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Abstract: We develop a novel approach to phase transitions in quantum spin models
based on a relation to their classical counterparts. Explicitly, we show that whenever
chessboard estimates can be used to prove a phase transition in the classical model, the
corresponding quantum model will have a similar phase transition, provided the inverse
temperatureβ and the magnitude of the quantum spinsS satisfyβ �

√
S. From the

quantum system we require that it is reflection positive and that it has a meaningful clas-
sical limit; the core technical estimate may be described as an extension of the Berezin-
Lieb inequalities down to the level of matrix elements. The general theory is applied to
prove phase transitions in various quantum spin systems withS � 1. The most notable
examples are the quantum orbital-compass model onZ2 and the quantum 120-degree
model onZ3 which are shown to exhibit symmetry breaking at low-temperatures de-
spite the infinite degeneracy of their (classical) ground state.
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1. Introduction

It is considered common knowledge that, for spin systems, the behavior of a quantum
model at finite temperature is “like” the behavior of the corresponding classical model.
However, beyond the level of heuristics, it is far from clear in what sense the above
statement is meaningful. Another, slightly more academic way to “recover” the clas-
sical spin system is to consider spin-representations with spin-magnitudeS and then
let S → ∞. A standard argument as to why this should work is that the commutators
between various spin operators are order-1/S smaller than the quantities themselves,
and so the spins behave essentially classically whenS is large. Notwithstanding, pre-
cise statements along these lines have only been made for theS → ∞ limit of the free
energies [4,27,28,36,45] and specific types of 1/S corrections [12,38,39].

A common shortcoming of the above studies is that neither spells explicit conditions
on the relative magnitude ofβ andS for which the classical behavior is exhibited. This
is of importance because, at sufficiently low temperatures, the relevant excitations are
quantum. For example, while the classical Heisenberg antiferromagnet on a finite bi-
partite graph has a continuum of ground states (related by the SO(3) symmetry), the
quantum Heisenberg antiferromagnet has a unique ground state [37]. Another example
is the 111-interface in the classical Ising model which, at zero temperature, is disor-
dered but may be stabilized by appropriate (but arbitrarily small) quantum perturba-
tions [9,32]. The control of the relevant quantum excitations is a non-trivial subject and
is usually accomplished only when finite-temperature effects are of little significance
for the overall behavior.

The preceding discussion is particularly important for systems which undergo phase
transitions. Here several techniques have been available—infrared bounds [20, 26],
chessboard estimates [23–25, 33] and contour expansions [10, 13, 14, 35]—some of
which (specifically, the latter two) are more or less based on the assumption that the
quantum system of interest has a strong classical component. However, while certain
conclusions happen to apply uniformly well even asS → ∞, the classical refer-
ence state of these techniques is usuallydiscrete(e.g., Ising type). This is quite unlike
theS → ∞ limit which inherently leads to acontinuous-spin, Heisenberg-like model.
Thus, the relation between the above “near-classical” techniques and theS → ∞ re-
sults discussed in the first paragraph is tenuous.

The purpose of this paper is to provide a direct connection between theS → ∞ ap-
proach to the classical limit of quantum spin systems and the proofs of phase transitions
by the traditional means of chessboard estimates. Explicitly, we establish the following
general fact:Whenever chessboard estimates can be used to prove a phase transition in
the classical system, a corresponding transition will occur in the quantum system pro-
vided

√
S is sufficiently larger than the inverse temperature. This permits us to prove
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phase transitions in systems with highly degenerate ground states, but without contin-
uous symmetry, as well as certain temperature driven phase transitions which have not
been accessible heretofore.

To highlight the main idea of our approach, let us recall how chessboard estimates
enter the proofs of phase transitions. Suppose a quantum system on the torus is parti-
tioned into disjoint blocks and a projector on a “bad event” is applied in some of the
blocks. The goal is to show that the expectation—in the quantum Gibbs state—of the
product of these projectors decays exponentially with the number of bad blocks. Here
the chessboard estimates offer a non-trivial simplification: The expectation to the in-
verse number of bad blocks is maximized by the configuration in which all blocks are
bad. In classical models, the latter quantity—sometimes referred to as theuniversal con-
tour—is often fairly easy to estimate by properly accounting for energy and entropy of
the allowed configurations. However, this is not the case once quantum effects get into
play; the only general technique that has been developed for this purpose is the “prin-
ciple of exponential localization” [25] which hinges on an approximate diagonalization
of the “universal projectors” and model-specific spectral estimates.

The main feature of our approach is that we bound the (relevant) universal contours
directly—namely, by the universal contours for theclassical(i.e.,S = ∞) version of
the quantum system. The technical estimate making this possible is a new bound on the
matrix element of the Gibbs-Boltzmann weight relative tocoherent states|�〉, which is
close in the spirit to the celebrated Berezin-Lieb inequalities [4, 36]. The result is that
〈�|e−βH

|�〉 is dominated by the classical Gibbs-Boltzmann weight times a correction
that is exponential inO(β/

√
S)× volume. Hence, ifβ �

√
S, the exponential growth-

rate of partition functions, even those constrained by various projectors, is close to that
of the classical system. This is ideally suited for an application of chessboard estimates
and the corresponding technology—developed in [23–25, 33]—for proving first-order
phase transitions. Unfortunately, the bound in terms of universal contour has to be per-
formed before the “conversion” to the classical setting and so we still require that the
quantum system is reflection positive.

To showcase our approach, we provide proofs of phase transitions in the following
five quantum systems (defined by their respective formal Hamiltonians):

(1) The anisotropic Heisenberg antiferromagnet:

H = +

∑
〈r ,r ′〉

S−2(J1Sx
r Sx

r ′ + J2Sy
r Sy

r ′ + Sz
r Sz

r ′) (1.1)

where 0≤ J1, J2 < 1.
(2) The non-linear XY-model:

H = −

∑
〈r ,r ′〉

P

(
Sx

r Sx
r ′ + Sy

r Sy
r ′

S2

)
(1.2)

whereP(x) = P1(x2)± xP2(x2) for two polynomialsP1,P2 (of sufficiently high
degree) with positive coefficients.

(3) The non-linear nematic model:

H = −

∑
〈r ,r ′〉

P
(
S−2(Sr · Sr ′)2

)
(1.3)

whereSr · Sr ′ = Sx
r Sx

r ′ + Sy
r Sy

r ′ + Sz
r Sz

r ′ and whereP is a polynomial—typically of
high degree—with positive coefficients.
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(4) The orbital compass model onZ2:

H =

∑
〈r ,r ′〉

{
S−2 Sx

r Sx
r ′ , if r ′

= r ± êx,

S−2 Sy
r Sy

r ′ , if r ′
= r ± êy.

(1.4)

(5) The 120-degree model onZ3:

H =

∑
〈r ,r ′〉

S−2 T j
r T j

r ′ if r ′
= r ± êj (1.5)

where

T j
r =


Sx

r , if j = 1,

−
1
2 Sx

r +

√
3

2 Sy
r , if j = 2,

−
1
2 Sx

r −

√
3

2 Sy
r , if j = 3.

(1.6)

Here〈r , r ′
〉 denotes a nearest-neighbor pair onZd—where unless specified we are only

assumingd ≥ 2—the symbol̂ej stands for the unit vector in thej -th lattice direction
andSr = (Sx

r , Sy
r , Sz

r ) is a triplet of spin-S operators for the spin at siter . The scaling
of all interactions by the indicated inverse powers ofS is necessary to make theS → ∞

limit meaningful.
Model (1) has been included only for illustration; the requisite transition was proved

for large anisotropy [25] and, in the context of the ferromagnet (which is not even re-
flection positive), for arbitrarily small anisotropy [31]. The classical versions of models
(2-4) feature strong order-disorder transitions at intermediate temperatures; cf [1, 16,
22, 33]. Here we will prove that corresponding transitions occur for large-S quantum
versions of these systems. Models (4-5) are quite unusual even at the classical level:
Notwithstanding the fact that the Hamiltonian has only discrete symmetries, there is a
continuumof ground states. As was shown in [6, 7], at positive temperatures the de-
generacy is lifted leaving only a finite number of preferential directions. The proofs
of [6, 7] involve (classical) spin-wave calculations not dissimilar to those of [18, 19].
However, since the massless spin-wave excitations are central to the behavior of these
systems—even at the classical level—it is by no means clear how to adapt the methods
of [10,13,14,20,23–25,31,33,35] to these cases.

The remainder of the paper is organized as follows: In the next section, we recall
the formalism of coherent states, which is the basis of manyS → ∞ limit results,
and the techniques of reflection positivity and chessboard estimates, which underline
many proofs of phase transitions in quantum systems. In Sect. 3 we state our main
theorems; the proofs come in Sect. 4. Applications to the various phase transitions in
the aforementioned models are the subject of Sect. 5. The Appendix (Sect. 6) contains
the proofs of some technical results that would detract from the main line of argument
in Sects. 5.3-5.5.

2. Preliminaries

In this section, we summarize standard and well-known facts about the SU(2) coherent
states (Sect. 2.1) and the techniques of chessboard estimates (Sect. 2.2). The purpose of
this section is mostly informative; a reader familiar with these concepts may skip this
section altogether and pass directly to the statement of main results in Sect. 3.
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2.1. Coherent states.Here we will recall the Bloch coherent states which were the basis
for rigorous control of various classical limits of quantum spin systems [4,27,28,36,45].
In a well defined sense, these states are the “closest” objects to classical states that
one can find in the Hilbert space. Our presentation follows closely Lieb’s article [36];
some of the calculations go back to [3]. The theory extends to general compact Lie
groups, see [17, 45] for results at this level of generality. The literature on the subject
of coherent states is quite large; we refer to, e.g., [2, 42] for comprehensive review and
further references.

GivenS ∈ {1/2,1, 3/2, . . . }, consider the(2S + 1)-dimensional irreducible represen-
tation of the Lie algebrasu(2). The generators,(Sx, Sy, Sz), obeying the commutation
rules [Si , Sj ]= 2iεi jk Sk, are operators acting on span{|M〉 : M = −S,S + 1, . . . ,S −

1,S} ' C2S+1. In terms of spin-rasing/lowering operators,S±
= Sx

± i Sy, we have

Sz
|M〉 = M |M〉,

S+
|M〉 =

√
S(S + 1)− M(M + 1) |M + 1〉,

S−
|M〉 =

√
S(S + 1)− M(M − 1) |M − 1〉.

(2.1)

In particular,Sx andSz are real whileSy is purely imaginary.
The classical counterpart ofsu(2)-spins are vectors on the two-dimensional unit

sphereS2 in R3. For each� ∈ S2, one defines the coherent state vector in the direction
� to be

|�〉 =

S∑
M=−S

(
2S

S + M

)1/2

[cos(θ/2)]
S+M [sin(θ/2)]

S−M ei(S−M)φ
|M〉. (2.2)

Here (θ, φ) are the spherical coordinates of�, with θ denoting the azimuthal angle
andφ denoting the polar angle. Letζ = tan(θ/2)eiφ denote the stereographic projection
from S2 to C. Then (2.2) can be written as

|�〉 = eζS−
−ζ̄S+

|S〉 = [1 + |ζ |2]−S eζS−

|S〉

= [cos(θ/2)]
2S exp(tan(θ/2)e

iφS−) |S〉 . (2.3)

One important property of the coherent state|�〉 is that it is an eigenvector of the matrix
� · S with maximal eigenvalue:

(� · S)|�〉 = S|�〉 . (2.4)

This equation characterizes the vector|�〉 up to a phase factor. The choice of the phase
factors may seem arbitrary, but in practice they will cancel in all the formulas we use.

