pointwise Ergodic
Theorem.) As µ is O(n)-invariant, if Sx were asymptotically independent of S0

for large x, we would expect Eµ(S0 ·Sx)2 → 1/n as |x| → ∞. Apparently, this is
not the case, the direction of Sx remains heavily correlated with the direction
of S0 for arbitrary x, i.e., there is an orientational long range order.

Whether or not the O(n) symmetry of the law of Sx is broken is an open
(and important) question. (The law of each individual Sx is invariant under
the flip Sx ↔ −Sx and so the magnetization is zero in all states.) As noted
before, other models of liquid crystals based on dimers on Z2 were consid-
ered by Heilmann and Lieb [62] and Abraham and Heilmann [1] prior to the
work [6]. There an orientational long-range order was proved using chess-
board estimates; the question of absence of complete translational ordering
(i.e., breakdown of translation invariance) remained open.

The Mermin-Wagner theorem goes back to 1966 [82]. Various interesting
mathematical treatments and extensions followed [34, 87, 49]; the argument
presented here is inspired by the exposition in Simon’s book [97]. A fully prob-
abilistic approach to this result, discovered by Dobrushin and Shlosman [34],
has the advantage that no regularity conditions need to be posed on the spin-
spin interaction provided it takes the form V (Sx − Sy); cf the recent paper
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by Ioffe, Shlosman and Velenik [65]. Finally, we remark that a beautiful and
more in-depth exposition of this material — including quantum systems —
was presented at the Prague School in 1996 by Bálint Tóth; his handwritten
lecture notes should be available online [103].

The basis of the Mermin-Wagner theorem, as well as its extension, is the
continuum nature of the spin space. Indeed, in the Ising (and also Potts)
model, a low-temperature symmetry breaking occurs even in some recurrent
dimensions; e.g., in d = 2 for the nearest-neighbor interactions. For what
determines the presence and absence of symmetry breaking in d = 1, see the
work of Aizenman, Chayes, Chayes and Newman [3] and references therein.

The connection with random walk is, of course, made possible by our choice
to work with non-negative couplings. However, most of the quantitative con-
clusions of this section hold without reference to random walks. For detailed
expositions of the theory of random walks we recommend the monographs by
Spitzer [100] and Lawler [76]; the material naturally appears in most graduate
probability textbooks (e.g., Durrett [36]).

It is interesting to note that even in d = 2, the nearest-neighbor O(n)
model exhibits a phase transition when n = 2. Namely, while the Gibbs state
is unique at all β <∞, for large β it exhibits power law decay of correlations
with β-dependent exponents. This regime is (again, after its discoverers) re-
ferred to as the Kosterlitz-Thouless phase [70]. A rigorous treatment exits,
based on renormalization theory and connection with Coulomb gas, thanks to
the pioneering work of Fröhlich and Spencer [51]; see also more recent papers
by Dimock and Hurd [31]. This is of much interest in light of recent discov-
ery of new conformally-invariant planar processes — the Schramm-Loewner
evolution (a.k.a. SLE). No such phenomenon is expected when n ≥ 3 though
there is a minor opposition to this (e.g., Patrasciou and Seiler [85]).

4 Infrared bound & Mean-field theory

In this chapter we will discuss how the infrared bound can be used to control
the error in so-called mean-field approximation. Unlike the spin-wave conden-
sation, which is concerned primarily with the infrared — i.e., small-k or large
spatial scale — content of the IRB, here will make the predominant use of
the finite-k — i.e., short range — part of the IRB. (Notwithstanding, the
finiteness of the integral (3.6) is still a prerequisite.)

4.1 Mean-field theory

Mean-field theory is a versatile approximation technique frequently used by
physicists to analyze realistic physical models. We begin by a simple derivation
that underscores the strengths, and the shortcomings, of this approach.

Consider a lattice spin model with the usual Hamiltonian (3.1). Pick a
translation invariant Gibbs measure µ ∈ Gβ and consider the expectation of
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the spin at the origin. The conditional definition of Gibbs measures (the DLR
condition) allows us to compute this expectation by first conditioning on all
spins outside the origin. Indeed, the one-spin Gibbs measure is determined by
the (one-spin) Hamiltonian

H{0}(S) = −
∑
x

J0,x S0 · Sx = −S0 ·
∑
x

J0,xSx = −S0 ·M0 (4.1)

where we introduced the shorthand

M0 :=
∑
x

J0,xSx (4.2)

Thus, by the DLR,

Eµ(S0) = Eµ

(
Eµ0(S0 e βS0·M0)
Eµ0(e βS0·M0)

)
(4.3)

where, abusing the notation slightly, the “inner” expectations are only over
S0 — M0 acts as a constant here — and the outer expectation is over the
spins in Zd \ {0}, and thus over M0.

So far the derivation has been completely rigorous but now comes an ad
hoc step: We suppose that the random variable M0 is strongly concentrated
about its average so that we can replace it by this average. Denoting

m := Eµ(S0) (4.4)

we thus get that m should be an approximate solution to

m =
Eµ0(S e βS·m)
Eµ0(e βS·m)

(4.5)

This is the so called mean-field equation for the magnetization.
Besides the unjustified step in the derivation, a serious practical problem

with (4.5) is that it often has multiple solutions. Indeed, for the set of points
(β,m) that obey this equation, one typically gets a picture like this:

β

m

β0
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Here, for β < β0, the only solution is m = 0 — this is always a solution
whenever Eµ0(S) = 0 — but at β = β0, two new branches appear and coexist
over an interval of β’s. It is clear that as β varies, the “physical” solution
must undergo some sort of jump, but it is not possible to tell where this jump
occurs on the basis of equation (4.5) alone. For that one has to go beyond the
heuristic derivation presented above.

As is standard, one comes up with an additional “selection” principle that
determines which solution is “physical.” At the level of classical thermody-
namics, this is done by postulating that the solution must minimize an ap-
propriate free energy function. In the choice of this function we will be guided
by the fact that there is a proper statistical-mechanical system for which the
above derivations can be explicitly validated by way of large-deviation theory.
This system is the corresponding model on the complete graph.

Consider a graph on N vertices with each pair of vertices joined by an undi-
rected edge. At each vertex x = 1, . . . , N we have a spin Sx with i.i.d. a priori
law µ0. Each spin interacts with every other spin; the interaction Hamiltonian
is given by

HN (S) := − 1
2N

N∑
x,y=1

Sx · Sy (4.6)

The normalization by 1/N ensures that the energy grows proportionally to N ;
the “2” in the denominator compensates for counting each pair of spins twice.

To derive the formula for the free energy function, consider first the cu-
mulant generating function of the measure µ0,

G(h) := logEµ0

(
eh·S

)
, h ∈ Rν (4.7)

Its Legendre transform,

S (m) := inf
h∈Rν

[
G(h)− h ·m] (4.8)

defines the entropy which, according to Cramér’s theorem, is the rate of large-
deviation decay in

µ0

( N∑
x=1

Sx ≈ mN
)

= e−NS (m)+o(N) (4.9)

(The function is infinite outside Conv(Ω), the convex hull of Ω and the set of
possible values of the magnetization.) Next we inject the energy into the mix
and look at the Gibbs measure. To describe what configurations dominate the
partition function, and thus the Gibbs measure, we identify the decay rate of
the probability

µ0

(
e
β

2N

PN
x,y=1 Sx·Sy1{Px Sx≈mN}

)
= e−NΦβ(m)+o(N) (4.10)

Here the rate function
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Φβ(m) := −β
2
|m|2 −S (m) (4.11)

is the desired mean-field free-energy function. free energy The physical solu-
tions are clearly obtained as the absolute minima of m 7→ Φβ(m). This is
actually completely consistent with (4.5):

Lemma 4.1. We have

∇Φβ(m) = 0 ⇔ m = ∇G(βm) (4.12)

Explicitly, the solutions to (4.5) are in bijection with the extreme points
of m 7→ Φβ(m).

Proof. This is a simple exercise on the Legendre transform. First we note that
∇Φβ(m) = 0 is equivalent to βm = −∇S (m). The convexity of G implies
that there is a unique hm such that S (m) = G(hm)−m·hm. Furthermore, hm
depends smoothly on m and we have ∇G(hm) = m. It is easy to check that
then ∇S (m) = −hm. Putting this together with our previous observations,
we get that

∇Φβ(m) = 0 ⇔ βm = hm ⇔ m = ∇G(βm) (4.13)

It remains to observe that m = ∇G(βm) is a concise way to write (4.5). ut
Lemma 4.1 shows that the appearance of multiple solutions to (4.5) coin-

cides with the emergence of secondary local maxima/minima.

4.2 Example: the Potts model

It is worthwhile to demonstrate the above general formalism on the explicit
example of the Potts model. We will work with the tetrahedral representation,
i.e., on the spin space Ω := {v̂1, . . . , v̂q}. The mean-field free energy function
is best expressed in the parametrization using the mole fractions, x1, . . . , xq,
which on the complete graph represent the fractions of all vertices with spins
pointing in the directions v̂1, . . . , v̂q, respectively. Clearly,

q∑
i=1

xi = 1 (4.14)

The corresponding magnetization vector is

m = x1v̂1 + · · ·+ xqv̂q. (4.15)

In this notation we have

Φβ(m) =
q∑

k=1

(
−β

2
x2
k + xk log xk

)
. (4.16)
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It is not surprising, but somewhat non-trivial to prove (see [9, Lemma 4.4])
that all interesting behavior of Φβ occurs “on-axes” that is, the absolute min-
imizers — and, in fact, all local extrema — of Φβ occur in the directions of
one of the spin states. (Which direction we choose is immaterial as they are
related by symmetry.) The following picture shows the qualitative look of the
function m 7→ Φβ(mv̂1) at four increasing values of β:

Here the function first starts convex and, as β increases, develops a secondary
local minimum (plus an inevitable local maximum). For β even larger, the
secondary minimum becomes degenerate with the one at m = 0 and eventually
takes over the role of the global minimum. With these new distinctions, the
plot of solutions to the mean-field equation for the magnetization becomes:

β

m

local min

local max

βt

Note that the local maximum eventually merges with the local minimum at
zero — at which point zero becomes a local maximum. The jump in the
position of the global minimum occurs at some βt, which is strictly larger
than the point β0 where the secondary minima/maxima first appear.

4.3 Approximation theorem & applications

The goal of this section is to show that, with the help of the IRB, the conclu-
sions of mean-field theory can be given a quantitative form. Throughout we
restrict ourselves to interactions of the form (3.1) and the coupling constants
being one of the 3 types above.
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Definition 4.2. We say that a measure µ ∈ Gβ is a torus state if it is either
a (weak) cluster point of measures µL,β or can be obtained from such cluster
points by perturbing either β or µ0 or the inner product between spins.

The reason for the second half of this definition is that the “operations”
thus specified preserve the validity of the IRB. For such states we prove:

Theorem 4.3. Suppose |Sx| ≤ 1. Let µ ∈ Gβ be a translation-invariant,
ergodic, torus state and define

m? := Eµ(S0). (4.17)

Let Φβ be the mean-field free energy function corresponding to this model.
Then

Φβ(m?) ≤ inf
m∈Conv(Ω)

Φβ(m) +
νβ

2
Id (4.18)

where

Id :=
∫

[−π,π]d

dk
(2π)d

Ĵ(k)2

1− Ĵ(k)
(4.19)

Note that the integral is finite iff the random walk corresponding to (Jxy)
is transient. However, unlike for Green’s function, Id represents the expected
number of returns back to the origin after the walk has left the origin. Thus,
in strongly transient situations one should expect that Id is fairly small. And,
indeed, we have the following asymptotics:

• n.n. interactions:
Id ∼ 1

2d
, d→∞. (4.20)

• Yukawa potentials: If d ≥ 3,

Id ≤ Cµd. (4.21)

• Power-law potentials: If d ≥ 3 OR s < min{d+ 2, 2d},

Id ≤ C(s− d). (4.22)

Of course, one is able to make the integral small for interactions with power
law tails even when s is not too close to d: Just take a mixture of Yukawa and
power-law with positive coefficients and let µ be sufficiently small. Within the
class of above models, we can rephrase Theorem 4.3 as:

Physical magnetizations nearly minimize
the mean-field free energy function

This is justified because, as it turns out, all relevant magnetizations can
be achieved in ergodic torus states. Let us again demonstrate the conclusion
on the example of the q-state Potts model:
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Theorem 4.4. Let q ≥ 3 and suppose that Id � 1/q. Then there is βt ∈ (0,∞)
and translation-invariant, ergodic measures ν0, ν1, . . . νq ∈ Gβt such that

|Eν0(Sx)| � 1 (4.23)

and
Eνj (Sx) = m? v̂j , j = 1, . . . , q, (4.24)

where m? ≥ 1/2. In particular, the 3-state Potts model undergoes a first-order
phase transition provided the spatial dimension is sufficiently large.