The fact that the states|�〉 have been defined relative to the basis in (2.1) is inconse-
quential. Indeed, a rotation of a coherent state is, to within a harmless phase factor, the
coherent state corresponding to the rotated vector. More precisely, for eachω ∈ S2 and
t ∈ R, one may consider the unitaryUω,t = ei t (ω·S). Then, for any� ∈ S2, a simple
calculation shows that

Uω,t (� · S)U+
ω,t = Rω,t (�) · S, (2.5)

where Rω,t ∈ SO(3) is the rotation about the ray passing throughω by the anglet .
Because of thisUω,t |�〉 satisfies (2.4) with� replaced byRω,t (�) and so

Uω,t |�〉 = ei f (�,ω,t)
|Rω,t (�)〉 ,
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for some phase factorf (�, ω, t). Since SU(2) is a double cover of SO(3),f (�, ω,2π)
is not necessarily 0 (mod 2π ); rather ei f (�,ω,2π)

= (−1)2S .

The explicit formula (2.2) for|�〉 yields

〈�′
|�〉 =

[
cos(θ/2) cos(θ ′

/2)+ ei(φ−φ′) sin(θ/2) sin(θ ′
/2)

]2S
. (2.6)

Defining the angle between� and�′ to be2, one also has∣∣〈�′
|�〉

∣∣ = [cos(2/2)]
2S . (2.7)

Another formula that is directly checked from (2.2) is

1 =
2S + 1

4π

∫
S2

d� |�〉〈�|, (2.8)

where d� denotes the uniform surface measure onS2 with total mass 4π .
Given any operatorA on C2S+1, one can form what is commonly known as the

lower symbol, which is a function� 7→ 〈A〉� defined by

〈A〉� := 〈�|A|�〉. (2.9)

(Here and henceforth,〈�|A|�〉 denotes the inner-product of|�〉 with the vectorA|�〉.)
While not entirely obvious, it turns out that the trace ofA admits the formula

Tr(A) =
2S + 1

4π

∫
S2

d� 〈A〉�. (2.10)

There is also a generalization of (2.8): There exists a function� 7→ [ A]� such that

A =
2S + 1

4π

∫
S2

d� [ A]� |�〉〈�|. (2.11)

Any such� 7→ [ A]� is called anupper symbolfor A. Unfortunately, such a function is
not unique and so [A]� actually represents an equivalence class of functions. Obviously
〈A+ B〉� = 〈A〉�+〈B〉�. For the upper symbols, if [A]� and [B]� are upper symbols
for A andB then [A + B]�= [ A]�+[B]� is an upper symbol forA + B.

When A = 1, one has〈1〉� = 1 and, by (2.8), one can also choose [A]�= 1.
However, it is usually not the case that the lower symbol is also an upper symbol, e.g.,
we have

〈Sx
〉� = S sinθ cosφ,

〈Sy
〉� = S sinθ sinφ,

〈Sz
〉� = S cosθ,

[Sx]� = (S + 1) sinθ cosφ,

[Sy]� = (S + 1) sinθ sinφ,

[Sz]� = (S + 1) cosθ.

(2.12)

As is easily checked, the leading order inS of these expressions is exactly the classical
counterpart of the corresponding operator. For more complicated products of the spin
components, both symbols develop lower-order “non-classical” corrections but, as was
shown in [17, Theorem 2], the leading order term is always the classical limit.

The above formalism generalizes to collections of many spins. Let3 be a finite set
and, for eachr ∈ 3, let (S1

r , S2
r , S3

r ) be the spin operator for the spin atr . We will as-
sume that the spins at all sites have magnitudeS, so we assume to have a joint (product)
representation of these spins onH3 =

⊗
r ∈3[C2S+1]r . Consider an assignment of a
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classical spin�r ∈ S2 to eachr ∈ 3 and denote the resulting configuration(�r )r ∈3

by�. The desired product coherent state then is

|�〉 :=
⊗
r ∈3

|�r 〉. (2.13)

Given an operatorA onH3, we define its lower symbol by the generalization of (2.9),

〈A〉� = 〈�|A|�〉, � ∈ (S2)
|3|. (2.14)

With this lower symbol we may generalize (2.10) into

TrH3
(A) =

(
2S + 1

4π

)|3| ∫
(S2)|3|

d� 〈A〉�. (2.15)

There is also a representation ofA in terms of an upper symbol [A]�,

A =

(
2S + 1

4π

)|3| ∫
(S2)|3|

d� [ A]� |�〉〈�|, (2.16)

where d� is the product surface measure on(S2)
|3| and where� 7→ [ A]� is now a

function (S2)
|3|

→ C. A special case of this formula is the resulution of the identity
onH3. Note that (2.16) allows us to substitute [A]� for 〈A〉� in (2.15).

It is easy to check that� 7→ [ A]� has the expected behavior under (tensor) prod-
uct of operators, provided these respect the product structure ofH3. Indeed, suppose
that3 is the disjoint union of31 and32 and let|�1〉 and |�2〉 be product coherent
states fromH31 andH32, respectively. Given two operatorsA1 : H31 → H31 and
A2 : H32 → H32, let [A1]�1 and [A2]�2 be their associated upper symbols. Then

[ A1 ⊗ A2](�1,�2) := [ A1]�1 [ A2]�2 (2.17)

is an upper symbol ofA1 ⊗ A2 relative to state|(�1, �2)〉 = |�1〉⊗ |�2〉. On the other
hand, if [A]� depends only on(�r )r ∈3′ where3′ $ 3, then we can perform a partial
trace in (2.16) by integrating over the(�r )r ∈3r3′ and applying (2.8) for each integral.

2.2. Chessboard estimates.Next we will review the salient features of the technology
of reflection positivity/chessboard estimates which was developed and applied to both
classical and quantum systems in the works of F. Dyson, J. Fröhlich, R. Israel, E. Lieb,
B. Simon and T. Spencer [20,23–26].

Consider aC?-algebraA and suppose thatA+ andA− arecommutingsubalgebras
which are “mirror images” of each other in the sense that there is an algebraic automor-
phismθ : A → A such thatθ(A±) = A∓ andθ2

= id. Assuming thatA is represented
in terms of complex matrices, forA ∈ A we defineĀ to be the complex conjugate—not
the adjoint—ofA. We will always assume thatA is closed under complex conjugation.
Note that, since complex conjugation is not a “covariant operation,” the representation
of A ought to stay fixed throughout all calculations involving complex conjugation.

A relevant example of the above setting is a quantum spin-S system on thed-
dimensional torusTL of L × · · · × L sites, withL even, which we think of as a union
of two disjoint symmetric halves,T+

L and T−

L . (Note thatTL can also be identified
with Zd/LZd. Of course the origin 0∈ Zd maps to the origin of the torus.) ThenA is
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theC?-algebra of all observables—represented by(2S + 1)|TL | dimensional complex
matrices—andA± are the sets of observables onT±

L , respectively. Explicitly,A+ are
matrices of the formA+ ⊗ 1, whereA+ “acts” only onT+

L , while the matrices inA−

take the form1⊗ A−. The operationθ is the map that interchanges the “left” and “right”
half of the torus; e.g., in a properly parametrized basis,θ(A+ ⊗ 1) = 1 ⊗ A+. The fact
thatθ arises from a reflection leads to the following concept:

Definition 2.1. Let 〈−〉 be a state—i.e., a continuous linear functional—onA and letθ
be as above. We say that〈−〉 is reflection positive(relative toθ ) if for all A , B ∈ A+,〈

Aθ(B)
〉
=

〈
B θ(A)

〉
(2.18)

and 〈
Aθ(A)

〉
≥ 0. (2.19)

The following condition, derived in [20, Theorem E.1] and in [25, Theorem 2.1], is
sufficient for the Gibbs state to have the above property:

Theorem 2.2 (Reflection positivity—sufficient condition).Given a reflection ofTL
as described above and usingθ to denote the associated reflection operator, if the
Hamiltonian of a quantum system onTL can be written as

H = C + θ(C)−

∫
%(dα) Dα θ(Dα), (2.20)

where C, Dα ∈ A+ and% is a (finite) positive measure, then the canonical Gibbs state
〈−〉L ,β , which is defined by

〈A〉L ,β =
TrHTL

(e−βH A)

TrHTL
(e−βH )

, (2.21)

is reflection positive relative toθ for all β ≥ 0.

The crux of the proof of (2.19) is the fact that theβ = 0 state isgeneralized re-
flection positive, i.e.,〈A1θ(A1) . . . Anθ(An)〉L ,0 ≥ 0. The rest follows by a Lie-Trotter
expansion of e−βH into powers of the last term in (2.20)—hence the need for aminus
sign in front of the integral.

Remark 2.3.We reiterate that the reflections ofTL considered here are always for
“planes of reflections”betweensites. In classical models one can also consider the
(slightly more robust) reflections for “planes” on sites. However, due to non-commu-
tativity issues, Theorem 2.2 does not seem to generalize to quantum systems for these
kinds of reflections.

Reflection positivity has two important (and related) consequences:Gaussian domi-
nation—leading ultimately to infrared bounds—andchessboard estimates. In this work
we make no use of the former; we proceed by discussing the details of the latter.

Let 3B be a block ofB × · · · × B sites with the “lower-left” corner at the ori-
gin. Assuming thatL is a multiple ofB, we can tileTL by disjoint translates of3B.
The positions of these translates are given byB-multiples of vectorst from the factor
torusTL/B. In particular, if3B + r denotes the translate of3B by r ∈ TL , thenTL
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is the disjoint union
⋃

t∈TL/B
(3B + Bt). Let A3B denote the algebra of observables

in 3B, i.e., eachA ∈ A3B has the formA = AB ⊗ 1, whereAB acts only on the por-
tion of the Hilbert space corresponding to3B. For eachA ∈ A3B and eacht ∈ TL/B

with |t| = 1, we can define an antilinear operatorϑ̂t(A) in 3B + Bt by

ϑ̂t(A) = θ(A) (2.22)

whereθ is the operator of reflection along the corresponding side of3B. By taking
further reflections, we can definêϑt(A) for everyt ∈ TL/B. (Thusϑ̂t is linear for even-
parity t and antilinear for odd-parityt; if every component oft is even then̂ϑt is simply
the translation byBt.) It is easy to check that the resultingϑ̂t(A) does not depend on
what sequence of reflections has been used to generate it.

The fundamental consequence of reflection positivity, derived in a rather general
form in [25, Theorem 2.2], is as follows:

Theorem 2.4 (Chessboard estimate).Suppose that the state〈−〉 is reflection positive
for any “plane of reflection” between sites onTL . Then for any A1, . . . , Am ∈ A3B

and anydistinctvectorst1, . . . , tm ∈ TL/B,〈
m∏

j =1

ϑ̂t j (A j )

〉
≤

m∏
j =1

〈 ∏
t∈TL/B

ϑ̂t(A j )

〉(B/L)d

. (2.23)

By (2.23) we may bound the expectation of a product of operators by product of ex-
pectations of so called “disseminated” operators. As we will show on explicit examples
later, these are often easier to estimate. Note that the giant products above can be written
in any order by our assumption that the block-operators in different blocks commute.

A corresponding statement works also for classical reflection-positive measures.
The only formal difference is that theA j ’s are replaced by functions, or indicators
of eventsA j , which depend only on the spin configuration in3B. Then equation (2.23)
becomes

P
( m⋂

j =1

θt j (A j )

)
≤

m∏
j =1

P
( ⋂

t∈TL/B

θt(A j )

)(B/L)d

. (2.24)

Hereθt(A) is the (usual) reflection ofA to the block3B + Bt. (We reserve the sym-
bol ϑt(A) for an operation that more closely mimicsϑ̂t in the coherent-state represen-
tation; see the definitions right before Proposition 3.4.) Refs. [5,6,8] contain a detailed
account of the above formalism in the classical context; the original statements are, of
course, due to [23–25].

Remark 2.5.Unlike its classical counterpart, the quantum version of reflection positiv-
ity is a rather mysterious concept. First, for most of the models listed in the introduction,
in order to bring the Hamiltonian to the form (2.20), we actually have to perform some
sort of rotation of the spins. (We may think of this as choosing a different representation
of the spin operators.) The purpose of this operation is to have all spins “represented”
by real-valued matrices, while making the overall sign of the interactions negative. This
permits an application of Theorem 2.2.

It is somewhat ironic that this works beautifully for antiferromagnets, which thus
become effectively ferromagnetic, but fails miserably [47] for genuine ferromagnets.
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For XY-type models, when only two of the spin-components are involved in the inter-
action, we can always choose a representation in which all matrices are real valued. If
only quadratic interactions are considered (as for the nematics) the overall sign is in-
consequential but, once interactions of different degrees are mixed—even if we just add
a general external field to the Hamiltonian—reflection positivity may fail again.

3. Main results

We now give precise statements of our main theorems. First we will state a bound
on the matrix elements of the Gibbs-Boltzmann weight in the (overcomplete) basis of
coherent states. On the theoretical side, this result generalizes the classic Berezin-Lieb
inequalities [4,36] and thus provides a more detailed demonstration of the approach to
the classical limit asS → ∞. On the practical side, the bound we obtain allows us to
replace the “exponential localization” technique of Fröhlich and Lieb [25]—which is
intrinsically quantum—by an estimate for the classical version of the model.

The rest of our results show in detail how Theorem 3.1 fits into the standard line of
proof of phase transitions via chessboard estimates. In Sect. 5 we will apply this general
strategy to the five models of interest.

3.1. Matrix elements of Gibbs-Boltzmann weights.We commence with a definition of
the class of models to which our arguments apply. Consider a finite set3 ⊂ Zd and, for
each0 ⊂ 3, let h0 be an operator onH3 =

⊗
r ∈3[C2S+1]r that depends only on the

spins in0. (I.e.,h0 is a tensor product of an operator onH0 and the unity onH3r0.)
We will assume thath0 = 0 if the size of0 exceeds some finite constant, i.e., each
interaction term involves only a bounded number of spins. The Hamiltonian is then

H =

∑
0 : 0⊂3

h0. (3.1)

Most of the interesting examples are such thath0 = 0 unless0 is a two point set{x, y}

containing a pair of nearest neighbors onZd—as is the case of all of the models (1-5)
discussed in Sect. 1.

As already noted, our principal technical result is a bound on the matrix element
〈�|e−βH

|�′
〉. To state this bound precisely, we need some more notation. Let� 7→

[h0]� be an upper symbol of the operatorh0 which, by (2.17), may be assumed inde-
pendent of the components(�r )x 6∈0. Wefix the upper symbol ofH to

[H ]�=

∑
0 : 0⊂3

[h0]�. (3.2)

We will also use|0| to denote the number of elements in the set0 and‖h0‖ to denote
the operator norm ofh0 onH3.

Let |�r −�
′
r | denote the (3-dimensional) Euclidean distance of the points�r and�′

r
onS2, and consider the following̀1 and`2-norms on(S2)

|3|:

‖�−�′
‖1 =

∑
r ∈3

|�r −�′
r | (3.3)
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and

‖�−�′
‖2 =

( ∑
r ∈3

|�r −�′
r |

2
)1/2

. (3.4)

Besides these two norms, we will also need the “mixed” quantity

dS(�,�
′) =

∑
r ∈3

(√
S|�r −�′

r | ∧ S|�r −�′
r |

2), (3.5)

where∧ denotes the minimum. This is not a distance function but, as will be explained
in Lemma 4.2, it does satisfy an inequality which could be compared to the triangle
inequality. Finally, from (2.7) we know that|〈�r |�

′
r 〉| = 1− O(S|�r −�′

r |
2). Hence,

there isη > 0 such that ∣∣〈�|�′
〉
∣∣ ≤ e−ηS‖�−�′

‖
2
2 (3.6)

holds for allS, all�,�′
∈ (S2)

|3| and all3. We fix thisη throughout all forthcoming
derivations. (Since [cos(2/2)]2= 1 − 1/4‖� − �′

‖
2 for a single spin, we haveη = 1/4.

But η plays only a marginal role in our calculations so we will leave it implicit.) Our
first main theorem then is:

Theorem 3.1.Suppose that there exists a number R such that

|0| > R ⇒ h0 = 0, (3.7)

and that, for some constants c0 and c1 independent ofS and3, we have

sup
x∈3

∑
0 :x∈0⊂3

‖h0‖ ≤ c0 (3.8)

as well as the Lipschitz bound∣∣[h0]�−[h0]�′

∣∣ ≤ c1‖�−�′
‖1‖h0‖, 0 ⊂ 3. (3.9)

Then for any constant c2 > 0, there exists a constant c3 > 0, depending only on c0, c1,
c2 and R, such that for allβ ≤ c2

√
S,∣∣〈�|e−βH

|�′
〉
∣∣ ≤ e−β[H ]�−η dS (�,�′)+c3β|3|/

√
S (3.10)

holds for all�,�′
∈ (S2)

|3| and all finite3.

Note that we do not assume that the Hamiltonian is translation-invariant. In fact, as
long as the conditions (3.7–3.9) hold as stated, the geometry of the underlying set is
completely immaterial. For the diagonal elements—which is all we need in the subse-
quent derivations anyway—the above bound becomes somewhat more transparent:

Corollary 3.2. Suppose (3.7–3.9) hold and let c2 and c3 be as in Theorem 3.1. Then for
all β andS with β ≤ c2

√
S, all� ∈ (S2)

|3| and all3,

e−β〈H〉� ≤ 〈�|e−βH
|�〉 ≤ e−β[H ]�+c3β|3|/

√
S (3.11)
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It is interesting to compare this result with the celebrated Berezin-Lieb inequali-
ties [4, 36] which state the following bounds between quantum and classical partition
functions:∫

(S2)|3|

d�

(4π)|3|
e−β〈H〉� ≤

TrH3
(e−βH )

(2S + 1)|3|
≤

∫
(S2)|3|

d�

(4π)|3|
e−β[H ]� . (3.12)

(An unpublished proof of E. Lieb, cf [46], shows both inequalities are simple conse-
quences of Jensen’s inequality; the original proof [36] invoked also the “intrinsically
non-commutative” Golden-Thompson inequality.) From Corollary 3.2 we now know
that, to within a correction of orderβ/

√
S, the estimates corresponding to (3.12) hold

even for the (diagonal) matrix elements relative to coherent states. However, the known
proofs of (3.12) use the underlying trace structure in a very essential way and are not
readily extended to a generalization along the lines of (3.11).

Remarks 3.3.Some comments are in order:

(1) The correction of orderβ|3|/
√
S is the best one can do at the above level of gener-

ality. Indeed, when� and�′ are close in the sense‖�−�′
‖1 = O(|3|/

√
S), then

[H ]� and [H ]�′ differ by a quantity of orderc1|3|/
√
S. Since the matrix element

is symmetric in� and�′, the bound must account for the difference. However,
there is a deeper reason whyβ/

√
S needs to be small for the classical Boltzmann

weight to faithfully describe the matrix elements of the quantum Boltzmann weight.
Consider a single spin with the HamiltonianH = S−1Sz, and let� correspond to
the spherical angles(θ, φ). A simple calculation shows that then

〈�|e−βH
|�〉 =

[
cos2(θ/2)e

−
1
2β/S + sin2(θ/2)e

1
2β/S

]2S

= e−β cosθ+ β2

4S (1−cos2 θ)+O(β3/S2)
(3.13)

The termβ cosθ is the (now unambiguous) classical interaction in “state”�. The
leading correction is of orderβ2/S, which is only small ifβ �

√
S.

(2) Another remark that should be made, lest the reader think about optimizing over
the many choices of upper symbols in (3.10): The constantc3 depends on the upper
symbol. Forh0 being a polynomial in spin operators, [h0] may be chosen a poly-
nomial too [17, Proposition 3]. This automatically ensures properties such as the
Lipschitz continuity (as well as existence of the classical limit, cf (3.14)). For more
complexh0 ’s—e.g., those defined by an infinite power series—one must carefully
check the conditions (3.7–3.9) before Theorem 3.1 can be applied.

3.2. Absence of clustering.Our next task is to show how Theorem 3.1 can be applied to
establish phase transitions in models whose (S → ∞) classical version exhibits a phase
transition that can be proved by means of chessboard estimates. The principal conclu-
sion is theabsence of clusteringwhich, as we will see in Sect. 3.3, directly implies a
quantum phase transition.

Consider the setting as described in Sect. 2.2, i.e., we have a torusTL of sideL which
is tiled by(L/B)d disjoint translates of a block3B of sideB. For each operator in3B

and eacht ∈ TL/B, we write ϑ̂t(A) for the appropriate reflection—accompanied by
complex conjugation ift is an odd parity site—ofA “into” the block3B + Bt. In addi-
tion to the operators onHTL =

⊗
t∈TL

[C2S+1]t , we will also consider eventsA on the
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space of classical configurations(S2)
|TL | equipped with the Borel productσ-algebra

and the product surface measure d� =
∏

r ∈TL
d�r . If A is an event that depends only

on the configuration in3B, we will call A a B-block event. For eacht ∈ TL/B, we
useθt(A) to denote the event in3B + Bt that is obtained by (pure) reflection ofA
“into” 3B + Bt.

Given a quantum HamiltonianH of the form (3.1), let〈−〉L ,β denote the thermal
state (2.21). Considering theclassicalHamiltonian H∞ : (S2)

|TL |
→ R, which we

define as
H∞(�) = lim

S→∞

〈H〉� = lim
S→∞

[H ]�, (3.14)

we usePL ,β to denote the usual Gibbs measure. Explictly, for any eventA ⊂ (S2)
|TL |,

PL ,β(A) =

∫
A

d�
e−βH∞(�)

ZL(β)
, (3.15)

whereZL(β) is the classical partition function. For eachB-block eventA we will also
consider its disseminated version

⋂
t∈TL/B

θt(A) and introduce the abbreviation

pL ,β(A) =

[
PL ,β

( ⋂
t∈TL/B

θt(A)
)](B/L)d

(3.16)

for the corresponding quantity on the right-hand side of (2.24). An application of (2.23)
shows thatA 7→ pL ,β(A) is an outer measure on theσ-algebra ofB-block events
(cf [6, Theorem 6.3]).

For each measurable setA ⊂ (S2)
|TL | we consider the operator

Q̂A =

(
2S + 1

4π

)|TL | ∫
A

d� |�〉〈�|. (3.17)

Since the coherent states are overcomplete, this operator is not a projection; notwith-
standing, we maythink of it as a non-commutative counterpart of the indicator of the
eventA. In order to describe the behavior of̂QA underϑ̂t , we introduce the classi-
cal versionϑt of ϑ̂t which is defined as follows: Consider a “complex-conjugation”
mapσ: (S2)

|TL |
→ (S2)

|TL | which, in a given representation of the coherent states,
has the effect

|�〉〈�| = |σ�〉〈σ�|. (3.18)

For the representation introduced in Sect. 2.1, we can chooseσ to be the reflection
through thexz-plane (in spin space), i.e., if� = (θ, φ) thenσ(�) = (θ,−φ). For
even parityt ∈ TL/B, we simply haveϑt = θt while for odd parityt ∈ TL/B we
haveϑt = θt ◦ σ.