This result is pretty much the consequence of the pictures in Sect. 4.1. In-
deed, including the error bound (4.18), the physical magnetization is confined
to the shaded regions:

Thus, once the error is smaller than the “hump” separating the two local
minima, there is no way that the physical magnetization can change continu-
ously as the temperature varies. This is seen even more dramatically once we
mark directly into the mean-field magnetization plot the set of values of the
magnetization allowed by the inequality (4.18):

β

m

βt

(To emphasize the effect, the plots are done for the q = 10 state Potts model
rather than the most interesting case of q = 3.) Notice that the transition
is bound to occur rather sharply and very near the mean-field value of βt;
explicit error bounds can be derived, but there is no need to state them here.

An additional argument is actually needed to provide a full proof of (4.24).
Indeed, we claim that the symmetry breaking happens exactly in the direction
of one of the spin states while the approximation by mean-field theory only
guarantees that the expectation is near one of these directions.
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Proof of (4.24), sketch. Consider an ergodic Gibbs state µ with m? :=
Eµ(Sx) 6= 0 at inverse temperature β. Given a sample σ = (σx) from µ,
at each unordered pair 〈x, y〉 of vertices from Zd let

ηxy := 1{σx=σy}Zxy (4.25)

where (Zxy) are a priori independent, zero-one valued random variables with

P(Zxy = 1) = 1− P(Zxy = 0) := 1− e−βJxy (4.26)

This defines a coupling of µ with a random cluster measure — the distribution
of the η’s — which, by the fact that the extension comes from i.i.d. random
variables, is also ergodic.

When m? 6= 0, the η-marginal features a unique infinite connected compo-
nent of edges 〈x, y〉 with ηxy = 1 whose (site) density is proportional to |m?|.
By the construction, the spin variables take a (constant) value on each con-
nected component, which is a.s. unique (by ergodicity) on the infinite one and
uniform on the finite ones. Thus, the bias of the spin distribution comes only
from the infinite component and so it points in one of the q spin directions.
The claim thus follows. ut

4.4 Ideas from the proofs

A fundamental technical ingredient of the proof is again provided by the IRB,
so throughout we will assume one of the three interactions discussed above.
However, we will need the following enhanced version:

Lemma 4.5 (IRB enhanced). Suppose the random walk driven by the (Jxy)
is transient and let G(x, y) denote the corresponding Green’s function on Zd.
Let µ ∈ Gβ be a translation-invariant, ergodic, torus state and let us de-
note m? := Eµ(S0). Then for all (vx)x∈Zd ∈ CZd with finite support,∑

x,y

vxv̄y Eµ
(
(Sx −m?) · (Sy −m?)

) ≤ ν

2β

∑
x,y

vxv̄yG(x, y). (4.27)

Proof. The IRB on torus survives weak limits and so we know that, for ev-
ery (wx) with finite support and

∑
x wx = 0,∑

x,y

wxw̄y Eµ
(
Sx · Sy

) ≤ ν

2β

∑
x,y

wxw̄yG(x, y) (4.28)

where

G(x, y) := lim
L→∞

GL(x, y) =
∫

[−π,π]d

dk
(2π)d

eik·(x−y)

1− Ĵ(k)
(4.29)

What separates (4.28) from (4.27) are the m? terms in the expectation on
the left and the absence of the restriction on the sum of vx. The former is
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remedied easily; indeed, the restriction
∑
x wx = 0 allows us to put the m?

terms at no additional cost.
To address the latter issue, suppose (vx) has finite support but let now∑
x vx be arbitrary. Let ΛL ⊂ Zd contain the support of (vx). To convert to

the previous argument, let

aL :=
1
|ΛL|

∑
x

vx (4.30)

and
wx := vx − aL1ΛL(x) (4.31)

Note that
∑
x wx = 0. Then∑

x,y

wxw̄y Eµ
(
(Sx−m?) ·(Sy−m?)

)
=
∑
x,y

vxv̄y Eµ
(
(Sx−m?) ·(Sy−m?)

)
− 2Eµ

([
aL

∑
x∈ΛL

(Sx −m?)
]
·
[∑
y

vy(Sy −m?)
])

+ Eµ

(∣∣∣aL ∑
x∈ΛL

(Sx −m?)
∣∣∣2) (4.32)

But ergodicity of µ implies that

Eµ

(∣∣∣ 1
|ΛL|

∑
x∈ΛL

(Sx −m?)
∣∣∣2) −→

L→∞
0 (4.33)

and so, by Cauchy-Schwarz, the last two terms in (4.32) converge to zero
as L → ∞. Now apply (4.28) and pass to the limit L → ∞ there. A direct
calculation (and the Riemann-Lebesgue lemma) shows that

1
|ΛL|

∑
x∈ΛL

G(x, y) −→
L→∞

0 (4.34)

and so the terms involving aL on the right-hand side of (4.27) suffer a similar
fate. This means that the left-hand sides of (4.27–4.28) tend to each other,
and same for the right-hand sides. The desired bound (4.27) is thus a limiting
version of (4.28). ut

Clearly, the restriction to finitely-supported (vx) is not necessary; instead,
one can consider completions of this set in various reasonable norms. The
above formulation has an immediate, but rather fundamental, consequence:

Corollary 4.6 (Key estimate). Let µ ∈ Gβ be an ergodic torus state and
let m? := Eµ(Sx). Then we have

Eµ

( ∣∣∣∑
x

J0,x Sx −m?

∣∣∣2) ≤ ν

2β
Id. (4.35)
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Proof. Choose vx := J0,x and note that with this choice the left-hand side
of (4.27) becomes the left-hand side of (4.35). As to the right-hand side of
(4.27), we get

ν

2β

∑
x,y

∫
[−π,π]d

dk
(2π)d

eik·(x−y)

1− Ĵ(k)
J0,xJ0,y (4.36)

Recalling the definition of Ĵ(k), this yields the desired error term. ut
This corollary provides a justification of the ad hoc step in the derivation

of mean-field theory: Indeed, once Id is small, the variance of M0 is small and
so M0 is with high probability close to its average.

The rest of the proof of Theorem 4.3 is based on inequalities linking the
mean-field free energy with the actual magnetization of the system; this part
of the proof works for general non-negative coupling constants satisfying con-
ditions (I1-I2) from Sect. 3.1. The relevant observations are as follows:

Proposition 4.7. Let µ ∈ Gβ be translation invariant and let m? := Eµ(Sx).
(1) We have

Φβ(m?) ≤ inf
m∈Conv(Ω)

Φβ(m) +
β

2

∑
x∈Zd

J0,x

[
Eµ(S0 · Sx)− |m?|2

]
(4.37)

(2) Suppose also J0,x ≥ 0 and |Sx| ≤ 1. Then∑
x∈Zd

J0,x

[
Eµ(S0 · Sx)− |m?|2

] ≤ β Eµ( ∣∣∣∑
x

J0,x Sx −m?

∣∣∣2) (4.38)

Proof of (1). The proof is based on convexity inequalities linking the mean-
field free energy and the characteristics of the actual system. Fix Λ ⊂ Zd and
let ZΛ be the partition function in Λ. A standard example of such convexity
inequality is

ZΛ ≥ exp
{
−|Λ| inf

m∈Conv(Ω)
Φβ(m) +O(∂Λ)

}
. (4.39)

To prove this we pick m in the (relative) interior of Conv(Ω) and define a
tilted measure

µh(dS) := eh·S−G(h)µ0(dS) (4.40)

with h adjusted so that Eµh(S) = m. (Such h exists for each m in the relative
interior of Conv(Ω), by standard arguments for the Legendre transform.) We
then get

ZΛ = E⊗µh
(
e−βHΛ(S)−h·MΛ+|Λ|G(h)

)
(4.41)

where we introduced the shorthand

MΛ :=
∑
x∈Λ

Sx (4.42)
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Now apply Jensen to get the expectation into the exponent; the product nature
of ⊗µh implies that E⊗µh(HΛ(S)) = −|Λ| 12 |m|2 +O(∂Λ) and so (4.39) follows
by noting that G(h)−h ·m = S (m) due to our choice of h, and subsequently
optimizing over all admissible m.

Now fix a general h ∈ Rν and let µ be a Gibbs measure as specified in the
claim. First we note that the DLR condition implies

Eµ(e+βHΛ+h·MΛZΛ) = E⊗µ0

(
eh·MΛ

)
= e|Λ|G(h) (4.43)

The ZΛ term can be bounded away via (4.39); Jensen’s inequality then gives

β Eµ(HΛ) + |Λ|h ·m? − |Λ| inf
m∈Conv(Ω)

Φβ(m) +O(∂Λ) ≤ |Λ|G(h) (4.44)

Next, translation invariance of µ yields

Eµ(HΛ) = −|Λ|1
2

∑
x

J0,xEµ(S0 · Sx) +O(∂Λ) (4.45)

and so dividing by Λ and taking Λ ↑ Zd along cubes gets us

−β
2

∑
x

J0,xEµ(S0 · Sx) − inf
m∈Conv(Ω)

Φβ(m) ≤ G(h)− h ·m? (4.46)

Optimizing over h turns the right-hand side into S (m?). Adding 1
2 |m?|2 on

both sides and invoking (4.11) now proves the claim. ut
Proof of (2). Let us return to the notation M0 :=

∑
x J0,xSx. The left-hand

side of (4.38) can then be written as Eµ(S0 ·M0)− |m?|2. Since J0,0 = 0, an
application of the DLR condition yields

Eµ(M0 · S0) = Eµ
(
M0 · ∇G(βM0)

)
(4.47)

The DLR condition also implies

m? = Eµ(M0) = Eµ[∇G(βM0)] (4.48)

and so we have

Eµ(S0 ·M0)− |m?|2

= Eµ

(
(M0 −m?) ·

(∇G(βM0)−∇G(βm?)
))

(4.49)

But |Sx| ≤ 1 implies that the Hessian of G is dominated by the identity,
∇∇G(m) ≤ id at any m ∈ Conv(Ω) — assuming Jx,y ≥ 0 — and so

(M0 −m?) ·
(∇G(βM0)−∇G(βm?)

) ≤ β|M0 −m?|2 (4.50)

by the Mean-Value Theorem. Taking expectations proves (4.38). ut
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Theorem 4.3 now follows by combining Proposition 4.7 with Corollary 4.6.
Interestingly, (4.37) gives∑

x∈Zd
J0,xEµ(S0 · Sx) ≥ |m?|2 (4.51)

i.e., the actual energy density always exceeds the mean-field energy density.

4.5 Literature remarks

The inception of mean-field theory goes back to Curie [28] and Weiss [105].
One of the early connections to the models on the complete graph appears in
Ellis’ textbook on large-deviation theory [40]. Most of this section is based on
the papers of Biskup and Chayes [9] and Biskup, Chayes and Crawford [10].
The Key Estimate had been used before in some specific cases; e.g., for the
Ising model in the paper by Bricmont, Kesten, Lebowitz and Schonmann [22]
and for the q-state Potts model in the paper by Kesten and Schonmann [69].
Both these works deal with the limit of the magnetization as d→∞; notwith-
standing, no conclusions were extracted for the presence of first-order phase
transitions in finite-dimensional systems.

The first-order phase transition in the q-state Potts model has first been
proved by Kotecký and Shlosman [69] but the technique works only for ex-
tremely large q. The case of small q has been open. The upshot of the present
technique is that it replaces q by d or interaction range in its role of a “large
parameter.” The price to pay is the lack of explicit control over symmetry:
We expect that the measure ν0 in Theorem 4.4 is actually “disordered” and
Eν0(Sx) = 0. This would follow if we knew that the magnetization in the
Potts model can be discontinuous only at the percolation threshold — for the
Ising model this was recently proved by Bodineau [19] — but this is so far
known only in d = 2 (or for q very large). The coupling in the proof of (4.24)
is due to Edwards and Sokal [39]; for further properties see Grimmett [61] or
Biskup, Borgs, Chayes and Kotecky [8]. The uniqueness of the infinite con-
nected component is well known in the nearest-neighbor case from a beautiful
argument of Burton and Keane [23]; for the long-range models it has to be
supplied by a percolation bound dominating the number of edges connecting
a box of side L to its complement.