Here are some simple facts about theQ̂-operators:

Proposition 3.4.For any B-block eventA we have

ϑ̂t(Q̂A) = Q̂ϑt(A), t ∈ TL/B. (3.19)

Moreover, ifA1, . . . ,Am are B-block events andt1, . . . , tm are distinctelements from
TL/B, then

[ Q̂θti (Ai ), Q̂θt j (A j )]= 0, 1 ≤ i < j ≤ m, (3.20)



14 M. Biskup, L. Chayes and S. Starr

and

Q̂θt1(A1) . . . Q̂θtm(Am) = Q̂θt1(A1)∩···∩ θtm(Am). (3.21)

Finally, Q̂ of the full space (i.e.,(S2)
|TL |) is the unity,Q̂∅ = 0, and ifA1,A2, . . . is a

countable collection of disjoint events, then (in the strong-operator topology)

Q̂⋃
∞

n=1An
=

∞∑
n=1

Q̂An . (3.22)

In particular, Q̂Ac = 1 − Q̂A for any eventA.

Proof.The mapϑ̂t is a pure reflection for even-parityt ∈ TL/B and so (3.19) holds by
the fact that pure reflection of̂QA is Q̂ of the reflectedA. For odd-parityt, the relation

(3.18) impliesQ̂A = Q̂σ(A), which yields (3.19) in these cases as well. The remaining
identities are easy consequences of the definitions and (2.8).ut

Remark 3.5.The last few properties listed in the lemma imply that the mapA → Q̂A
is a positive-operator-valued (POV) measure, in the sense of [15]. As a consequence,
if A ⊂ A′ then Q̂A ≤ Q̂A′ while if {An} is a countable collection of events, not
necessarily disjoint, then

Q̂⋃
∞

n=1An
≤

∞∑
n=1

Q̂An . (3.23)

Both of these properties are manifestly true by the definition (3.17).

Before we state our next theorem, let us recall the “standard” setting for the applica-
tion of chessboard estimates to proofs of phase transitions inclassicalmodels. GivenB
that dividesL, one typically singles out a collectionG1, . . . ,Gn of “good” B-block
events and defines

B = (G1 ∪ · · · ∪ Gn)
c (3.24)

to be the corresponding “bad”B-block event. Without much loss of generality we will
assume thatB is invariant under “complex” reflections, i.e.,ϑt(B) = τBt(B), whereτr
denotes the shift byr on (S2)

|TL |. In the best of situations, carefully chosen good
events typically satisfy the conditions in the following definition:

Definition 3.6. We say that the “good” B-block events areincompatibleif

(1) they are mutually exclusive, i.e.,Gi ∩ G j = ∅ whenever i6= j ;
(2) their simultaneous occurrence at neighboring blocks forces an intermediate block

(which overlaps the two neighbors) i.e., there exists` with 1 ≤ ` < B such that

θt(Gi ) ∩ θt′(G j ) ⊂ τBt+`(t′−t)(B) (3.25)

holds for all i 6= j and anyt, t′ ∈ TL/B with |t − t′| = 1. Hereτr is the shift byr .
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These conditions are much easier to achieve in situations where we are allowed to
use reflections through planes containing sites. Then, typically, one defines theGi ’s so
that the neighboring blockscannothave distinct types of goodness. But as noted in
Remark 2.3, we are not allowed to use these reflections in the quantum setting. Nev-
ertheless, (1) and (2) taken together do ensure that a simultaneous occurrence of two
distinct types of goodness necessarily enforces a “contour” of bad blocks. The weight
of each such contour can be bounded by the quantitypL ,β(B) to the number of consti-
tuting blocks; it then remains to show thatpL ,β(B) is sufficiently small. For quantum
models, appropriate modifications of this strategy yield the following result:

Theorem 3.7.Consider a quantum spin system onTL with spinS and interaction for
which the Gibbs state〈−〉L ,β from (2.21) is reflection positive for reflections through
planes between sites onTL . Let H∞ be a function andξ > 0 a constant such that, for
all L ≥ 1,

sup
�∈(S2)

|TL |

∣∣[H ]�−H∞(�)
∣∣ + sup

�∈(S2)
|TL |

∣∣〈H〉� − H∞(�)
∣∣ ≤ ξ |TL |. (3.26)

LetG1, . . . ,Gn be incompatible “good” B-block events and defineB as in(3.24). Sup-
pose thatB is invariant under reflections and conjugationσ, i.e.,ϑt(B) = τBt(B) for
all t ∈ TL/B. Fix ε > 0. Then there existsδ > 0 such that ifβ ≤ c2

√
S and

pL ,β(B)eβ(ξ+c3/
√
S) < δ, (3.27)

where c2 and c3 are as in Theorem 3.1, we have〈
Q̂B

〉
L ,β < ε (3.28)

and, for all i = 1, . . . ,n and all distinctt1, t2 ∈ TL/B,〈
Q̂θt1(Gi )[1 − Q̂θt2(Gi )]

〉
L ,β

< ε. (3.29)

Hereδ may depend onε and d, but not onβ, S, n nor on the details of the model.

Remarks 3.8.Here are some notes concerning the previous theorem:

(1) By general results (e.g., [17]) on the convergence of upper and lower symbols
asS → ∞, the quantityξ in (3.26) can be made arbitrarily small by increasingS
appropriately. In fact, for two-body interactions,ξ is typically a small constant
times 1/S and so it provides a harmless correction to the termc3/

√
S in (3.27).

In particular, apart from the classical bound thatpL ,β(B) � 1, (3.27) will only
require thatβ �

√
S.

(2) Note that the result is stated for pure reflections,θt(Gi ), of the good events, not
their more complicated counterpartsϑt(Gi ). This is important for maintaining a
close link between the nature of phase transition in the quantum model and its clas-
sical counterpart. We also note thatH∞ is not required to be reflection positive for
Theorem 3.7 to hold. (Notwithstanding, the classical Hamiltonian will be reflection
positive for all examples in Sect. 5.)
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(3) The stipulation that theϑt ’s “act” onB only as translations is only mildly restrictive:
Indeed,σ(B) = B in all cases treated in the present work. However, if it turns out
that σ(B) 6= B, the condition (3.27) may be replaced by√

pL ,β(B)pL ,β
(
σ(B)

)
eβ(ξ+c3/

√
S) < δ, (3.30)

which—sincepL ,β(σ(B)) ≤ 1—is anyway satisfied by a stricter version of (3.27)
(this does need reflection positivity ofH∞). Note thatσ(B) = B implies that every
configuration inσ(Gi ) is also good. In most circumstances we expect thatσ(Gi ) is
one of the good events.

3.3. Phase transitions in quantum models.It remains to show how to adapt the main
conclusion of Theorem 3.7 to the proof of phase transition in quantum systems. We
first note that (3.27) is a condition on theclassicalmodel which, forδ small, yields a
classical variant of (3.29),

PL ,β
(
θt1(Gi ) ∩ θt2(G

c
i )

)
< ε, 1 ≤ i ≤ n. (3.31)

Under proper conditions onε and the probabilities of theGi ’s, this yields absence of
clustering for the classical torus Gibbs state which, by a conditioning “on the back of
the torus”—see the paragraph before Lemma 4.5—implies the existence of multiple
infinite-volume Gibbs measures.

For a quantum system with an internal symmetry, a similar argument allows us to
deal with the cases when the symmetry has been “spontaneously” broken. For instance
(see [25]) in magnetic systems (3.29) might imply the non-vanishing of the sponta-
neous magnetization which, in turn, yields a discontinuity in some derivative of the free
energy, i.e., athermodynamicphase transition. In the cases with no symmetry—or in
situations where the symmetry is not particularly useful, such as for temperature-driven
phase transitions—we can still demonstrate a thermodynamic transition either by con-
cocting an “unusual” external field (which couples to distinct types of good blocks) or
by directly proving a jump e.g. in the energy density.

An elegant route to these matters is via the formalism of infinite-volume KMS states
(see, e.g., [30,46]). Let us recall the principal aspects of this theory: Consider theC? al-
gebraA of quasilocal observables defined as the norm-closure of

⋃
3⊂Zd A3, where

the union is over all finite subsets3 and whereA3 is the set of all bounded operators on
the Hilbert spaceH3 =

⊗
r ∈3[C2S+1]r . (To interpret the union properly, we note that

if 3 ⊂ 3′, thenA3 is isomorphic to a subset ofA3′ , via the mapA → A ⊗ 1 with 1
being the identity inA3′\3.) For eachL ≥ 1, let us identifyTL with the block3L and
let HL be the Hamiltonian onTL which we assume is of the form (3.1) withh0 finite
range and translation invariant.

For each observableA ∈ A3L , let α(L)t (A) = ei t HL Ae−i t HL be the strongly-conti-
nuous one-parameter family of operators representing the time evolution ofA in the
Heisenberg picture. ForA local andHL finite range, by expanding into a series of
commutators

α
(L)
t (A) =

∑
n≥0

(i t)n

n!
[HL [HL . . . [HL , A]. . . ]] , (3.32)
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the mapt 7→ α
(L)
t (A) extends to allt ∈ C, see [30, Theorem III.3.6]. Moreover, the

infinite series representation ofα(L)t (A) converges in norm, asL → ∞, to a one-
parameter family of operatorsαt (A), uniformly in t on compact subsets ofC. (These
facts were originally proved in [43].)

A state〈−〉β onA—i.e., a linear functional obeying〈A〉β ≥ 0 if A ≥ 0 and〈1〉β =

1—is called aKMS state(for the translation-invariant, finite-range interactionH at
inverse temperatureβ) if for all local operatorsA, B ∈ A, the equality

〈AB〉β =
〈
α−iβ(B)A

〉
β
, (3.33)

also known as theKMS condition, holds. This condition is the quantum counterpart
of the DLR equation from classical statistical mechanics and a KMS state is thus the
counterpart of the infinite-volume Gibbs measure.

We proceed by stating two general propositions which will help us apply the results
from previous sections to the proof of phase transitions. We begin with a statement
which concerns phase transitions due to symmetry breaking:

Proposition 3.9.Consider the quantum spin systems as in Theorem 3.7 and suppose
that the incompatible good block eventsG1, . . . ,Gn are such that〈Q̂Gk〉L ,β is the same
for all k = 1, . . . ,n. If (3.28–3.29) hold with anε such that(n + 1)ε < 1/2, then there
exist n distinct, KMS states〈−〉

(k)
β , k = 1, . . . ,n, which are invariant under translations

by B and for which

〈
Q̂Gk

〉(k)
β

≥ 1 − (n + 1)ε, k = 1, . . . ,n. (3.34)

The proposition says that there are at leastn distinct equilibrium states. There may
be more, but not less. This ensures a phase transition, via phase coexistence.

Our second proposition deals with temperature driven transitions. The following is
a quantum version of one of the principal theorems in [33,34]:

Proposition 3.10.Consider the quantum spin systems as in Theorem 3.7 and letG1
andG2 be two incompatible B-block events. Letβ1 < β2 be two inverse temperatures
and suppose thatε ∈ [0, 1/4) is such that for all L≥ 1,

(1) the bounds (3.28–3.29) hold for allβ ∈ [β1, β2],
(2) 〈Q̂G1〉L ,β1 ≥ 1 − 2ε and〈Q̂G2〉L ,β2 ≥ 1 − 2ε.