The requirement Id � 1/q is actually an embarrassment of the theory as
the transition should become more pronounced, and thus easier to control,
with increasing q. Thus, even for nearest-neighbor case, we still do not have a
dimension in which all q ≥ 3 state Potts models go first order. (It is expected
that this happens already in d = 3.) The restriction to transient dimensions
is actually not absolutely necessary; cf recent work Chayes [24].

It is natural to ask whether one can say anything about the continuum-q
extension of the Potts model, the random cluster model; see Grimmett [61].
Unfortunately, the main condition for proving the IRB, reflection positivity,
holds if and only if q is integer (Biskup [7]).
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Another model for which this method yields a novel result is the liquid-
crystal model discussed in Sect. 2.2. Here Angelescu and Zagrebnov [6] proved
that symmetry breaking (for the order parameter maxαEµ[S(α)

x ]2−1/n) occurs
at low temperatures by exhibiting spin-wave condensation; cf remarks at the
end of Chapter 3. In [9] it has been shown that, for n ≥ 3, the order parameter
undergoes a discontinuous transition at intermediate temperatures; van Enter
and Shlosman [41, 42] later proved such transitions in highly non-linear cases.
Similar “mean-field driven” first order phase transitions have also been proved
for the cubic model [9] and the Blume-Capel model [10].

Once the general theory is in place, the proof of a phase transition for a
specific model boils down to the analysis of the mean-field free energy function.
While in principle always doable, in practice this may be quite a challenge
even in some relatively simple examples. See, e.g., [9, Sect. 4.4] what this
requires in the context of the liquid-crystal model.

Finally, we note that the IRB has been connected to mean-field theory be-
fore; namely, in the work of Aizenman [2] (cf also Fröhlich [45] and Sokal [98])
in the context of lattice field theories and that of Aizenman and Fernández
in the context of Ising systems in either high spatial dimensions [4] or for
spread-out interactions [5]. A representative result from these papers is that
the critical exponents in the Ising model take mean-field values above 4 di-
mensions. The IRB enters as a tool to derive a one-way bound on the critical
exponents. Unfortunately, the full conclusions are restricted to interactions
that are reflection positive; a non-trivial extension was obtained recently by
Sakai [90] who proved the IRB — and the corresponding conclusions about
the critical exponents — directly via a version of the lace expansion.

5 Reflection positivity

In the last two sections we have made extensive use of the infrared bound.
Now is the time to prove it. This will require introducing the technique of
reflection positivity which, somewhat undesirably, links long-range correlation
properties of the spin models under consideration to the explicit structure of
the underlying graph. Apart from the infrared bound, reflection positivity
yields also the so called chessboard estimate which we will use extensively in
Chapter 6.

5.1 Reflection positive measures

We begin by introducing the basic setup for the definition of reflection posi-
tivity: Consider the torus TL of side L with L even. The torus has a natural
reflection symmetry along planes orthogonal to one of the lattice directions.
(For that purpose we may think of TL as embedded into a continuum torus.)
The corresponding “plane of reflection” P has two components, one at the
“front” of the torus and the other at the “back.” The plane either passes
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through the sites of TL or bisects bonds; we speak of reflections through sites
or through bonds, respectively. The plane splits the torus into two halves, T+

L

and T−L , which are disjoint for reflections through bonds and obey T+
L∩T−L = P

for reflections through sites.
Let A± denote the set of all functions f : ΩTL → R that depend only on

the spins in T±L . Let ϑ denote the reflection operator, ϑ : A± → A∓, which
acts on spins via

ϑ(Sx) := Sϑ(x) (5.1)

Clearly, ϑ is a morphism of algebra A+ onto A− and ϑ2 = id.

Definition 5.1 (Reflection positivity). A measure µ on ΩTL is reflection
positive (RP) with respect to ϑ if

(1) For all f, g ∈ A+,
Eµ(f ϑg) = Eµ(g ϑf) (5.2)

(2) For all f ∈ A+,
Eµ(f ϑf) ≥ 0 (5.3)

Note that the above implies that f, g 7→ Eµ(f ϑg) is a positive-semindefinite
symmetric bilinear form. Condition (5.2) is usually automatically true — it
requires only ϑ-invariance of µ — so it is the second condition that makes this
concept non-trivial (hence also the name). Here we first note that the concept
is not entirely vacuous:

Lemma 5.2. The product measure, µ =
⊗
µ0, is RP with respect to all re-

flections.

Proof. First consider reflections through bonds. Let f, g ∈ A+. Since T+
L∩T−L =

∅, the random variables f and ϑg are independent under µ. Hence,

Eµ(f ϑg) = Eµ(f)Eµ(ϑg) = Eµ(f)Eµ(g) (5.4)

whereby both conditions in Definition 5.1 follow.
For reflections through sites, we note that f and ϑg are independent con-

ditional on SP . Invoking the reflection symmetry of µ(·|SP ), we get

Eµ(f ϑg|SP ) = Eµ(f |SP )Eµ(ϑg|SP ) = Eµ(f |SP )Eµ(g|SP ) (5.5)

Again the conditions of RP follow by inspection. ut
A fundamental consequence of reflection positivity is the Cauchy-Schwarz

inequality [
Eµ(f ϑg)

]2 ≤ Eµ(f ϑf)Eµ(g ϑg) (5.6)

Here is an enhanced, but extremely useful, version of this inequality:
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Lemma 5.3. Let µ be RP with respect to ϑ and let A,B,Cα, Dα ∈ A+. Then[
Eµ(eA+ϑB+

P
α Cα ϑDα)

]2
≤ [Eµ(eA+ϑA+

P
α Cα ϑCα)

] [
Eµ(eB+ϑB+

P
αDα ϑDα)

]
(5.7)

Proof. Clearly, in the absence of the Cα ϑDα terms, this simply reduces to
(5.6). To include these terms we use expansion into Taylor series:

Eµ(eA+ϑB+
P
α Cα ϑDα)

=
∑
n≥0

1
n!

∑
α1,...,αn

Eµ
(

(eACα1 . . . Cαn)ϑ(eBDα1 . . . Dαn)
)

(5.8)

Now we apply (5.6) to the expectation on the right-hand side and then one
more time to the resulting sum:

Eµ(eA+ϑB+
P
α Cα ϑDα)

≤
∑
n≥0

1
n!

∑
α1,...,αn

[
Eµ
(

(eACα1 . . . Cαn)ϑ(eACα1 . . . Cαn)
)1/2

× Eµ
(

(eBDα1 . . . Dαn)ϑ(eBDα1 . . . Dαn)
)1/2]

≤
(∑
n≥0

1
n!

∑
α1,...,αn

Eµ
(

(eACα1 . . . Cαn)ϑ(eACα1 . . . Cαn)
))1/2

×
(∑
n≥0

1
n!

∑
α1,...,αn

Eµ
(

(eBDα1 . . . Dαn)ϑ(eBDα1 . . . Dαn)
))1/2

(5.9)
Resummation via (5.8) now yields the desired expression. ut

The argument we just saw yields a fundamental criterion for proving re-
flection positivity:

Corollary 5.4. Fix a plane of reflection P and let ϑ be the corresponding
reflection operator. Suppose that the torus Hamiltonian takes the form

−HL = A+ ϑA+
∑
α

Cα ϑCα (5.10)

with A,Cα ∈ A+. Then for all β ≥ 0 the torus Gibbs measure, µL,β, is RP
with respect to ϑ.

Proof. The proof is a simple modification of the argument in Lemma 5.3: Fix
f, g ∈ A+. Expansion of the exponential term in

∑
α Cα ϑCα yields
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EµL,β (fϑg) =
1
ZL

E⊗µ0

(
f(ϑg) e β(A+ϑA+

P
α Cα ϑCα)

)
=

1
ZL

∑
n≥0

1
n!

∑
α1,...,αn

E⊗µ0

(
(fe βACα1 · · ·Cαn)ϑ(ge βACα1 · · ·Cαn)

)
(5.11)

The conditions of RP for µL,β are now direct consequences of the fact that
the product measure,

⊗
µ0, is itself RP (cf Lemma 5.3). ut

Now we are ready to check that all 3 interactions that we focused our
attention on in previous lectures are of the form in Lemma 5.3 and thus lead
to RP torus Gibbs measures:

Lemma 5.5. For any plane P , the n.n. (ferromagnet) interaction, Yukawa
potentials and the power-law decaying potentials, the torus Hamiltonian can
be written in the form (5.10) for some A,Cα ∈ A+.

Proof. We focus on reflections through bonds; the case of reflections through
sites is analogous. Given P , the terms in the Hamiltonian can naturally be
decomposed into three groups: those between the sites in T+

L , those between
the sites in T−L and those involving both halves of the torus:

−HL =
1
2

∑
x,y∈T+

L

J (L)
xy Sx · Sy

︸ ︷︷ ︸
A

+
1
2

∑
x,y∈T−L

J (L)
xy Sx · Sy

︸ ︷︷ ︸
ϑA

+
d∑
i=1

∑
x∈T+

L

y∈T−L

J (L)
xy S(i)

x S(i)
y

︸ ︷︷ ︸
Ri

(5.12)
where we used the reflection symmetry of the J

(L)
xy to absorb the 1/2 into

the sum at the cost of confining x to T+
L and y to T−L . The first two terms

indentify A and ϑA; it remains to show that the Ri-term can be written
as
∑
α Cα ϑCα. We proceed on a case-by-case basis:

Nearest-neighbor interactions: Here

Ri =
1
2d

∑
〈x,y〉
x∈T+

L

y∈T−L

S(i)
x S(i)

y (5.13)

which is of the desired form since Sy = ϑ(Sx) whenever x and y contribute to
the above sum.

Yukawa potentials: We will only prove this in d = 1; the higher dimensions
are harder but similar. Note that if P passes through the origin and x ∈ T+

L

and y ∈ T−L ,
J (L)
xy = C

∑
n≥0

e−µ(|x|+|y|+nL) (5.14)
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Hence,
Ri = C

∑
n≥0

e−µnL
(∑
x∈T+

L

e−µ|x|S(i)
x

)(∑
y∈T−L

e−µ|y|S(i)
y

)
(5.15)

which is of the desired form.
Power-law potentials: Here we note

1
|x− y|s1

=
∫ ∞

0

dµµs−1e−µ|x−y|1 (5.16)

which reduces the problem to the Yukawa case. ut
We remark that Corollary 5.3 allows a minor generalization: if a torus

measure µ is RP, and a torus Hamiltonian HL takes the form (5.10), then also
the measure e−βHLdµ is RP. This may seem to be a useful tool for constructing
RP measures; unfortunately, we do not know any natural measures other than
product measures for which RP can be shown directly.

5.2 Gaussian domination

Now we are in a position to start proving the infrared bound. First we intro-
duce its integral version known under the name Gaussian domination:

Theorem 5.6 (Gaussian domination). Let (Jxy) be one of the three inter-
actions above. Fix β ≥ 0 and for h = (hx)x∈TL ∈ (Rν)TL define

ZL(h) := EN
µ0

(
exp
{
−β

∑
x,y∈TL

J (L)
xy |Sx − Sy + hx − hy|2

})
(5.17)

Then
ZL(h) ≤ ZL(0) (5.18)

Proof. Let HL denote the sum in the exponent. It is easy to check that HL is
of the form

−HL = A+ ϑB +
∑
α

Cα ϑDα (5.19)

Indeed, for h ≡ 0 this is simply Lemma 5.5 as the diagonal terms can always
by absorbed into the a priori measure. To get h 6≡ 0 we replace Sx by Sx+hx
at each x. This changes the meaning of the original terms A and Cα — and
makes them different on the two halves of the torus — but preserves the
overall structure of the expression.