Then there exists an inverse temperatureβt ∈ [β1, β2] and two distinct KMS states
〈−〉

(1)
βt

and〈−〉
(2)
βt

at inverse temperatureβt which are invariant under translations by B
and for which 〈

Q̂G1

〉(1)
βt

≥ 1 − 4ε and
〈
Q̂G2

〉(2)
βt

≥ 1 − 4ε. (3.35)

The underlying idea of the latter proposition is the existence of a forbidden gap in the
density of, say,G1-blocks. Such “forbidden gap” arguments have been invoked in (lim-
iting) toroidal states by, e.g., [29, 33, 34]; an extension to infinite-volume, translation-
invariant, reflection-positive Gibbs states has appeared in [8]. Both propositions are
proved in Sect. 4.3.
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4. Proofs

Here we provide the proofs of our general results from Sect. 3. We begin by the es-
timates of matrix elements of Gibbs-Boltzmann weight (Theorem 3.1) and then, in
Sect. 4.2, proceed to apply these in quasiclassical Peierls’ arguments which lie at the
core of Theorem 3.7. Finally, in Sect. 4.3, we elevate the conclusions of Theorem 3.7
to coexistence of multiple KMS states, thus proving Propositions 3.9-3.10.

4.1. Bounds on matrix elements.The proof of Theorem 3.1 is based on a continuity
argument whose principal estimate is encapsulated into the following claim:

Proposition 4.1.Suppose that (3.7–3.9) hold with constants R, c0, and c1. Let Ĥ� =

H − [H ]�. Suppose there exist c2 > 0 andε > 0 such that for allβ ≤ c2
√
S,∣∣〈�|e−β Ĥ� |�′

〉
∣∣ ≤ e−η dS (�,�′)+βε|3| (4.1)

is true for all�,�′
∈ (S2)

|3|. Then there exists a constant c3 depending on c0, c1, c2

and R (but not3, S or ε) such that for allβ ≤ c2
√
S,∣∣∣ d

dβ
〈�|e−β Ĥ� |�′

〉

∣∣∣ ≤
c3
√
S

|3| e−η dS (�,�′)+βε|3|. (4.2)

Before we commence with the proof, we will make a simple observation:

Lemma 4.2.For all 3 and all�,�′, �′′
∈ (S2)

|3|,

dS(�,�
′) ≤ dS(�

′, �′′)+
√
S ‖�−�′′

‖1 +

∑
r ∈3

1{�r 6=�′′
r }. (4.3)

Proof. Since all “norms” in the formula are sums overr ∈ 3, it suffices to prove
the above for3 having only one point. This is easy: For� = �′′ the inequality is
actually an equality. Otherwise, we apply the bounds dS(�,�′) ≤

√
S|� − �′

| and
dS(�′, �′′) + 1 ≥

√
S|�′

− �′′
| to convert the statement into the triangle inequality

for the`1-norm. ut

Proof of Proposition 4.1.Let us fix� and�′ for the duration of this proof and abbre-
viate M(β) = 〈�|e−β Ĥ� |�′

〉. We begin by expressing the derivative ofM(β) as an
integral over coherent states. Indeed,M ′(β) = −〈�|Ĥ� e−β Ĥ� |�′

〉 and so inserting
the upper-symbol representation (2.16) forĤ� =

∑
0⊂3(h0 − [h0]�), we have

M ′(β) = −

∑
0⊂3

(
2S + 1

4π

)|3| ∫
(S2)|3|

d�̃′′
〈�|�̃′′

〉〈�̃′′
|e−β Ĥ� |�′

〉
(
[h0]�̃′′−[h0]�

)
.

(4.4)
By the fact that [h0]�̃′′−[h0]� depends only on the portion of̃�′′ on0, the integrals
over the components of̃�′′ outside0 can be carried out which yields

M ′(β) = −

∑
0⊂3

(
2S + 1

4π

)|0|∫
(S2)|0|

d�′′
0 〈�0|�′′

0〉〈�′′
|e−β Ĥ� |�′

〉
(
[h0]�′′−[h0]�

)
.

(4.5)
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Here, as for the rest of this proof,�′′ is set to� outside0 and to�′′
0 in 0.

LetI0 denote the integral on the right-hand side of (4.5). Using (3.6), (4.1) and (3.9)
we have

|I0| ≤ c1‖h0‖ eβε|3|

∫
(S2)|0|

d�′′
0 e−η dS (�′,�′′)−ηS‖�′′

−�‖
2
2−β([H ]�′′−[H ]�)‖�′′

−�‖1.

(4.6)
(Recall from the definition that̂H� = Ĥ�′′ − [H ]�+[H ]�′′ .) In order to bound the
right-hand side, we need a few simple estimates. First, noting that

[H ]�′′−[H ]�=

∑
0′:0′∩0 6=∅

([h0′ ]�′′−[h0′ ]�) , (4.7)

(3.8) and (3.9) imply that, for some constantc4 depending only onc0, c1 andR,∣∣[H ]�′′−[H ]�
∣∣ ≤ c4‖�−�‖1 = c4‖�

′′
0 −�0‖1. (4.8)

Second, Lemma 4.2 tells us

− dS(�
′, �′′) ≤ − dS(�,�

′)+
√
S ‖�0 −�′′

0‖1 + |0|. (4.9)

Finally,‖�′′
−�‖1 is bounded byS−1/2 times the exponential of

√
S ‖�−�′′

‖1. Since
we are assuming thatβ ≤ c2

√
S, we conclude that

e−η dS (�′,�′′)−β([H ]�′′−[H ]�)‖�′′
−�‖1 ≤

eη|0|

√
S

e−η dS (�,�′)+c5
√
S ‖�0−�′′

0‖1 (4.10)

for some constantc5 independent ofS and3.
Plugging this back in the integral (4.6), we get

|I0| ≤
c1eη|0|

√
S

‖h0‖ eβε|3|−η dS (�,�′)

∫
(S2)|0|

d�′′
0 ec5

√
S ‖�0−�′′

0‖1−ηS‖�0−�′′
0‖

2
2.

(4.11)
To estimate the integral, we note that both norms in the exponent are sums over individ-
ual components. Hence, the integral is bounded by the product of|0| integrals of the
form

K =

∫
S2

dr ′′ ec5
√
S|r −r ′′

|−ηS|r −r ′′
|
2
, (4.12)

where r and r ′′ are vectors onS2—representing the corresponding 3-dimensional
components of�0 and�′′

0—and where|r − r ′′
| denotes Euclidean distance inR3.

Parametrizing byr = |r − r ′′
| and integrating over the polar angle ofr ′′ relative tor ,

we now get

K =

∫ 2

0
dr J (r )e−

1
2ηS r2+c5

√
S r . (4.13)

Here the Jacobian,J (r ), is the circumference of the circle{r ′′ : |r ′′
| = 1, |r − r ′′

| =

r }. But this circle has radius smaller thanr and soJ (r ) ≤ 2πr . Scalingr by S−1/2

yields K ≤ c6/S for some constantc6 > 0 independent ofS.
Plugging this back in (4.11), we then get

|I0| ≤
c1
√
S

(c6eη

S

)|0|

‖h0‖ e−η dS (�,�′)+βε|3|. (4.14)
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Inserting this into (4.5), using (3.7) to bound the terms exponential in|0| by a con-
stant depending only onR—this is possible because there are|0| factors ofS ’s in the
denominator of (4.14) that can be used to cancel the factors(2S + 1) in front of the
integral in (4.5)—and applying (3.8), we get (4.2).ut

On the basis of Proposition 4.1, the proof of Theorem 3.1 is easily concluded:

Proof of Theorem 3.1.Let c2 andc3 be the constants from Proposition 4.1 and letε =

c3/
√
S. We claim that (4.1) holds for allβ ≤ c2

√
S. First, in light of (3.6) and the

definition of dS(�,�′), (4.1) holds forβ = 0. This allows us to defineβ0 to be the
largest number such that (4.1) holds for allβ ∈ [0, β0]. Now, if β ≤ β0 ∧ c2

√
S, then

Proposition 4.1 and our choice ofε guarantee that theβ-derivative of〈�|e−β Ĥ� |�′
〉 is

no larger than that of the right-hand side of (4.2). We deduce (by continuity) thatβ0 =

c2
√
S. Using thatĤ� = H − [H ]�, we now get (3.10). ut

Proof of Corollary 3.2.First we observe that the diagonal matrix element〈�|e−βH
|�〉

is real and positive. The upper bound is then the�′
= � version of Theorem 3.1;

the lower bound is a simple consequence of Jensen’s—also known as the Peierls-
Bogoliubov—inequality; see, e.g., [46, Theorem I.4.1].ut

4.2. Quasiclassical Peierls’ arguments.Our goal is to prove the bounds (3.28–3.29).
To this end, let us introduce the quantum version of the quantity from (3.16): For anyB-
block eventA, let

qL ,β(A) =

〈 ∏
t∈TL/B

Q̂ϑt(A)

〉(B/L)d

L ,β

. (4.15)

(Note that, by (3.19), this is of the form of the expectation on the right hand side
of (2.23).) First we will note the following simple consequence of Theorem 3.1:

Lemma 4.3.Letξ be as in(3.26)and let c2 and c3 be as in Theorem 3.1. Ifβ ≤ c2
√
S,

then for any B-block eventA,

qL ,β(A) ≤
[
pL ,β(A)pL ,β

(
σ(A)

)]1/2 eβ(ξ+c3/
√
S). (4.16)

Proof.By (3.21) we have

qL ,β(A) = 〈Q̂Ã〉
(B/L)d

L ,β where Ã =

⋂
t∈TL/B

ϑt(A). (4.17)

Invoking the integral representation (3.17), the bounds from Corollary 3.2 and the defi-
nition of ξ from (3.26),

qL ,β(A) ≤ PL ,β(Ã)(B/L)d eβ(ξ+c3/
√
S). (4.18)

Now we may use (2.24) for the classical probability and we get (4.16).ut

Next we will invoke the strategy of [25] to write a bound on the correlator in
(3.29) in terms of a sum over Peierls contours. LetML/B denote the set of connected
setsY ⊂ TL/B with connected complement. By acontourwe then mean the bound-
ary of a setY ∈ ML/B, i.e., the set∂Y of nearest neighbor edges onTL/B with one
endpoint inY and the other endpoint inYc

⊂ TL/B. The desired bound is as follows:
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Lemma 4.4.Let G1, . . . ,Gn be incompatible good events and letB be the bad event
with the property thatτBt(B) = ϑt(B) for all t ∈ TL/B. Then for all distinctt1, t2 ∈

TL/B and all i = 1, . . . ,n,〈
Q̂θt1(Gi ) Q̂θt2(G

c
i )

〉
L ,β

≤

∑
Y : Y∈ML/B
t1∈Y, t2 6∈Y

2
[
4qL ,β(B)

] 1
4d |∂Y|

. (4.19)

Proof.We begin by noting thatt1 6= t2 and (3.20–3.21) give us

Q̂θt1(Gi ) Q̂θt2(G
c
i )

=

(
2S + 1

4π

)|TL | ∫
θt1(Gi )∩θt2(G

c
i )
d� |�〉〈�|. (4.20)

Now pick� ∈ θt1(Gi )∩ θt2(Gc
i ) and letY′

⊂ TL/B be the largest connected component
of B-blocks—i.e., translates of3B by Bt, with t ∈ TL/B—such thatt1 ∈ Y′ and
that θt(Gi ) occurs for everyt ∈ Y′. This set may not have connected complement, so
we defineY ∈ ML/B to be the set obtained by filling the “holes” ofY′, exceptthat
which containst2. Note that all translates of3B corresponding to the boundary sites
of Y are of typeGi .

In order to extract the weight of the contour, we will have to introduce some more
notation. Decomposing the set of boundary edges∂Y into d sets∂1Y, . . . , ∂dY accord-
ing to the coordinate directions into which the edges are pointing, letj be a direction
where|∂ j Y| is maximal. Furthermore, letYext

j be the set of sites inYc which are on
the “left” side of an edge in∂ j Y. It is easy to see that this singles out exactly half of
the sites inYc that are at the endpoint of an edge in∂ j Y. Next we intend to show that
the above setting implies the existence of at least|Yext

j |/2 bad blocks whose position is
more or less determined byY.

Recall thatêj denotes the unit vector in thej -th coordinate direction. Since the
good events satisfy the incompatibility condition (3.25), at least one of the following
two possibilities must occur: either� ∈ τBt(B) for at least half oft ∈ Yext

j or � ∈

τBt+`êj (B) for at least half oft ∈ Yext
j . (Here` is the constant from the definition

of incompatibility.) Indeed, if the former does not occur then more than half oft ∈

Yext
j mark a good block, but of a different type of goodness thanGi . Since this block

neighbors on aGi -block, incompatibility of good block events implies that a bad block
must occur̀ lattice units along the line between these blocks.

Let us temporarily abbreviateK j = |Yext
j | and letC j (Y) be the set of collections

of K j /2 sites representing the positions of the aforementionedK j /2 bad blocks. In
light of τBt(B) = ϑt(B), the above argument implies

θt1(Gi )∩θt2(G
c
i ) ⊂

⋃
Y : Y∈ML/B
t1∈Y, t2 6∈Y

⋃
(ti )∈C j (Y)

 K j /2⋂
i =1

(
ϑti (B)

)
∪

K j /2⋂
i =1

τ`êj

(
ϑti (B)

) . (4.21)

Therefore, using the fact thatA 7→ Q̂A is a POV measure (cf Remark 3.5), this implies

Q̂θt1(Gi ) Q̂θt2(G
c
i )

≤

∑
Y : Y∈ML/B
t1∈Y, t2 6∈Y

∑
(ti )∈C j (Y)

 K j /2∏
i =1

Q̂ϑti (B) +

K j /2∏
i =1

Q̂
τ`êj

(
ϑti (B)

) .

(4.22)
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Here the two terms account for the two choices of where the bad events can occur andj
is the direction with maximal projection of the boundary ofY as defined above. Since
(2.23), (3.19) andθ(B) = B allow us to conclude that〈 K j /2∏

i =1

Q̂ϑti (B)

〉
L ,β

≤ qL ,β(B)K j /2, (4.23)

and since the translation invariance of the torus state〈−〉L ,β implies a similar bound is
also valid for the second product, the expectation of each term in the sum in (4.22) is
bounded by 2qL ,β(B)K j /2. The sum over(ti ) ∈ C j (Y) can then be estimated at 2K j

which yields 〈
Q̂θt1(Gi ) Q̂θt2(G

c
i )

〉
L ,β

≤

∑
Y : Y∈ML/B
t1∈Y, t2 6∈Y

2
[
4qL ,β(B)

]|Yext
j |/2

. (4.24)

From here the claim follows by noting that our choice ofj implies|Yext
j | ≥

1
2d |∂Y| (we

assume that 4qL ,β(B) ≤ 1 without loss of generality). ut

Proof of Theorem 3.7.By Lemma 4.3, the assumptions onB, and (3.27) we have that
qL ,β(B) < δ. Invoking a standard Peierls argument in toroidal geometry—see, e.g., the
proof of [6, Lemma 3.2]—the right-hand side of (4.19) is bounded by a quantityη(δ)
such thatη(δ) ↓ 0 asδ ↓ 0. Choosingδ sufficiently small, we will thus haveη(δ) ≤ ε,
proving (3.29). The bound (3.28) is a consequence of the chessboard estimates which
yield 〈Q̂B〉L ,β ≤ qL ,β(B) < δ. ut

4.3. Exhibiting phase coexistence.In order to complete our general results, we still
need to prove Propositions 3.9 and 3.10 whose main point is to guarantee existence
of multiple translation-invariant KMS states. (Recall that, throughout this section, we
work only with translation-invariant interactions.) Let us refer to

T+

L =
{
x ∈ TL : −bL/4 − 1/2c ≤ x1 ≤ dL/4 − 1/2e

}
(4.25)

as the “front side” of the torus, and toT−

L as the “back side.” LetA+

L be theC? algebra
of all observables localized inT+

L (i.e., an operator inA+

L acts as the identity onT−

L ).
The construction of infinite-volume KMS states will be based on the following stan-

dard lemma:

Lemma 4.5.LetTL/B be the factor torus and let1M ⊂ TL/B be a block of M×· · ·×M
sites at the “back side” ofTL/B (i.e., we havedist(0,1M ) ≥

L
2B −M). Given a B-block

eventC, let

ρ̂L ,M (C) =
1

|1M |

∑
t∈1M

Q̂θt(C). (4.26)

Suppose that〈Q̂C〉L ,β ≥ c for all L � 1 and some constant c> 0, and define the
“conditional” state 〈−〉L ,M;β onA+

L by

〈A〉L ,M;β =
〈 ρ̂L ,M (C) A〉L ,β

〈 ρ̂L ,β(C)〉L ,β
. (4.27)
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If 〈−〉β is a (subsequential) weak limit of〈−〉L ,M;β as L → ∞ (along multiples of B)
followed by M → ∞, then〈−〉β is a KMS state at inverse temperatureβ which is
invariant under translations by B.

Proof. Translation invariance is a consequence of “conditioning” on the spatially-ave-
raged quantity (4.26). Thus, all we need to do is to prove that the limit state satisfies
the KMS condition (3.33). Lett 7→ α

(L)
t be the unitary evolution onTL . If B is a local

observable that depends only on the “front” side of the torus the fact that the interaction
is finite range and that the series (3.32) converges in norm, uniformly inL, implies[

α
(L)
t (B), ρ̂L ,M (C)

]
−→
L→∞

0 (4.28)

in norm topology, uniformly int on compact subsets ofC. (Note that, for anyB lo-
calized inside a fixed finite subset ofZd, for large enoughL, it will always be in the
“front” side T+

L , under the projectionZd
→ TL = Zd/LZd.) This means that for any

bounded local operatorsA andB on the “front” side of the torus,〈
ρ̂L ,M (C) AB

〉
L ,β =

〈
ρ̂L ,M (C) α(L)−iβ(B)A

〉
L ,β

+ o(1), L → ∞. (4.29)

(Again, it is no restriction to say thatA andB are on the “front” side, by simply letting
L be large enough.) Sinceα(L)

−iβ(B) → α−iβ(B) in norm, the stateA 7→ 〈A〉L ,M;β

converges, asL → ∞ andM → ∞, to a KMS state at inverse temperatureβ. ut

Proof of Proposition 3.9.By Q̂B + Q̂G1 + · · · + Q̂Gn = 1, the symmetry assumption
and (3.28) we know that 〈

Q̂Gk

〉
L ,β ≥

1 − ε

n
. (4.30)

So, if ρ̂L ,M (Gk) is as in (4.26), the expectation〈ρ̂L ,M (Gk)〉L ,β is uniformly positive.

This means that, for eachk = 1, . . . ,n, we can define the state〈−〉
(k)
L ,M;β , k = 1, . . . ,n,

by (4.27) with the choiceC = Gk. Using (3.29) we conclude〈
Q̂θt(Gk)

〉(k)
L ,M;β

≥ 1 −
nε

1 − ε
, k = 1, . . . ,n, (4.31)

for any t on the “front” side ofTL/B (provided thatM � L/B). For (n + 1)ε < 1/2, the

right-hand side exceeds1/2 and so any thermodynamic limit of〈−〉
(k)
L ,M;β as L → ∞

andM → ∞ is “domintated” byGk-blocks. Since, by Lemma 4.5, any such limit is a
KMS state, we haven distinct states satisfying, as is easy to check, (3.34).ut

Proof of Proposition 3.10.Consider the states〈−〉
(1)
L ,M;β and〈−〉

(2)
L ,M;β defined by (4.27)

with C = G1 and C = G2, respectively. From assumption (1) we know thatak :=
〈ρ̂L ,M (Gk)〉 > 0 for at least onek = 1,2 and so, for eachβ ∈ [β1, β2], at least one of
these states is well defined. We claim that we cannot have〈Q̂(k)

Gk
〉L ,M;β < 1 − 4ε for

bothk = 1,2. Indeed, if that were the case then

ρ̂L ,M (G1)+ ρ̂L ,M (G2)+ ρ̂L ,M (B) = 1 (4.32)
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and the bounds (3.28–3.29) would yield

a1 + a2 =
〈
Q̂G1 + Q̂G2

〉
L ,β

=
〈
Q̂G1

〉(1)
L ,M;β

〈
Q̂G1

〉
L ,β +

〈
Q̂G2

〉(2)
L ,M;β

〈
Q̂G2

〉
L ,β

+
〈
ρ̂L ,M (G1) Q̂G2

〉
L ,β +

〈
ρ̂L ,M (G2) Q̂G1

〉
L ,β

+
〈
ρ̂L ,M (B) [1 − Q̂B]

〉
L ,β

< (1 − 4ε)(a1 + a2)+ 3ε

(4.33)

i.e., 4(a1 + a2) < 3. Sinceε ≤ 1/4 this impliesa1 + a2 < 3/4 ≤ 1 − ε, in contradiction
with assumption (1).

Hence, we conclude that the larger from〈Q̂Gk〉
(k)
L ,M;β , k = 1,2 (among those states

that exist) must be at least 1−4ε. The same will be true about any thermodynamic limit
of these states. LetΞk ⊂ [β1, β2], k = 1,2, be the set ofβ ∈ [β1, β2] for which there
exists an infinite-volume, translation-invariant KMS state〈−〉β such that〈Q̂Gk〉β ≥

1−4ε. ThenΞ1∪Ξ2 = [β1, β2]. Now, any (weak) limit of KMS states for inverse tem-
peraturesβn → β is a KMS state atβ, and so bothΞ1 andΞ2 are closed. Since [β1, β2]
is closed and connected, to demonstrate a point inΞ1 ∩ Ξ2 it suffices to show that
bothΞ1 andΞ2 are non-empty. For that we will invoke condition (2) of the proposi-
tion: From〈Q̂G1〉L ,β1 ≥ 1 − 2ε we deduce〈

Q̂G1

〉(1)
L ,M;β1

= 1 −
〈
Q̂G2 + Q̂B

〉(1)
L ,M;β1

≥ 1 −
2ε

1 − 2ε
≥ 1 − 4ε, (4.34)

and similarly for〈Q̂G2〉
(2)
L ,M;β2

. Thusβ1 ∈ Ξ1 andβ2 ∈ Ξ2, i.e., both sets are non-empty
and soΞ1 ∩Ξ2 6= ∅ as claimed. ut

5. Applications

Here we will discuss—with varying level of detail—the five quantum models described
in the introduction. We begin by listing the various conditions of our main theorems
which can be verified without much regard for the particulars of each model. Then,
in Sect. 5.2, we proceed to discuss model (1) which serves as a prototype system for
the application of our technique. Sects. 5.3-5.5 are devoted to the details specific for
models (2-5).

5.1. General considerations.Our strategy is as follows: For each model we will need
to apply one of the two propositions from Sect. 3.3, depending on whether we are deal-
ing with a “symmetry-breaking” transition (Proposition 3.9) or a temperature-driven
energy-entropy transition (Proposition 3.10). The main input we need for this are the
inequalities (3.28–3.29). These will, in turn, be supplied by Theorem 3.7, provided
we can check the condition (3.27). Invoking Theorem 3.1, which requires that our
model satisfies the mild requirements (3.7–3.9), condition (3.27) boils down to show-
ing thatpL ,β(B) is small for the requisite bad event. It is, for the most part, only the
latter that needs to be verified on a model-specific basis; the rest can be done in some
generality.
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We begin by checking the most stringent of our conditions: reflection positivity.
Here, as alluded to in Remark 2.5, we are facing the problem that reflection positiv-
ity may be available only in a particular representation of the model—which is often
distinct from that in which the model isa priori defined. The “correct” representation
is achieved by a unitary operation that, in all cases at hand, is a “product rotation” of
all spins.