A fundamental ingredient is provided by Lemma 5.3 which yields

ZL(h)2 ≤ ZL(h+)ZL(h−) (5.20)

where h+ := h on T+
L and h+ := ϑh on T−L , and similarly for h−. Now let us

show how this yields (5.18): Noting that ZL(h)→ 0 whenever any component
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of h tends to ±∞, the maximum of ZL(h) is achieved at some finite h. Let h?

be a maximizer for which

N(h) := #
{〈x, y〉 : hx 6= hy

}
(5.21)

is the smallest among all maximizers. We claim that N(h?) = 0. Indeed,
if N(h?) > 0 then there exists a plane of reflection P through bonds such
that P intersects at least one bond 〈x, y〉 with h?x 6= h?y. Observe that then

min
{
N(h?+), N(h?−)

}
< N(h?) (5.22)

Suppose without loss of generality that N(h?+) < N(h?). Then the fact that h?

was a maximizer implies

ZL(h?)2 ≤ ZL(h?+)ZL(h?−) ≤ ZL(h?+)ZL(h?) (5.23)

which means
ZL(h?) ≤ ZL(h?+) (5.24)

i.e., h?+ is also a maximizer. But that contradicts the choice of h? by
which N(h?) was already minimal possible. It follows that N(h?) = 0, i.e., h?

is a constant. Since Z(h+ c) = Z(h) for any constant c, (5.18) follows. ut
Now we can finally pay an old debt and prove the infrared bound:

Proof of Theorem 3.3. To ease the notation, we will write throughout

〈η, ζ〉 :=
∑
x∈TL

ηxζx (5.25)

to denote the natural inner product on L2(TL). First we note that for
any (ηx) ∈ (Rν)TL , ∑

x,y∈TL

J (L)
xy |ηx − ηy|2 = 〈η,G−1

L η〉 (5.26)

where GL is as in (3.18). (Indeed, in Fourier components, Ĝ−1
L (k) = 1− Ĵ(k).)

As is easy to check,

ZL(h) = EN
µ0

(
e−β〈S+h,G−1

L (S+h)〉)
= ZL(0)EµL,β

(
e−2β〈h,G−1

L S〉−β〈h,G−1
L h〉) (5.27)

where µL,β is the torus Gibbs measure. The statement of Gaussian domination
(5.18) is thus equivalent to

EµL,β
(
e−2β〈h,G−1

L S〉) ≤ e β〈h,G
−1
L h〉 (5.28)

We will now use invertibility of GL to replace G−1
L h by h. This yields
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EµL,β
(
e−2β〈h,S〉) ≤ e β〈h,GLh〉 whenever

∑
x∈TL

hx = 0 (5.29)

where the latter condition comes from the fact that G−1
L annihilates constant

functions. Next we expand both sides to quadratic order in h:

1− 2βEµL,β
(〈h, S〉)+

4β2

2
EµL,β

(〈h, S〉2)+ . . .

≤ 1 + β〈h,GLh〉+ . . . (5.30)

Since EµL,β (S) is constant, EµL,β (〈h, S〉) = 〈h,EµL,β (S)〉 = 0 and we thus get

EµL,β
(〈h, S〉2) ≤ 1

2β
〈h,GLh〉 (5.31)

Finally, choose hx := vxêi, for some orthonormal basis vectors êi in Rν . This
singles out the i-th components of the spins on the left-hand side and has
no noticeable effect on the right-hand side (beyond replacing vectors hx by
scalars vx). Summing the result over i = 1, . . . , ν we get the dot product of
the spins on the left and an extra factor ν on the right-hand side. ut

5.3 Chessboard estimates

The proof of the infrared bound was based on Lemma 5.3 which boils down
to the Cauchy-Schwarz inequality for the inner product

f, g 7→ Eµ(f ϑg) (5.32)

In this section we will systematize the use of the Cauchy-Schwarz inequality
to derive bounds on correlation functions. The key inequality — referred to
as the chessboard estimate — will turn out to be useful in the proofs of phase
coexistence in specific spin systems (even those to which the IRB technology
does not apply).

Throughout we will restrict attention to reflections through planes of sites
as this is somewhat more useful in applications (except for quantum systems).
Pick two integers, B < L, such that B divides L and L/B is even. Fixing the
origin of the torus, let ΛB the block corresponding to {0, 1, . . . , B}d — i.e.,
the block of side B with lower-left corner at the origin. We may cover TL by
translates of ΛB ,

TL =
⋃

t∈TL/B

(ΛB +Bt) (5.33)

noting that the neighboring translates share the vertices on the adjacent sides.
(This is the specific feature of the setup based on reflections through planes
of sites.) The translates are indexed by the sites in a “factor torus” TL/B .
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Definition 5.7. A function f : ΩTL → R is called a B-block function if it
depends only on {Sx : x ∈ ΛB}. An event A ⊂ ΩTL is called a B-block event
if 1A is a B-block function.

Given a B-block function f , and t ∈ TL/B , we define ϑtf be the reflection
of f “into” ΛB+Bt. More precisely, for a self-avoiding path on TL/B connect-
ing ΛB to ΛB+Bt, we may sequentially reflect f along the planes between the
successive blocks in the path. The result is a function that depends only on
{Sx : x ∈ ΛB +Bt}. Due to the commutativity of the reflections, this function
does not depend on the choice of the path, so we denote it simply by ϑtf .
Note that since reflections are involutive, ϑ2 = id, there are only 2d distinct
functions one can obtain from f modulo translations.

Theorem 5.8 (Chessboard estimate). Suppose µ is RP with respect to all
reflections between the neighboring blocks of the form ΛB+Bt, t ∈ TL/B. Then
for any B-block functions f1, . . . , fm, and any distinct t1, . . . , tm ∈ TL/B,

Eµ

( m∏
j=1

ϑtjfj

)
≤

m∏
j=1

[
Eµ

( ∏
t∈TL/B

ϑtfj

)](B/L)d

(5.34)

Here is a version of this bound for events: If A1, . . . ,Am are B-block events
and t1, . . . , tm are distinct elements of TL/B , then

µ
( m⋂
j=1

ϑtj (Aj)
)
≤

m∏
j=1

[
µ
( ⋂
t∈TL/B

ϑt(Aj)
)](B/L)d

(5.35)

where
ϑt(A) := {ϑt1A = 1} (5.36)

Note that the exponent (B/L)d is the reciprocal volume of the torus TL/B .
(This is consistent with the fact that both expressions transform homoge-
neously under the scaling fj → λjfj with λj ≥ 0.)
Proof of Theorem 5.8. We will assume throughout that Eµ(f ϑf) = 0 im-
plies f = 0. (Otherwise, one has to factor out the ideal of such functions
and work on the factor space.) We will first address the 1D case; the general
dimensions will be handled by induction.

Abbreviate 2n := L/B and fix a collection of non-zero functions f1, . . . , f2n.
Define a multilinear functional F on the set of B-block functions by

F (f1, . . . , f2n) := Eµ

( 2n∏
t=1

ϑtft

)
(5.37)

Noting that F (fj , . . . , fj) > 0, we also define

G(f1, . . . , f2n) :=
F (f1, . . . , f2n)∏2n

j=1 F (fj , . . . , fj)
1
2n

(5.38)
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These objects enjoy a natural cyclic invariance,

F (f1, . . . , f2n) = F (f2n, f1, . . . , f2n−1) (5.39)

and, similarly,
G(f1, . . . , f2n) = G(f2n, f1, . . . , f2n−1) (5.40)

The definition of G also implies

G(f, . . . , f) = 1 (5.41)

Finally, Cauchy-Schwarz along the plane separating f1 from f2n and fn
from fn+1 yields

G(f1, . . . , f2n) ≤ G(f1, . . . , fn, fn, . . . , f1)
1/2

× G(f2n, . . . , fn+1, fn+1, . . . , f2n)
1/2 (5.42)

This will of course be the core estimate of the proof.
The desired claim will be proved if we show that

G(f1, . . . , f2n) ≤ 1 (5.43)

i.e., that G is maximized by 2n-tuples composed of the same function. We will
proceed similarly as in the proof of Gaussian Domination: Given a 2n-tuple
of B-block functions, (f1, . . . , f2n), let (g1, . . . , g2n) be such that

(1) gi ∈ {f1, . . . , f2n} for each i = 1, . . . , 2n
(2) G(g1, . . . , g2n) maximizes G over all such choices of g1, . . . , g2n

(3) g1, . . . , g2n is minimal in the sense that it contains the longest block
(counted periodically) of the form fi, fi, . . . , fi, for some i ∈ {1, . . . , 2n}.

Let k be the length of this block and, using the cyclic invariance, assume that
the block occurs at the beginning of the sequence g1, . . . , g2n, i.e., we have
g1, . . . , gk = fi (with gk+1 6= fi unless k = 2n).

We claim that k = 2n. Indeed, in the opposite case, k < 2n, we must
have g2n 6= fi whereby (5.42) combined with the fact that (g1, . . . , g2n) is a
maximizer of G imply

G(g1, . . . , g2n)2 ≤ G(g1, . . . , gn, gn, . . . , g1)G(g2n, . . . , gn+1, gn+1, . . . , g2n)
≤ G(g1, . . . , gn, gn, . . . , g1)G(g1, . . . , g2n)

(5.44)
i.e.,

G(g1, . . . , g2n) ≤ G(g1, . . . , gn, gn, . . . , g1) (5.45)

This means that (g1, . . . , gn, gn, . . . , g1) is also a legitimate maximizer of G
but it has a longer constant block — namely of length at least min{2k, 2n}.
This is a contradiction and so we must have k = 2n after all. In light of
(5.41–5.43), this proves the claim in d = 1.
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To extend the proof to d > 1, suppose that m = (L/B)d and assume,
without loss of generality, that we have one function ft for each block ΛB+Bt.
Writing ∏

t∈TL/B

ϑtft =
2n∏
j=1

( ∏
t∈TL/B
t1=j

ϑtft

)
(5.46)

we may apply the 1D chessboard estimate along the product over j. This
homogenizes the product over ft in the first coordinate direction. Proceeding
through all directions we eventually obtain the desired claim. ut

The chessboard estimate allows us to bound the probability of simultane-
ous occurrence of distinctly-placed B-block events in terms of their dissemi-
nated versions

⋂
t∈TL/B ϑt(A). The relevant quantities to estimate are thus

zL(A) := µ
( ⋂
t∈TL/B

ϑt(A)
)(B/L)d

(5.47)

The set function A 7→ zL(A) is not generally additive. However, what matters
for applications is that it is subadditive:

Lemma 5.9 (Subadditivity). Let A and A1,A2, . . . , be a collection of B-
block events such that

A ⊂
⋃
k

Ak (5.48)

Then
zL(A) ≤

∑
k

zL(Ak) (5.49)

Proof. First we use the subadditivity of µ and (5.48) to get

zL(A)|TL/B | = µ
( ⋂
t∈TL/B

ϑt(A)
)
≤

(5.48)

∑
(kt)

µ
( ⋂
t∈TL/B

ϑt(Akt)
)

(5.50)

Next we apply the chessboard estimate

µ
( ⋂
t∈TL/B

ϑt(Akt)
)
≤

∏
t∈TL/B

zL(Akt) (5.51)

to each term on the right hand side. Finally we apply the distributive law for
sums and products with the result

zL(A)|TL/B | ≤
∑
(kt)

∏
t∈TL/B

zL(Akt)

=
∏

t∈TL/B

∑
k

zL(Ak) =
(∑

k

zL(Ak)
)|TL/B | (5.52)
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Taking the |TL/B |-th root now yields the desired claim. ut
Here is how subadditivity zL is generally used in computations: In order to

estimate the zL-value of an event, we first cover it by the union of a collection
of smaller — and, as desired, easier to compute-with — events, then evaluate
the zL-value for each of them and, finally, add the results.

In estimates, we often work with the limiting version,

z(A) := lim
L→∞

zL(A) (5.53)

of this quantity. We may interpret this as a partition function per site re-
stricted to event A on each B-block. The advantage of taking the limit is that
it often washes out some annoying finite-size factors and thus provides a more
tractable expression to work with. In addition, the limit can be computed
using arbitrary — not just periodic — boundary conditions.

5.4 Diagonal reflections, other lattices

The above proof of the chessboard estimate is tailored to the underlying set-
ting of the hypercubic lattice, primarily because of its use of the orthogonal-
ity between the principal lattice directions. However, some practical problems
may lead us to the consideration of other lattices. Some cases generalize di-
rectly, e.g., certain instances of the body-centered cubic (BCC) or face-centered
cubic (FCC) lattices, whose unit cells look respectively as follows:

Both of these are decorations of the cubic lattice in which an extra vertex
placed in the center of each unit cube (BCC) or a face (FCC) and is attached
by edges to the vertices in its ultimate vicinity.

Assuming the interaction (2.15) with Jxy non-zero and positive only for
adjacent (i.e., nearest-neighbor) pairs of vertices, the torus Gibbs measure is
reflection positive for reflections both through and between the planes of sites
of Z3. (A key observation is that the planes between sites of Z3 contain some
of the added vertices but bisect no additional edges.) The strengths of the
interactions across the “old” and “new” edges may not even be the same.

In d = 2, a corresponding graph is the lattice with a vertex placed in
the middle of each square of Z2 and edges from it to each of the four corners
thereof. By the same reasoning, the nearest-neighbor ferromagnetic interaction
leads to a reflection positive torus Gibbs measure.



48 Marek Biskup

The situation becomes more involved for the triangular (two-dimensional)
lattice, whose standard embedding into the complex plane C has vertices

m+ n eiπ/3, m, n ∈ Z (5.54)

and an edge between any pair of such vertices that differ by a number in the
set {1, eiπ/3, ei2π/3}. The principal problem with such graphs is how to place
a finite piece of this lattice on a torus in a way that gives rise to reflection
positive measures. Here is a convenient choice:

with the torus obtained by identifying the vertices on the opposite sides.
The allowed planes of reflection are all horizontal lines (reflections through

sites) and the vertical lines (reflections through both sites and bonds). Again,
for ferromagnetic nearest-neighbor interactions, the Gibbs measure with inter-
action (2.15) is reflection positive. A minor, though annoying, problem occurs
in the application of chessboard estimates because the vertical lines of re-
flections actually cut through triangles. A solution is to focus only on those
events that lie either on white or on gray triangles in the above picture and
use reflection only with respect to vertical lines that do not cut through the
chosen triangles.

A completely analogous situation occurs for the honeycomb lattice. Here
we consider the domain of the form
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and wrap it into a torus by identifying the vertices on the opposite side. Again,
for nearest-neighbor ferromagnetic interactions, the resulting Gibbs measure
is reflection positive with respect to reflections in vertical lines on sites and
horizontal lines between sites. In the application of chessboard estimates to a
collection of “hexagon events,” we only use every other horizontal and vertical
reflections to a corresponding subset of these events; e.g., those sitting on the
shaded hexagons.

A final case of interest is that of diagonal reflections in Zd. In d = 2, this
is achieved by wrapping the domain of the form

periodically into a torus. Reflections in the horizontal and vertical lines of sites
— the diagonals — are now symmetries of this graph; for nearest-neighbor
interactions (of any sign) the corresponding torus Gibbs measure is reflection
positive.

The advantage of the diagonal torus is that it permits the use of reflection
positivity on collections of “bond events,” i.e., those associated with pairs
of nearest-neighbor spins. Subsequent applications of chessboard estimates
disseminate a single-bond event over the entire torus. This, in turn, helps in
estimates of the quantity z(A) whenever A is an event depending on a single
square that is itself an intersection of bond events:

Lemma 5.10. Given a unit cube in Zd, let Ab, with b running over all of the
cd := d2d−1 edges in this cube, be a collection of bond events. Then

z

(⋂
b

Ab
)
≤
∏
b

z(Ab)1/cd (5.55)

Here z(Ab) is the partition function per site restricted to configurations such
that Ab, or its corresponding reflection, occurs at all edges of Zd.

Proof. Let us first focus on d = 2. The key fact is that the partition function
per site, z(A), does not depend on what boundary conditions were used to
define it. So, in order to compute z of the intersection event, we may first wrap
the square lattice into the diagonal torus, and disseminate the bond events



50 Marek Biskup

before passing to the L→∞. As there are c2 = 4 edges in each lattice square,
there is an extra power of 1/4.

In d > 2, we perform the same by singling out two lattice directions and
wrapping the torus diagonally in these, and regularly in the remaining ones.
This homogenizes the event in two lattice directions. Proceeding by induction,
the claim follows. ut

5.5 Literature remarks

The material of this section is entirely classical; a possible exception is
Lemma 5.9 which seems to have been formulated in the present form only
relatively recently [13]. The use of reflection positivity goes back to the days
of constructive quantum field theory (namely, the Osterwalder-Schrader ax-
ioms [84]) where RP was a tool to obtain a sufficiently invariant — and natural
— inner product. The use in statistical mechanics was initiated by the work of
Fröhlich, Simon and Spencer [50] (infrared bound) and Fröhlich and Lieb [48]
(chessboard estimates). The theory was further developed in two papers by
Fröhlich, Israel, Lieb and Simon [46, 47]. There have been a couple of nice
reviews of this material, e.g., by Shlosman [95] and in Georgii [57].

All use of reflection positivity in these notes is restricted to one of the three
interactions introduced in Chapter 3. Various generalizations beyond these are
possible. For instance, the n.n. interaction of strength J may be accompanied
by a n.n.n. interaction of strength λ — including negative values — and the
result is still RP provided J ≥ 2(d − 1)|λ|. For reflections through planes
of sites, we may even allow any sort of interactions involving the spins in
a given lattice cube. (This exhausts all finite range interactions; any longer
range RP interactions are automatically infinite range.) Many other examples
are discussed, e.g., in [46, page 32].

Notwithstanding our decision to restrict attention only to three specific
interactions, the set of reflection positive interactions is not so small as it may
appear. Indeed, in the class of translation and rotation invariant coupling
constants, letting

F (x1, . . . , xd) := J0,x (5.56)

we check that a sufficient conditions for RP is that the matrix

(x, y) 7→ F (x1 + y1, x2 − y2, . . . , xd − yd)1{x1>0}1{y1>0} (5.57)

is positive semidefinite. (See (5.15) for a specific case of this.) By Shur’s The-
orem — namely that if (aij) and (bij) are positive semidefinite matrices, then
so is (aijbij) — we thus know that if J (1) and J (2) are two collections of RP
couplings, then also the collection J (1)

xy J
(2)
xy is RP. In particular, the set of RP

couplings is closed under taking products.
The situation on other lattices is discussed in [47]; the use of diagonal

reflections goes back to [95]. We caution the reader that it is rather easy to
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make a mistake in this context. For instance, the regularly-wrapped (L × L)
torus in Z2 is also symmetric with respect to all of the diagonal reflections.
However, for diagonal reflection on direct torus it is not possible to define two
components of the “plane of reflection” so that the reflection in one leaves
the other intact. So we cannot simultaneously use both direct and diagonal
reflections, and this prevents a direct proof of (5.55) in finite volume. (This
error appeared in [17, eq. 4.39] though, as shown in Lemma 5.10, all differences
get washed out in the thermodynamic limit.)

Gaussian domination appears in a rather different context as the celebrated
Brascamp-Lieb inequality. Consider the measure on Rn of the form

µ(dx) := Z−1e−V (x)dx (5.58)

with V smooth and strictly convex. Let V ′′(x) be the Hessian, i.e., an n× n
matrix of all second derivatives of V . Then for each smooth f with compact
support,

Eµ(f2)− (Eµf)2 ≤
∫

dx
〈
(V ′′)−1∇f(x),∇f(x)

〉
(5.59)

where 〈·, ·〉 denote the n-dimensional Euclidean inner product. In particular,
if Q is a positive definite n×n matrix that dominates the Hessian from below
at all x, then the correlations of µ are dominated by those of the Gaussian
measure with covariance 2Q−1. This is, unfortunately, not very useful in the
analysis of the Gibbs measures for general lattice spin systems as these are
generally not of the required form — e.g., because the restriction to a specific
spin-space (a unit sphere for the Heisenberg model) cannot be approximated
by convex functions.

6 Applications of chessboard estimates

In this section we will apply the technique of chessboard estimates to obtain
proofs of phase coexistence in some lattice spin models. The arguments will be
carried out in detail only for one rather simple example. For more sophisticated
systems we present only the important ideas. Details, anyway, can be found
in the corresponding papers.

6.1 Gaussian double-well model

Here we will demonstrate the use of chessboard estimates on the model of
a Gaussian free-field model in a non-quadratic, double-well on-site potential.
The Hamiltonian takes the general form

βH(φ) := β
∑
〈x,y〉

(φx − φy)2 +
∑
x

V (φx) (6.1)
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where φx ∈ R with a priori measure given by the Lebesgue measure, and V is
a potential. Note that β has been incorporated into the Hamiltonian in such
a way that the on-site potential remains independent of it.

The most well known example of such systems is V (φ) := κ
2φ

2 with κ > 0
which is known as the massive Gaussian free field. This case can of course be
treated completely explicitly; e.g., on the torus the corresponding Gaussian
measure on (φx) is zero-mean with covariance

Cov(φx, φy) =
∑
k∈T?L

eik·(x−y)

βD̂(k) + κ
(6.2)

where D̂(k) is the Fourier transform of the torus (discrete) Laplacian,

D̂(k) :=
d∑
j=1

|1− eikj |2 (6.3)

Note that the inclusion of the mass, κ > 0 — more precisely, κ is the mass
squared — makes the covariance regular even for the zero mode k = 0.

We will look at a modification of this case when V takes the form

V( )φ

φ

In fact, we will be even more specific and assume that V is simply given by

e−V (φ) := e−
κ
2 (φ−1)2 + e−

κ
2 (φ+1)2 (6.4)

It is easy to check that, for κ sufficiently large, V defined using this formula
looks as in the figure. The reason for assuming (6.4) is the possibility of an
Ising-spin representation. Indeed, we may rewrite (6.4) as

e−V (φ) =
∑
σ=±1

e−
κ
2 (φ−σ)2 = C

∑
σ=±1

e−
κ
2 φx−κφxσx (6.5)

where C := e−κ. A product of such terms is thus proportional to
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x

e−V (φx) ∝
∑
(σx)

∏
x

e−
κ
2 φ

2
x−κφxσx (6.6)

This means we can write the Gibbs weight of the model as follows

e−β
P
〈x,y〉(φx−φy)2−

P
x V (φx)

∝
∑
(σx)

e−β
P
〈x,y〉(φx−φy)2−κ2

P
x φ

2
x e−κ

P
x φxσx (6.7)

If we elevate (σx) to genuine degrees of freedom, we get a model on spins Sx :=
(φx, σx) with a priori law Lebesgue on R× counting measure on {−1, 1} and
the Hamiltonian

βH(φ, σ) := β
∑
〈x,y〉

(φx − φy)2 +
κ

2

∑
x

φ2
x + κ

∑
x

φxσx (6.8)

Notice the first two terms on the right-hand side is the Hamiltonian of the
massive (centered) Gaussian free field while the interaction between the φ’s
and the σ’s has on-site form.

Here are some observations whose (simple) proof we leave to the reader:

Lemma 6.1. Let µ be a Gibbs measure for Hamiltonian (6.8) and let ν be
its φ-marginal. Then ν is a Gibbs measure for the Hamiltonian (6.1) subject
to (6.4). The marginal ν completely determines µ: For any f depending only
on φ and σ in a finite set Λ,

Eµ(f) = Eν

( ∑
(σx)x∈Λ

f(φ, σ)
∏
x∈Λ

eV (φx)−κ2 (φx−σx)2
)

(6.9)

We will use Gβ,κ to denote the set of all Gibbs measures for the Hamilto-
nian (6.8) with parameters β and κ. The principal result for this model is as
follows:

Theorem 6.2. Let d ≥ 2. For each ε > 0 there is c > 0 such that if κ, κ/β > c,
then there exist µ+, µ− ∈ Gβ,κ which are translation invariant and obey

µ±(σx = ±1) ≥ 1− ε (6.10)

and
Eµ±

(
(φx ∓ 1)2

) ≤ ε (6.11)

In simple terms, at low temperatures and large curvature of the wells of V ,
the fields prefer to localize in one of the wells. We remark that, while we chose
the model as simple as possible, a similar conclusion would follow for with V
given by

e−V (φ) = e−
κ+
2 (φ−1)2+h + e−

κ−
2 (φ+1)2−h. (6.12)

where h changes the relative weight of the two minima. Indeed, there exists
ht at which one has two Gibbs measure — the analogues of µ+ and µ−.
Moreover, if κ+ � κ−, then ht > 0 because, roughly speaking, the well at −1
offers “more room” for fluctuations.
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6.2 Proof of phase coexistence

Here we will prove Theorem 6.2. We will focus on d = 2; the proof in general
dimension is a straightforward, albeit more involved, generalization.