There are two rotations we will need to consider; we will express these by means
of unitary operatorsUA andUB. Consider the Hilbert spaceHTL =

⊗
r ∈TL

[C2S+1]r
and let(Sx

r , Sy
r , Sz

r ) have the usual form—cf (2.1)—onHTL . In this representation, the
action ofUA on a state|ψ〉 ∈ HTL is defined by

UA |ψ〉 =

∏
r ∈TL

ei π2 Sy
r ei π2 Sx

r |ψ〉. (5.1)

The effect of conjugating by this transformation is the cyclic permutation of the spin
componentsSy

r → Sx
r → Sz

r → Sy
r . The second unitary,UB, is defined as follows:

UB|ψ〉 =

∏
r ∈TL

odd-parity

eiπSy
r |ψ〉. (5.2)

The effect ofUB on spin operators is as follows: For even-parityr , the spin operators
are as before. For odd-parityr , the componentSy

r remains the same, while bothSx
r

andSz
r pick up a minus sign. Here are the precise conditions under which our models

are reflection positive (RP):

Lemma 5.1.Let UA and UB be the unitary transformations defined above. Then:

(a) UA HU−1
A is RP for models (4-5), and for model (2) withP(x) = P1(x2)+xP2(x2).

(b) UB HU−1
B is RP for models (1,3).

(c) UBUA HU−1
A U−1

B is RP for model (2) withP(x) = P1(x2)− xP2(x2).

Proof. (a) Under the unitaryUA map, the Hamiltonians of models (4-5) are only using
thex andz-components of the spins, which are both real valued. The resulting interac-
tion couples nearest-neighbor spins ferromagnetically, and thus conforms to (2.20).

(b) For two-body, nearest-neighbor interactions,UB has the effect

Sαr Sαr ′ → −Sαr Sαr ′ , α = x, z, (5.3)

while theSy
r Sy

r ′ terms remain unchanged. Writing

Sy
r Sy

r ′ = −(i Sy
r )(i S

y
r ′) (5.4)

we can thus change the sign of all quadratic terms in the interaction and, at the same
time, express all operators by means of real-valued matrices. Under the conditions given
in Sect. 1, the Hamiltonians in (1.1) and (1.3) are then of the desired form (2.20).

(c) Finally, for model (2), we first apply the argument in (a). Then the effect ofUB
is that the minus sign inP(x) = P1(x2)− xP2(x2) becomes a plus sign.ut

Our next items of general interest are the “easy” conditions of Theorem 3.1 and
Theorem 3.7. These turn out to be quite simple to check:
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Lemma 5.2.The transformed versions—as defined in Lemma 5.1—of the five models
from Sect. 1 satisfy the conditions (3.7–3.9) with some finite R and some c1 independent
of S. Moreover, for each of the models (1-6) there exists a constant C such that(3.26)
holds withξ = C/S for all S.

Proof.All interactions involve at most two spins soR = 2 suffices to have (3.7). Writ-
ing the interaction in the form (3.1), the normalization by powers ofS makes the cor-
responding norms‖h0‖ bounded by a quantity independent ofS. This means that (3.8)
holds in any finite set (including the torus, with proper periodic extension of theh0 ’s).
As to the Lipschitz bound (3.9), this is the subject of Theorem 2 and Proposition 3
of [17]. SinceS−1[Sαr ]�= �r + O(1/S), and similarly for the lower symbol, the same
argument proves thatξ = O(1/S). ut

To summarize our general observations, in order to apply Propositions 3.9-3.10, we
only need to check the following three conditions:

(1) The requisite bad event is such thatϑt(B) = B for all t ∈ TL/B.
(2) The occurrence of different types of goodness at neighboringB-blocks implies that

a block placed in between the two (so that it contains the sites on the boundaries
between them) is bad—cf condition (2) of Definition 3.6.

(3) The quantitypL ,β(B) is sufficiently small.

In all examples considered in this paper, conditions (1-2) will be checked directly but
condition (3) will require estimates specific for the model at hand. (Note that, since we
are forced to work in the representation that makes the interaction reflection positive;
the conditions (1-3) must be verified inthis representation.)

Remark 5.3.It is noted that all of the relevant classical models—regardless of the signs
of the interactions—are RP with respect to reflections in planes of sites. We will often
use this fact to “preprocess” the event underlyingpL ,β(B) by invoking chessboard es-
timates with respect to these reflections. We will also repeatedly use the subadditivity
property ofA 7→ pL ,β(A) as stated in [6, Theorem 6.3]. Both of these facts will be
used without (much) apology.

5.2. Anisotropic Heisenberg antiferromagnet.Consider the reflection-positive version
of the Hamiltonian (1.1) which (in the standard representation of the spin operators) on
the torusTL takes the form

HL = −

∑
〈r ,r ′〉

S−2(J1Sx
r Sx

r ′ − J2Sy
r Sy

r ′ + Sz
r Sz

r ′). (5.5)

(The classical version ofHL is obtained by replacing eachSαr by the corresponding
component ofS�r .) The good block events will be defined on a 2×· · ·×2 block3B—
i.e., B = 2—and, roughly speaking, they will represent the twoferromagneticstates in
the z-direction one can put on3B. Explicitly, let G+ be the event that�r = (θr , φr )
satisfies|θr | < κ for al r ∈ 3B and letG− be the event that|θr −π | < κ for all r ∈ 3B.

Theorem 5.4 (Heisenberg antiferromagnet).Let d ≥ 2 and let0 ≤ J1, J2 < 1 be
fixed. For eachε > 0 and eachκ > 0, there exist constants c andβ0 and, for allβ andS
with β0 ≤ β ≤ c

√
S, there exist two distinct, translation-invariant KMS states〈−〉

+

β

and〈−〉
−

β with the property 〈
Q̂G±

〉±
β

≥ 1 − ε. (5.6)
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In particular, for all suchβ we have〈
Sz

0

〉+
β

−
〈
Sz

0

〉−
β
> 0. (5.7)

Proof. Let B = (G+ ∪ G−)
c be the bad event. It is easy to check thatϑt acts onB

only via translations. Moreover, ifG+ andG− occur at neighboring (but disjoint) trans-
lates of3B, then the block between these is necessarily bad. In light of our general
observations from Sect. 5.1, we thus only need to produce good bounds onpL ,β(B), the
classical probability of bad behavior. Since these arguments are standard and appear,
for all intents and purposes, in the union of Refs. [11, 23, 24, 44], we will be succinct
(and not particularly efficient).

Let1 = min{(1− J1), (1− J2),2/ad} wheread = d2d−1 and fixη > 0 with η � 1
such that

1 − cosη −1 sin2 κ < 0. (5.8)

We will start with a lower estimate on the full partition function. For that we will restrict
attention to configurations where|θr | ≤ η/2 for all r ∈ TL . The interaction energy of
a pair of spins is clearly maximized when both thex and y-terms are negative. This
allows us to bound the energy by that in the isotropic caseJ1 = J2 = 1—i.e., the
cosine of the angle between the spins. Hence, the energy between each neighboring
pair is at most(− cosη). We arrive at

ZL(β) ≥
[
V(η)edβ cosη]Ld

, (5.9)

where the phase volumeV(η) = 2π [1−cos(η/2)] may be small but is anyway indepen-
dent ofβ.

To estimate the constrained partition function in the numerator ofpL ,β(B), we will
classify the bad blocks into two distinct categories: First there will be blocks where not
all spins are withinκ of the pole and, second, there will be those bad blocks which,
notwithstanding their Ising nature, will have defects in their ferromagnetic pattern. We
denote the respective events byB1 andB2. To boundpL ,β(B1), since we may decorate
the torus from a single site, we may as well run a single site argument 2d-times. We
are led to consider the constrained partition function where every site is outside its
respective polar cap. It is not hard to see that the maximal possible interaction is 1−

1 sin2 κ; we may estimate the measure of such configurations as full. Thus,

pL ,β(B1) ≤ 2d 4π

V(η)
eβd(1−cosη−1 sin2 κ). (5.10)

Note that, by (5.8), this is small whenβ � 1.
The less interesting Ising violations are estimated as follows: The presence of such

violations implies the existence of a bond with nearly antialigned spins. We estimate
the interaction of this bond at cos(2κ). Now there aread bonds on any cube so when
we disseminate—using reflections through sites—we end up with at least one out of
everyad bonds with this energy. The rest we may as well assume are fully “aligned”—
and have energy at least negative one—and we might as well throw in full measure, for
good measure. We thus arrive at

pL ,β(B2) ≤ ad
4π

V(η)
exp

{
βd

( 1

ad
cos(2κ)+ 1 −

1

ad
− cosη

)}
(5.11)
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as our estimate for each such contribution to the Ising badness. Here the prefactorad
accounts for the choice of the “bad” bond. Since 1/ad > 1/2, the constant multiply-
ing βd in the exponent is less than the left-hand side of (5.8); hencepL ,β(B2) � 1
onceβ � 1 as well. It follows that, givenJ1, J2 < 1, we can findβ0 sufficiently large
so thatpL ,β(B) ≤ pL ,β(B1) + pL ,β(B2) � 1 onceβ ≥ β0. The statement of the
theorem is now implied by Proposition 3.9 and the±-symmetry of the model. ut

5.3. Large-entropy models.Here we will state and prove order-disorder transitions in
models (2-3). As in the previous subsection, most of our analysis is classical. While
we note that much of the material of this section has appeared in some form before,
e.g., in [11, 16, 21, 22, 33, 44], here we must go a slightly harder route dictated by the
quantum versions of reflection positivity.

We start with the observation that model (2) withP(x) = P1(x2) − xP2(x2) is
unitarily equivalent, via a rotation of all spins about thez-axis, to the same model
with P(x) = P1(x2)+ xP2(x2). Hence, it suffices to consider only the case of the plus
sign. We thus focus our attention on models with classical Hamiltonians of the form

H∞(�) = −

∑
〈r ,r ′〉

p∑
k=1

ck (�r ��r ′)k, ck ≥ 0, (5.12)

where(�1 � �2) denotes the variant of the usual dot product�
(x)
1 �

(x)
1 − �

(y)
1 �

(y)
1 +

�
(z)
1 �

(z)
1 for model (3), and the “dot product among the first two components” for

model (2). We now state our assumptions which ensure that models (2) and (3) have
the large entropy property.

Let us regard the coefficients in (5.12) as an infinite (but summable) sequence,
generally thought of as terminating whenk = p. (For the most part wewill require
thatEp be a polynomial. However, some of our classical calculations apply even for
genuine power series.) The terms of this sequence may depend onp so we will write
them asc(p) = (c(p)1 , c(p)2 , . . . ); we assume that thè1-norm of eachc(p) is one. Let
Ep : [−1,1]→ R be defined by

Ep(x) =

∑
k≥1

c(p)k xk. (5.13)

Here is the precise form of the large-entropy property:

Definition 5.5. We say that the sequence(c(p)) has thelarge entropy propertyif there
is a sequence(εp) of positive numbers withεp ↓ 0 such that the functions

Ap(s) = Ep(1 − εps) (5.14)

converge—uniformly on compact subsets of[0,∞)—to a function s7→ A(s) with

lim
s→0+

A(s) = 1 and lim
s→∞

A(s) = 0 (5.15)
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Remark 5.6.Despite the abstract formulation, the above framework amalgamates all
known examples [21, 22] and provides plenty of additional generality. A prototyp-
ical example that satisfies Definition 5.5 is the sequence arising as the coefficients
of the polynomialEp(x) = (1+x

2 )p. A general class of sequencesc(p) is defined

from a probability density functionφ : [0,1]→ [0,∞) via c(p)k =
1
pφ(

k/p). In these
cases we can generically takeεp = 1/p and the limiting functionA is then given

by A(s) =
∫ 1

0 φ(λ)e
−λsdλ. However, as the exampleEp(x) = (1+x

2 )p shows, ex-
istence of such a density function is definitely not a requirement for the large-entropy
property to hold. What is required is that the “distribution function”

∑
k≤ps c(p)k is small

for s � 1.