Let us refer to a face of Z2 as a plaquette (i.e., a plaquette is a square of
side one with a vertex of Z2 in each corner). Given a spin configuration (σx),
we say that a plaquette is good if all four spins take the same value, and bad
otherwise. Let B denote the event that the plaquette with lower-left corner at
the origin is bad.

Since the interaction is that of the GFF with a modified single-spin mea-
sure, the torus Gibbs measure is RP. The crux of the proof is to show that
bad plaquettes are suppressed. Specifically, we want to show that

z(B)� 1 once β, κ� 1 (6.13)

Appealing to the subadditivity lemma (Lemma 5.9) we only need to estimate
the z-value of all possible configurations on the plaquette that constitute B.
Due to the plus-minus symmetry of the σ’s, it suffices to examine three pat-
terns:

+
−
−
+

+
+
−
−

+
−

+
+

(6.14)

We begin with the most interesting of the three:

Lemma 6.3. For any β, κ > 0,

z
(
+
−
−
+
) ≤ e−

4βκ
8β+κ (6.15)

Proof. Let ZL :=
∑
σ

∫
e−βHL(φ,σ)

∏
x∈TL dφx be the torus partition function.

Given a plaquette spin pattern, let ZL(pattern) denote the same object with
σ fixed to the disseminated pattern — the sole element of

⋂
t∈TL ϑt(pattern).

(We are working with B = 1.) By the definition of z we have

zL
(
+
−
−
+
)|TL| :=

ZL
(
+
−
−
+
)

ZL
≤ ZL

(
+
−
−
+
)

ZL
(
+
+

+
+
) (6.16)

Now the partition function with all σ’s restricted to + is given by

ZL
(
+
+

+
+
)

=
∫

e−β
P
〈x,y〉(φx−φy)2−κ2

P
x φ

2
x e−κ

P
x φx

∏
x∈TL

dφx

=
(
. . .
)
EGFF

(
e−κ

P
x φx
) (6.17)

where the expectation is with respect to the massive Gaussian free field and
the prefactor denotes the integral of the Gaussian kernel over all φx. Similarly
we obtain

ZL
(
+
−
−
+
)

=
(
. . .
)
EGFF

(
e−κ

P
x φx(−1)|x|

)
(6.18)
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where we noticed that by disseminating the pattern +
−
−
+ we obtain a configu-

ration which is one at even parity x and minus on at odd parity x. Thus we
conclude

zL
(
+
−
−
+
)|TL| ≤ EGFF

(
e−κ

P
x φx
)

EGFF

(
e−κ

P
x φx(−1)|x|

) (6.19)

i.e., we only need to compute the ratio of the Gaussian expectations, and not
the prefactors.

Next we recall a standard formula for Gaussian moment generating func-
tions: If X is a multivariate Gaussian, then

E(eλ·X) = eλ·EX+ 1
2 Var(λ·X) (6.20)

Since EGFF(φx) = 0, we only need to compute the (diagonal) matrix element
of Cov(φx, φy) against vectors 1 = (1, 1, . . . ) and (−1)|x|. However, a quick
look at (6.2) will convince us that these functions are eigenvectors of the
covariance matrix corresponding to k = 0 and k = (π, π), respectively. Since
D̂(0) = 0 while D̂(π, π) = 8, we get

Var GFF

(∑
x

φx

)
=
|TL|
κ

(6.21)

Var GFF

(∑
x

φx(−1)|x|
)

=
|TL|

8β + κ
(6.22)

where the factor |TL| is the (square of) the L2(TL)-norm of the functions
under consideration. Plugging this in (6.19) we conclude

zL
(
+
−
−
+
)|TL| ≤ exp

{
1
2
|TL|κ2

( 1
8β + κ

− 1
κ

)}
(6.23)

from which the claim readily follows. ut
Next we attend to the other patterns:

Lemma 6.4. For any β, κ > 0,

z
(
+
+
−
−) ≤ e−

2βκ
4β+κ (6.24)

and
z
(
+
−

+
+
) ≤ e−

2βκ
8β+κ (6.25)

Proof. As for (6.24), dissemination of +
+
−
− leads to alternating stripes of plusses

and minuses, i.e., σx = (−1)|x1|. Again, this is an eigenvector of the covariance
matrix (6.2) with k = (π, 0). The corresponding D̂ equals 4 and so

zL
(
+
+
−
−)|TL| ≤ exp

{
1
2
|TL|κ2

( 1
4β + κ

− 1
κ

)}
(6.26)
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yielding (6.24).
The pattern +

−
+
+ is more complex because its dissemination will not lead to

an eigenvector of the covariance matrix. However, we circumvent this problem
by noting that Lemma 5.10 implies

z
(
+
−

+
+
) ≤ z

(
+
−
−
+
)1/2z(+++

+
)1/2 ≤ z

(
+
−
−
+
)1/2 (6.27)

where we used z
(
+
+

+
+
) ≤ 1. Now (6.25) follows from Lemma 6.3. ut

Corollary 6.5. For each ε > 0 there exists a > 0 such that if β, κ > a, then
z(B) ≤ ε.

Proof. The event B can be written as the union over a finite number of bad
patterns. On the basis of Lemmas 6.3–6.4 the claim holds for B replaced by
any fixed bad pattern. The desired bound now follows — with slightly worse
constants — by invoking Lemma 5.9. ut

Next we explain our focus on the bad event:

Lemma 6.6. There exists a constant c ∈ (1,∞) such that if cz(B) < 1/2 then
for any x, y ∈ TL,

µL(σx = 1, σy = −1) ≤ 2cz(B). (6.28)

Proof. This is a consequence of a simple Peierls’ estimate. Indeed, if σx = 1
and σy = −1, then x is separated from y by a “circuit” of bad plaquettes. (For-
mally, either all plaquettes containing x are bad or there exists a non-trivial
connected component of good — i.e., not bad — plaquettes containing x. This
component cannot cover the whole torus because σy = −1; the above “circuit”
is then comprised of the bad plaquettes on the boundary of this component.)
This means that

µL(σx = 1, σy = −1) ≤
∑
γ

µL

( ⋂
t∈γ

ϑt(B)
)
≤
∑
γ

z(B)|γ| (6.29)

where |γ| denotes the maximal number of disjoint bad plaquettes in γ and
where we used the chessboard estimates to derive the second bound. By stan-
dard arguments, the number of circuits of “length” n surrounding x or winding
around TL at least once is bounded by cn, for some constant c > 1. It follows

µL(σx = 1, σy = −1) ≤
∑
n≥1

cnz(B)n (6.30)

Under the condition cz(B) < 1/2 this sum is less than twice its first term. ut
Finally, we can assemble the ingredients into the desired proof of phase

coexistence:
Proof of Theorem 6.2. By symmetry of the torus measure, we have
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µL(σx = 1) = 1/2 = µL(σx = −1). (6.31)

Let z be a site at the back of the torus — that is distant at least L/2 from the
origin — and define

µ±L (−) := µL(−|σz = ±1). (6.32)

These measures satisfy the DLR condition with respect to any function that
depends only on the “front” of the torus and so any weak cluster point of these
measures will be an infinite-volume Gibbs measure. Extract such measures by
subsequential limits and call them µ+ and µ−, respectively.

We claim that µ+ 6= µ−. Indeed, by Lemma 6.6 we have

µ+
L(σx = −1) ≤ 2cz(B) (6.33)

once z(B) � 1 and, by Corollary 6.5, this actually happens once β, κ � 1.
Thus if, say, 2cz(B) ≤ 1/4, then µ+

L(σx = −1) ≤ 1/4 and, at the same time,
µ−L (σx = +1) ≤ 1/4. The same holds for the limiting objects and so µ+ 6= µ−.
Note that the measures can be averaged over shifts so that they become
translation invariant. ut

Notice that in the last step of the proof we used, rather conveniently,
the plus-minus symmetry of the torus measure. In the asymmetric cases,
e.g., (6.12), one can either invoke a continuity argument — choose h = hL
such that (6.31) holds — or turn (6.28) into the proof that |TL|−1

∑
x∈TL σx

will take values in [−1,−1 + ε] ∪ [1 − ε, 1] with probability tending to one
as L→∞. The latter “forbidden-gap” argument is rather robust and extends,
with appropriate modifications, to all shift-ergodic infinite-volume Gibbs mea-
sures. Hence, the empirical magnetization in ergodic measures cannot change
continuously with h.

To prove Theorem 6.2, it remains to show the concentration of the φ’s
around the σ’s:
Proof of (6.11). Let µ be a Gibbs measure for parameters β and κ. Then (6.8)
shows that, conditional on the σ’s, the φ’s are Gaussian with mean

Eµ(φx|σ) = κ
(
(2β∆+ κ)−1σ

)
x

(6.34)

and covariance (2β∆ + κ)−1, where ∆ is the lattice Laplacian. Now, once
β/κ� 1 we may expand the inverse operator into a power series to get

Eµ(φx|σ)− σx =
∑
n≥1

(2β
κ

)n
(∆nσ)x (6.35)

which by the fact that |σz| = 1 is O(β/κ) independently of x. Since the condi-
tional variance of φx is O(1/κ), we obtain

Eµ
(
(φx − σx)2

∣∣σ) ≤ 2Eµ
(
[φx − E(φx|σ)]2

∣∣σ)+ 2
(
E(φx|σ)− σx

)2
= O

(
(β/κ)2

)
+O(1/κ)

(6.36)
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with the constants implicit in the O’s independent of the σ’s and x. Thus, if
κ � 1 and κ/β � 1, then (6.11) follows by the fact that µ± put most of the
mass on σx = ±1. ut

6.3 Gradient fields with non-convex potential

Having demonstrated the use of chessboard estimates on a toy model, we
will proceed to discuss more complicated systems. We begin with an example
which is somewhat similar to the Gaussian double-well model.

A natural generalization of the massless GFF is obtained by replacing the
quadratic gradient interaction by a general, even function of the gradients.
The relevant Hamiltonian (again with temperature incorporated in it) is

βH(φ) :=
∑
〈x,y〉

V (φx − φy) (6.37)

The requirements that we generally put on V are continuity, evenness and
quadratic growth at infinity. Under these conditions one can always define
finite-volume Gibbs measures.

As to the measures in infinite volume, the massless nature of the model may
prevent existence of a meaningful thermodynamic limit in low dimensions;
however, if one restricts attention to gradient variables,

ηb := φy − φx if b is the oriented edge (x, y), (6.38)

then the infinite-volume Gibbs measures exist, and may be characterized by a
DLR condition, in all d ≥ 1. We call these gradient Gibbs measures (GGM). A
non-trivial feature of the GGM is that they obey a host of constraints. Indeed,
almost every η is such that

ηb1 + ηb2 + ηb3 + ηb4 = 0 (6.39)

for any plaquette (b1, . . . , b4) with bonds listed (and oriented) in the counter-
clockwise direction.

Surprisingly, the classification of all possible translation-invariant, infinite-
volume GGMs can be achieved under the condition that V is strictly convex:

Theorem 6.7. Suppose V is convex, twice continuously differentiable with V ′′

bounded away from zero and infinity. Then the shift-ergodic GGMs µ are in
one-to-one correspondence with their tilt, which is a vector a ∈ Rd such that

Eµ(ηb) = a · b (6.40)

for every (oriented) bond b (we regard b as a unit vector for this purpose).
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The word tilt comes from the interpretation of a as the slope or the incline
of the interface whose height-gradient along bond b is given by ηb. The proof
of this result — which is due to Funaki and Spohn — is based on the use of
the Brascamp-Lieb inequality through which the convexity assumption enters
in an essential way. It is also known that the large-scale fluctuation structure
of the η’s is that of a Gaussian Free Field.

A natural question to ask is what happens when V is not convex. Specific
examples of interest might be V taking the form of a double-well potential —
kind of like for the Gaussian double-well model — or V ’s as in the figure:

V( )η

η

(a) V( )η

η

(b)

As it turns out, the double-well case is not quite tractable at the moment
— and most likely behaves like a massless GFF on large scales — but the
other two cases are within reach. We will focus on the case (a) and, as for the
Gaussian double-well model, assume a particular form of the potential:

e−V (η) := p e−κOη
2/2 + (1− p) e−κDη

2/2 (6.41)

where κO and κD are positive numbers and p ∈ [0, 1] is a parameter to be
varied. For this system one can prove the following result:

Theorem 6.8. Suppose d = 2 and κO � κD. Then there is pt ∈ (0, 1)
and, for V with p = pt, there are two distinct, infinite-volume, shift-ergodic
GGMs µord and µdis that are invariant with respect to lattice rotations and
have the following properties:

(1) zero tilt:
1
|ΛL|

∑
b=(x,y)
x,y∈ΛL

ηb −→
L→∞

0, µord, µdis-a.s. (6.42)

(2) distinct fluctuation size:

Eµord(η2
b )� Eµdis(η

2
b ) (6.43)

The upshot of this result is that, once the convexity of V is strongly
violated, the conclusions of Theorem 6.7 do not apply. While the example
is restricted to d = 2, and to potentials of the form (6.41), generalizations to
d ≥ 2 and other potentials as in the above figure are possible and reasonably
straightforward.
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Here are the main steps of the proof. First, as for the Gaussian double-well
model, we use (6.41) to expand the Gibbs weight according to whether the
first or the second term in (6.41) applies. This gives rise to a configuration of
coupling strengths (κb), one for each bond b, which take values in {κO, κD}.
The joint Hamiltonian of the η′s and the κ’s is

βH(η, κ) :=
∑
b

κb
2
η2
b (6.44)

The joint measure is RP with respect to reflections through bonds and sites
and, conditional on (κb), the η’s are Gaussian.

For the proof of phase coexistence, we focus on lattice plaquettes and
divide these into good and bad according to whether all of the edges have
the same coupling κ or not. The dissemination of each bad patterns leads
to a Gaussian integral but this time for GFF with inhomogeneous — yet
periodically varying — couplings. For instance, the pattern with three bonds
of type κO and one of type κD disseminates into periodic configuration where
the edges on every other vertical line is of type κD and all other edges are of
type κO. Similarly for all other bad patterns.

The periodic nature of the disseminated events allows the use of Fourier
modes — i.e., pass to the reciprocal torus — to diagonalize the requisite
covariance matrices. For instance, the aforementioned pattern with three κO’s
and one κD leads to a configuration which is periodic with period two. A
calculation shows that the covariance is block diagonal with 2 × 2 blocks of
the form

Π(k) :=

(
κO|a−|2 + 1

2 (κO + κD)|b−|2 1
2 (κO − κD)|b−|2

1
2 (κO − κD)|b−|2 κO|a+|2 + 1

2 (κO + κD)|b−|2

)
(6.45)

where a± and b± are defined by

a± = 1± eik1 and b± = 1± eik2 (6.46)

with k := (k1, k2) varying through one half of the reciprocal torus T∗L.
(The block combines the contribution of both k and k + πê1, and so we
only need half of all k’s.) The requisite Gaussian integral then reduces to∏
k∈T∗L\{0}

[detΠ(k)]−1/4 where in the exponent we get 1/4 instead of the ex-
pected 1/2 to account for double counting of the k’s. To estimate the growth
rate of this product, we note that∏

k∈T∗L\{0}

[detΠ(k)]−1/4

= exp
{
−|TL|14

∫
dk

(2π)2
log detΠ(k) + o(|TL|)

}
(6.47)

The integral plays the role of the free energy associated with the Gaussian
variables on the background of the specific periodic configuration of the κ’s.
A similar expression — with different integrand — applies to each pattern.
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Comparing the integrals for all possible arrangements of the two types of
bonds around a plaquette, we find that under the condition κO � κD, the bad
patterns are heavily suppressed. Thus bad plaquettes are infrequent and can
be regarded as parts of a contour. As it is not possible to pass from all-κO

pattern to all-κD pattern without crossing a bad plaquette, the coexistence
follows — as for the double-well model — by a standard Peierls’ argument
and chessboard estimates. Full details of the proof are to be found in a paper
by Kotecký and the present author.

The two-dimensional model has the special feature that we can actually
compute pt:

Theorem 6.9. Let d = 2. If κO/κD � 1, then pt is given by

pt

1− pt
=
(κD

κO

)1/4
. (6.48)

This is a consequence of a duality relation that can be used to exchange
the roles of κO and κD. It is also interesting to note that, while the one-to-
one correspondence between the Gibbs measures and their tilt is violated for
non-convex potentials, the large-scale fluctuation structure remains that of a
Gaussian Free Field. Indeed, we have:

Theorem 6.10. Let d = 2. For each translation-invariant, ergodic gradient
Gibbs measure µ with zero tilt, there exists a positive-definite d × d ma-
trix q = q(µ) such that for any smooth f : R2 → R with compact support
and

∫
f(x)dx = 0, ∫

dxφbx/εcf(x) D−→
ε↓0
N (0, (f,Q−1f)

)
(6.49)

where N (0, C) denotes a normal random variable with mean zero and covari-
ance C and Q is the elliptic operator

Qf(x) :=
d∑

i,j=1

qij
∂2

∂xi∂xj
f(x) (6.50)

The basis of this result — derived in all d ≥ 1 by Spohn and the present
author — is the fact that, conditional on the κ’s, the φ’s are Gaussian with
mean zero and covariance given by the inverse of the generator of a reversible
random walk in random environment. The Gaussian limit is a consequence
of an (annealed) invariance principle for such random walks and some ba-
sic arguments in homogenization theory. The restriction to zero tilt appears
crucially in the proof.

6.4 Spin-waves vs infinite ground-state degeneracy

Next we will discuss a couple of spin models whose distinctive feature is a high
degeneracy of their ground state which is removed, at positive temperature, by
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soft-mode spin-wave fluctuations. The simplest example with such property
is as follows:

Orbital compass model : Here the spins on Zd take values in a unit sphere
in Rd, i.e., Sx ∈ Sd−1 with x ∈ Zd. The Hamiltonian is

H(S) :=
∑
x

d∑
α=1

(S(α)
x − S(α)

x+êα
)2 (6.51)

where S(α)
x denotes the α-th Cartesian component of the spin and êα is the

unit vector in the α-th coordinate direction.
Despite a formal similarity with the Heisenberg model, note that only one

component of the spin is coupled in each lattice direction. Notwithstanding,
every constant configuration is still a minimum-energy state of (6.51). Further
ground states may be obtained from the constant ones by picking a coordinate
direction α and changing the sign of the α-th component of all spins in some
of the “lines” parallel with êα. In d = 2 these are all ground states but in d ≥ 3
other operations are possible that preserve the minimum-energy property.

The key question is now what happens with this huge ground-state degen-
eracy at positive temperatures. Here is a theorem one can prove about the
two-dimensional system:

Theorem 6.11. For each ε > 0 there exist β0 > 0 and, for each β ≥ β0, there
exist two distinct, shift-ergodic Gibbs measures µ1, µ2 ∈ Gβ such that

Eµj
(|Sx · êj |) ≥ 1− ε, j = 1, 2 (6.52)

Moreover, for any µ ∈ Gβ we have

Eµ(Sx) = 0 (6.53)

and there are no shift-ergodic µ ∈ Gβ, β ≥ β0, for which we would have
maxj=1,2Eµ

(|Sx · êj |) < 1− ε.
The main idea underlying the proof is the evaluation of the free energy

associated with spin-wave perturbations of the constant ground states; it this
expected that only the states with the largest contribution of these fluctua-
tions survive at positive temperatures. Specifically, we need to quantify the
growth rate of the torus partition function with all spins constrained to lie
within ∆ of a given direction:

Lemma 6.12. For each ε > 0 there is δ > 0 such that if β,∆ obey

β∆2 >
1
δ

and β∆3 < δ (6.54)

then for every v̂θ := (cos θ, sin θ) ∈ S1,
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E⊗µ0

(
e−βHL(S)

∏
x∈TL

1{|Sx−v̂θ|<∆}

)
=
(2π
β

)L2/2

e−L
2[F (θ)+o(ε)] (6.55)

where

F (θ) :=
1
2

∫
dk

(2π)2
log
{

sin2(θ)|1− eik1 |2 + cos2(θ)|1− eik2 |2} (6.56)

The quantity F has the interpretation of the spin-wave free energy where
the term “spin wave” refers to slowly varying deformations of a constant
ground states. A convexity argument — based on the identity sin2(θ) +
cos2(θ) = 1 — now shows that F is minimized by θ = 0, π/2, π, 3π/2, i.e.,
exactly in one of the coordinate directions. This corroborates the intuition
that only the configurations with most of the spins aligned in one of these
directions will be relevant at low temperatures. However, to extract a proof
of phase coexistence, we will have to again invoke a Peierls’ argument.

Fix κ > 0 and let ∆ := β−
5
12 and B := log β and let BE and BSW denote

the following events:

(1) BE := { a pair of neighboring spins in ΛB differ by an angle ≥ ∆ }
(2) BSW is the set of configurations in the complement of BE in which

the block ΛB has all neighboring spins within ∆ of each other with
at least κ� ∆ from one of the four coordinate directions

The event BE captures the situations when two neighboring spins are not quite
close to each other leading to excess energy order ∆2. As a result of that,

z(BE) ≤ 3B3e−c3β∆
2

(6.57)

The event BSW collects the configurations where the energy is good but the
fluctuations are not sufficiently powerful. The calculation in Lemma 6.12 and
a simple use of the subadditivity lemma show

z(BSW) ≤ c1
∆

e−c2B
3κ2

(6.58)

for some constants c1, c2 > 0. Thus, for our choices of ∆ and B, once β � 1
the density of blocks where BE∪BSW occurs in any typical configuration from
the torus measure will be rather small. However, if a block is aligned in one
coordinate direction and another block is aligned in a different direction, they
must be separated by a “circuit” of bad blocks. Such circuits are improbable
which leads to phase separation. Details of these calculations — which extend
even to quantum setting — can be found in a paper by Chayes, Starr and the
present author.

120-degree model : A somewhat more complicated version of the interaction,
but with the spins Sx taking values in the unit circle S1, can be contrived
in d = 3. The Hamiltonian will actually look just as for the orbital compass
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model except that S(α)
x are not Cartesian components but projections on the

three third-roots of unity b̂1, b̂2, b̂3 in S1. Explicitly,

H(S) :=
∑
x

∑
α=1,2,3

(
Sx · b̂α − Sx+êα · b̂α

)2 (6.59)

Again, all constant configurations are ground states and further ground states
may again be obtained by judicious reflections. Fortunately, the number
of energy-preserving operations one can perform on ground states is much
smaller than for the orbital compass model, and all ground states can thus be
classified. Namely, given a ground state configuration, every unit cube in Z3

looks as one of the four cubes in the picture

modulo, of course, a simultaneous rotation of all spins. Here is what we can
we say rigorously about this model:

Theorem 6.13. Let ŵ1, . . . , ŵ6 ∈ S1 be the six sixth roots of unity. For
each ε > 0 there exist β0 > 0 and, for each β ≥ β0, there exist six distinct,
shift-ergodic Gibbs measures µ1, . . . , µ6 ∈ Gβ such that

Eµj
(
Sx · ŵj

) ≥ 1− ε, j = 1, . . . , 6 (6.60)

There are no shift-ergodic µ ∈ Gβ, β ≥ β0, for which we would have
maxj=1,...,6Eµ

(
Sx · ŵj

)
< 1− ε.

The ideas underlying this theorem are quite similar to the orbital compass
model. First we find out that the spin-wave free energy for fluctuations about
the ground state pointing in direction θ is given by

F (θ) :=
1
2

∫
dk

(2π)3

[
log

∑
α=1,2,3

qα(θ)|1− eikα |2
]

(6.61)

where q1 := sin2(θ), q2 := sin2(θ − 120◦) and q3 := sin2(θ + 120◦). A surpris-
ingly sophisticated argument is then required to show that F is minimal only
for θ of the form π

3 j, j = 1, . . . , 6. Once we have this information, the rest
of the argument follows a route very similar to that for the orbital compass
model (including the introduction of the scales κ and ∆ and the corresponding
events BE and BSW). Details appeared in a paper by Chayes, Nussinov and
the present author.
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n.n. and n.n.n. antiferromagnet : Finally, we will consider a toy model that
exemplifies the features of both systems above. Here d = 2 and the spins take
again values in S1, but the interaction is antiferromagnetic — that is, with a
preference for antialignment — for both nearest and next-nearest neighbors:

H(S) := γ
∑
x

[
Sx·Sx+ê1+Sx·Sx+ê2

]
+
∑
x

[
Sx·Sx+ê1+ê2+Sx·Sx+ê1−ê2

]
(6.62)

Assuming |γ| < 2, the minimum energy state is obtained by first enforcing the
n.n.n. constraints — there is an antiferromagnetic, or Neél, order on both even
and odd sublattice — and only then worrying about how to satiate the n.n.
constraint. But once the sublattices are ordered antiferromagnetically, the net
interaction between the sublattices is zero — and so each of the sublattices
can be rotated independently! Here is a configuration of this form:

For this system we can nevertheless prove the following theorem:

Theorem 6.14. For each ε > 0 there exist β0 > 0 and, for each β ≥ β0, there
exist two distinct, shift-ergodic Gibbs measures µ1, µ2 ∈ Gβ such that

−Eµj
(
Sx · Sx+ê1±ê2

) ≥ 1− ε (6.63)

and
Eµj

(
Sx · Sx+êj

) ≥ 1− ε, j = 1, 2 (6.64)

There are no shift-ergodic µ ∈ Gβ, β ≥ β0, for which either (6.63) or at least
one of (6.64) does not hold.
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As for the two models above, everything boils down to a spin-wave cal-
culation. Here the relevant parameter is the relative orientation θ of the two
antiferromagnetically ordered sublattices. The spin-wave free energy is then

F (θ) :=
1
2

∫
[−π,π]2

dk
(2π)2

logDk(θ) (6.65)

where

Dk(θ) := |1− ei(k1+k2)|2 + |1− ei(k1−k2)|2
+ γ cos(θ)

(|1− eik1 |2 − |1− eik1 |2) (6.66)

AsD(θ) = αD(0)+(1−α)D(π), with α := 1
2 (1+cos(θ)), Jensen’s inequality for

the logarithm directly shows that F is minimized by θ = 0 or θ = π. In spin
configurations, the former corresponds to horizontal alignment and vertical
antialignment of nearest neighbors, and the latter to horizontal antialignment
and vertical alignment, i.e., stripe states. Details of all calculations appeared
in a paper by Chayes, Kivelson and the present author.

Notice that, despite the fact that the lattices maintain a specific relative
orientation at low temperatures, a Mermin-Wagner argument ensures that
every Gibbs measure is invariant under a rigid rotation of all spins.

6.5 Literature remarks

The Gaussian double-well model is a standard example which can be treated
either by methods of reflection positivity, or by Pirogov-Sinai theory [35].
Representations of the kind (6.4) have been used already before, e.g., by
Külske [74, 75] and Zahradńık [107]. The method of proof presented here
draws on the work of Dobrushin, Kotecký and Shlosman [33, 71, 69] which
was used to control order-disorder transitions in a number of systems; most
notably, the q-state Potts model with q � 1 [69]. These methods may be
combined with graphical representations of Edwards-Sokal [39] (or Fortuin-
Kasteleyn [43]) to establish rather complicated phase diagrams, e.g., [26, 12].
Recently, the method has been used to resolve a controversy about a transition
can occur in 2D non-linear vector models [41, 42].

Theorem 6.7 has been proved by Funaki and Spohn [53]. As already men-
tioned, their proof is based on convexity properties of the potential V — by
invoking the Brascamp-Lieb inequality as well as certain coupling argument
to the natural dynamical version of the model — and so it does not extend
beyond the convex case. (A review of the gradient measures, and further in-
triguing results, can be found in Funaki [52], Velenik [104] or Sheffield [92].)
Theorem 6.8 was proved by Biskup and Kotecký [17]; Theorem 6.10 was de-
rived by Biskup and Spohn [18].

The interest in models in Sect. 6.4 came from a physics controversy about
whether orbital ordering in transition-metal oxides exists at low tempera-
tures. On the basis of rigorous work by Biskup, Chayes and Nussinov [13]
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(120-degree model) Biskup, Chayes, Nussinov and Starr [15, 14] (2D and 3D
orbital compass model), it was demonstrated that, at least at the level of
classical models, spin-wave fluctuations stabilize certain ground states [83].
The conclusions hold also the 2D quantum orbital-compass model with large
quantum spins [15]. The mechanism of entropic stabilization — or, in physics
jargon, order by disorder — is most clearly demonstrated in the n.n. & n.n.n.
antiferromagnet studied by Biskup, Chayes and Kivelson [11]. This model ac-
tually goes back to the papers by Shender [93] and Henley [63] which first
spelled out the original order-by-disorder physics arguments.

All three “phase-coexistence” theorems in Sect. 6.4 have, apart from an
existence clause, also a clause on the absence of ergodic states whose local
properties deviate from those whose existence was asserted. Actually, these
were not the content of the original work [13, 11] because, at that time, the
focus on torus measures dictated by reflection positivity was deemed to make
it impossible to rule out the occurrence of some exotic measures. A passage
to such statements was opened by the work of Biskup and Kotecký [16]; the
non-existence clauses in Theorems 6.11, 6.13 and 6.14 are direct consequences
of the main result of [16] and the method of proof of the existence part. This
technique does not quite apply in the setting of gradient models due to the
strong role the boundary conditions play in this case.

7 Topics not covered

There are naturally many interesting topics dealing with reflection positivity
that have not been covered by these notes. Here we will attempt to at least
provide a few relevant comments and give pointers to the literature where an
interested reader may explore the subject to the desired level of detail.

The first (and large) area which was neglected is that of quantum models.
Here one faces the principal difficulty that the spin variables are replaced by
operators which, generally, do not commute with one another. Nevertheless,
reflection positivity can be proved for reflections through planes between sites
under the condition that the Hamiltonian is of the form (5.10). (For reflections
through planes of sites the non-commutativity of involved objects makes the
above technology largely unavailable.) Thus, chessboard estimates and, by a
passage via the Duhamel two-point function, also infrared bound can again be
established. This and the resulting applications to proofs of phase transitions
in, e.g., the quantum Heisenberg anti ferromagnet and XY-model constitute
the papers of Dyson, Lieb and Simon [38] and Fröhlich and Lieb [48]. A
pedagogical account of these can be found in the notes by Tóth [103].

Unlike for the classical models, in the quantum setting reflection posi-
tivity appears to be a somewhat peculiar condition. Generally, it requires
that the involved operators can be represented by either real or purely imag-
inary matrices. This is where the technique fails in the case of the quantum
Heisenberg ferromagnet (Speer [99], but see also Kennedy [67] and Conlon
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and Solovej [27]). Notwithstanding, the technique continued to be applied in
the quantum world to derive useful conclusions; e.g., to study long range or-
der in two-dimensional antiferromagnets (Kennedy, Lieb and Shastry [68]),
to resolve the so called flux phase problem in the Hubbard model (Lieb [78],
see also Macris and Nachtergaele [81]) or to prove uniqueness of the ground
state in the half-filled band therein (Lieb [77]). The latter work invokes spin-
reflection positivity ; a new idea later further exploited by, e.g., Tian [102] and
Tasaki [101]. Other applications of reflection positivity in itinerant-electron
models appear in, e.g., Macris [79] and Macris and Lebowitz [80].

As already mentioned, one can use RP to develop a rigorous link between
the phase transitions in quantum and classical systems (Biskup, Chayes and
Starr [15]). Here the main idea is the conversion of the quantum chessboard
estimate to the classical one by means of an extension of Berezin-Lieb inequal-
itites to matrix elements in the basis of coherent states.

Another topic not sufficiently represented in these notes is that of dimer
or other combinatorial models. Here we wish to mention, e.g., the conclusions
concerning the six-vertex model and hard-core lattice gasses (Fröhlich, Israel,
Lieb and Simon [47]) or the liquid-crystal models based on interacting dimers
(Heilmann and Lieb [62] and Abraham and Heilmann [1]). There is also a
novel application to characterization of graph homomorphisms (Freedman,
Lovász and Schrijver [44]).

The origin of reflection positivity lies within the field theory as part of
the Osterwalder-Schrader axioms. A reader interested in this direction should
employ the relevant search outlets to explore the literature on the subject.
For statistical mechanics, interesting applications come in the proofs of phase
transitions in Euclidean field theories, e.g., that of quark confinement (Borgs
and Seiler [20]) or chiral symmetry breaking (Salmhofer and Seiler [91]) in
gauge theories.

Finally, there is the recent clever application of chessboard estimates to
control the rigidity of Dobrushin interfaces in the Ising (and some other) three
dimensional models (Shlosman and Vignaud [96]). This direction will likely
be further exploited to study interface states in continuum-spin systems.

8 Three open problems

We finish with a brief discussion of three general open problems of the subject
covered by these notes which the present author finds worthy of significant
research effort.

In Chapters 3 and 4 we have shown how useful the infrared bound is
in proofs of symmetry breaking and control of the mean-field approximation.
Unfortunately, the only way we currently have for proving the IRB is reflection
positivity. So our first problem is:

Problem 8.1. Consider models with the Hamiltonian H = −∑〈x,y〉 Sx · Sy.
Prove the IRB directly without appeal to RP.



Phase transitions in lattice models 69

As already mentioned, a successful attempt in this direction has been
made by Sakai [90], who managed to apply the lace expansion to a modified
random current representation of the Ising model. However, here we have in
mind something perhaps more robust which addresses directly the principal
reason why we need RP, which is that

the spins (Sx) are not a priori independent Gaussian
Among approaches in this direction is the spherical approximation for the
O(n) model, in which the constraint |Sx| = 1 at every spin is replaced by a
constraint on

∑
x |Sx|2.

The IRB is often viewed as a rigorous version of spin-wave theory. This
theory, initiated in the work of Dyson [37] and others, describes continuous
deformations of the lowest energy states by means of an appropriate Gaussian
field theory. In Chapter 6 we saw that chessboard estimates may be applied
in conjunction with spin-wave calculations — which are generally deemed
to be the realm of the IRB — to prove phase transitions. This was possible
because spin-waves disqualified all but a finite number of ground states from
candidacy for low-temperature states. Notwithstanding, one might be able to
do the same even in the presence of infinitely many low-temperature states:

Problem 8.2. Prove symmetry breaking at low temperatures in systems with
continuous internal symmetry — e.g., the O(2)-model — without the use of
the IRB. Chessboard estimates are allowed.

An interesting resource for thinking about this problem may be the paper
of Bricmont and Fontaine [21].

Further motivation to look at this problem comes from quantum theory:
The quantum Heisenberg ferromagnet is not RP (see Speer [99]) and so there is
no proof of the IRB and, consequently, no proof of low-temperature symmetry
breaking. On the other hand, the classical Heisenberg ferromagnet is RP and
so the spin-condensation argument applies. However, if we had a more robust
proof of symmetry breaking in the classical model, e.g., using chessboard
estimates, one might hope to extend the techniques of Biskup, Chayes and
Starr [15] to include also the quantum system.

While the theory described in these notes is not restricted exclusively to
ferromagnetic systems, in order to have the IRB one needs a good deal of
attractivity in the system. It is actually clear that the IRB cannot hold as
stated for antiferromagnets, e.g., hard core lattice gas, which is a model with
variables nx ∈ {0, 1} and the “Gibbs” weight proportional to

λ
P
x nx

∏
〈x,y〉

(1− nxny), (8.1)

or the q-state Potts antiferromagnet, which is the model in (2.7) with J < 0.
Indeed, the staggered long-range order, which is known to occur in the hard
core lattice gas once λ � 1, implies that the macroscopically occupied mode
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is k = (π, . . . , π) rather than k = 0. Nevertheless, we hope that some progress
can be made and so we pose:

Problem 8.3. Derive a version of the IRB for the hard-core lattice gas and/or
the q-state Potts antiferromagnet at zero temperature.

Solving this problem would, hopefully, also provide an easier passage to
the proof that the critical λ for the appearance of staggered order tends to
zero as d → ∞ — in fact, if the mean-field theory is right then one should
have λc ∼ c/d — and that the 3-coloring of Z2 exhibits six distinct extremal
measures of maximal entropy. These results have recently been obtained by
sophisticated contour-counting arguments [54, 55].
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