Our analysis begins with the definition of good and bad events. First we will discuss
the situation on bonds: The bond〈r , r ′

〉 is considered to beenergetically goodif the at-
tractive energy is larger (in magnitude) than some strictly positive constantb (a number
of order unity depending on gross details, where we recall that 1 is the optimal value),
i.e., if

Ep(�r ��r ′) ≥ b. (5.16)

Theentropically goodbonds are simply the complementary events (so that every bond
is a good bond). Crucial to the analysis is the fact, ensured by our large entropy assump-
tion, that the crossover between the energetic and entropic phenotypes occurs when the
deviation between neighboring spins is of the order

√
εp.

We define the good block eventsGord andGdis on the 2× · · · × 2-block3B as
follows: Gord is the set of spin configurations where every bond on3B is energetically
good whileGdis collects all spin configurations where every bond on3B is entropically
good. The requisite bad event is defined asB = (Gord ∪ Gdis)

c.

Our fundamental result will be a proof that the density of energetically good blocks
is discontinuous:

Theorem 5.7 (Large-entropy models).Consider a family of finite sequencesc(p) =

(c(p)k )k≤p and suppose thatEp have the large entropy property in the sense of Defini-
tion 5.5. Consider the quantum spin systems with the Hamiltonian

H (p)
= −

∑
〈r ,r ′〉

Ep
(
S−2(Sr � Sr ′)

)
, (5.17)

(with both interpretations of(Sr � Sr ′) possible). Then there exists b∈ (0,1) for which
the associated energetic bonds have discontinuous density in the largeS quantum sys-
tems. Specifically, for everyε > 0 there is a p0 < ∞ so that for any p> p0 and allS
sufficiently large, there is an inverse temperatureβt at which there exist two distinct,
translation-invariant KMS states〈−〉

ord
βt

and〈−〉
dis
βt

with the property

〈Q̂Gord〉
ord
βt

≥ 1 − ε and 〈Q̂Gdis〉
dis
βt

≥ 1 − ε. (5.18)

With a few small additional ingredients, we show that the above implies that the
energy density itself is discontinuous:
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Corollary 5.8. There exist constants b and b′, both strictly less than1/2, such that the
energy densitye(β)—defined via theβ-derivative of the free energy—satisfies

e(β)

{
≥ 1 − b′, if β > βt,

≤ b, if β < βt,
(5.19)

for all p sufficiently large.

The bulk of the proof of this theorem again boils down to the estimate ofpL ,β(B):

Proposition 5.9.There exist b0 ∈ (0,1), 1 > 0, C < ∞, and for each b∈ (0,b0]
there exists p0 < ∞ such that

lim
L→∞

pL ,β(B) < C(εp)
1 (5.20)

hold for all p ≥ p0 and allβ ≥ 0.

Apart from a bound onpL ,β(B), we will also need to provide the estimates in con-
dition (2) of Proposition 3.10. Again we state these in their classical form:

Proposition 5.10.There exist constants C1 < ∞, p1 < ∞ and11 > 0 such that the
following is true for all p≥ p1: First, at β = 0 we have

lim sup
L→∞

pL ,0(Gord) ≤ C1(εp)
11. (5.21)

Second, ifβ0 ∈ (0,∞) is large enough, specifically ifeβ0d
≥ ε

−2(1+11)
p , then

lim sup
L→∞

pL ,β0(Gdis) ≤ C1(εp)
11. (5.22)

The proof of these propositions is somewhat technical; we refer the details to the
Appendix, where we will also prove the corollary.

Proof of Theorem 5.7.We begin by verifying the three properties listed at the end of
Sect. 5.1. As is immediate from the definitions, neighboring blocks of distinct type of
goodness must be separated by a bad block. Similarly, reflectionsθt act onB only as
translations. To see that the same applies to the “complex” reflectionsϑt , we have to
check thatB is invariant under the “complex conjugation” mapσ. For that it suffices
to verify thatσ(�) � σ(�′) = � � �′ for any�,�′

∈ S2. This follows because both
interpretations of� � � are quadratic in the components of� and becauseσ changes
the sign of they-component and leaves the other components intact.

Let b < b0 whereb0 is as in Proposition 5.9. Then (5.20) implies thatpL ,β(B) � 1
onceεp � 1. Quantum chessboard estimates yield〈Q̂A〉L ,β ≤ qL ,β(A) which by
means of Theorem 3.1 implies that both〈Q̂Gdis〉L ,0 and 〈Q̂Gord〉L ,β0 are close to one
once L � 1 and

√
S is sufficiently large compared withβ0 (referring to Proposi-

tion 5.10). Theorem 3.7 then provides the remaining conditions required for application
of Proposition 3.10; we conclude that there exists aβt ∈ [0, β0] and two translation-
invariant KMS states〈−〉

ord
βt

and〈−〉
dis
βt

such that (5.18) hold. ut

Remarks 5.11.Again, a few remarks are in order:
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(1) Note that the theorem may require largerS for largerp, even though in many cases
the transition will occur uniformly inS � 1 once p is sufficiently large. The
transition temperatureβt will generally depend onp andS.

(2) There are several reasons why Theorem 5.7 has been stated only for polynomial
interactions. First, while the upper symbol is easily—and, more or less, unambi-
guously—defined for polynomials, its definition for general functions may require
some non-trivial limiting procedures that have not been addressed in the literature.
Second, the reduction to the classical model, cf Corollary 3.2, requires that the
classical interaction be Lipschitz, which is automatic for polynomials but less so
for general power series. In particular, Theorem 5.7 does not strictly apply to non-
smooth (or even discontinuous) potentials even though we believe that, with some
model-specific modifications of the proof of Theorem 3.1, we could include many
such cases as well.

5.4. Order-by-disorder transitions: Orbital-compass model.We begin by the easier of
the models (4-5), the 2D orbital compass model. We stick with the reflection-positive
version of the Hamiltonian which, onTL , is given by

HL = −S−2
∑

r ∈TL

∑
α=x,z

S(α)r S(α)r +êα
, (5.23)

with êx, êy, êz denoting the unit vectors in (positive) coordinate directions. The num-
ber B will only be determined later, so we define the good events for generalB.
Given κ > 0 (with κ � 1), let Gx be the event that all (classical) spins on aB × B
block3B satisfy

|�r · êx| ≥ cos(κ). (5.24)

Let Gz be the corresponding event in thez spin-direction. Then we have:

Theorem 5.12 (Orbital-compass model).Consider the model with the Hamiltonian
as in (1.4). For eachε > 0 there existκ > 0, β0 > 0 and c > 0 and, for eachβ
withβ0 ≤ β ≤ c

√
S, there is a positive integer B and two distinct, translation-invariant

KMS states〈−〉
(x)
β and〈−〉

(z)
β such that〈
Q̂Gα

〉(α)
β

≥ 1 − ε, α = x, z. (5.25)

In particular, for all β with β0 ≤ β ≤ c
√
S,〈

(Sr · êα)
2〉(α)
β

≥ S2(1 − ε), α = x, z. (5.26)

The proof is an adaptation of the results from [5–7] for the classical versions of
order-by-disorder. LetB = (Gx ∪ Gz)

c denote the requisite bad event. By definition,B
is invariant under reflections of (classical) spins through thexz-plane; i.e.,σ(B) = B.
Since the restrictions fromB are uniform over the sites in3B, we haveϑt(B) = τBt(B).
So, in light of our general claims from Sect. 5.1, to apply the machinery leading to
Proposition 3.9, it remains to show thatpL ,β(B) is small if β � 1 and the scaleB is
chosen appropriately. For that letH∞(�) denote the classical version of the Hamilto-
nian (5.23). By completing the nearest-neighbor terms to a square, we get

H∞(�) =
1

2

∑
r ∈TL

∑
α=x,z

(�(α)r −�
(α)
r +êα

)2 +

∑
r ∈TL

[�(y)r ]2−|TL |. (5.27)
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Here�(α)r denotes theα-th Cartesian component of�r .
Unforuntately, the eventB is too complex to allow a direct estimate ofpL ,β(B).

Thus, we will decomposeB into two events,BE andBSW depending on whether the
“badness” comes from bad energy or bad entropy. Let1 > 0 be a scale whose size will
be determined later. Explicitly, the eventBE marks the situations that either

|�
(y)
r | ≥ c11 (5.28)

for some siter ∈ 3B, or
|�(a)r −�

(α)
r +êα

| ≥ c21/B, (5.29)

for some pairr and r + êα, both in3B. Herec1, c2 are constants to be determined
momentarily. The eventBSW is simply given by

BSW = B \ BE. (5.30)

By the subadditity property ofpL ,β , we havepL ,β(B) ≤ pL ,β(BE)+ pL ,β(BSW).
SinceBE implies the existence of an energetically “charged” site or bond with energy

about(1/B)2 above its minimum, the value ofpL ,β(BE) is estimated relatively easily:

pL ,β(BE) ≤ cβB2e−c̃β12/B2
, (5.31)

for some constantsc andc̃. (HerecB2 accounts for possible positions of the “excited”
bond/site andβ comes from the lower bound on the classical partition function.)

As to BSW, here we will decompose further into more elementary events: Given a
collection of vectorŝw1, . . . , ŵs that are uniformly spaced on the first quadrant of the
main circle,S ++

1 = {� ∈ S2 : � · êy = 0, �(x) ≥ 0, �(z) ≥ 0}, we defineB(i )SW to be
the set of configurations inBSW such that

|�(x)r · ŵ(x)i | + |�(z)r · ŵ(z)i | ≥ cos(1), r ∈ 3B. (5.32)

SinceBSW is disjoint fromBE, on BSW the y-component of every spin is less than
order1 and any neighboring pair of spins differ by angle at most1 (up to a reflection).
Hence, by choosingc1 andc2 appropriately, any two spins in3B will differ by less
than1 from someŵi , i.e.,

BSW ⊂

s⋃
i =1

B(i )SW, (5.33)

provided thats1 exceeds the total length ofS ++

1 . To estimatepL ,β(B(i )SW)we will have

to calculate the constrained partition function for the eventB(i )SW. The crucial steps of
this estimate are encapsulated into the following three propositions:

Proposition 5.13.Consider the classical orbital compass model with the Hamiltonian
H∞(�) as in(5.27)and suppose that1 � 1. Then for all i = 1, . . . , s,

pL ,β(B(i )SW) ≤ 22Be−B2(FL ,1(ŵi )−FL ,1(ê1)), (5.34)

where, for eacĥw ∈ S ++

1 = {v̂ ∈ S2 : v̂ · ê2 = 0, v̂(x) ≥ 0, v̂(z) ≥ 0},

FL ,1(ŵ) = −
1

L2
log

∫
(S2)

|TL |

d�
(βeβ

2π

)|TL |

e−βH∞(�)

( ∏
r ∈TL

1{�r ·ŵ≥cos(1)}

)
.

(5.35)
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Proposition 5.14.For eachε > 0 there existsδ > 0 such that if

β12 >
1

δ
and β13 < δ, (5.36)

then for all L sufficiently large,|FL ,1(ŵ)− F(ŵ)| < ε holds for anyŵ ∈ S ++

1 with F
given by

F(ŵ) =
1

2

∫
[−π,π ]2

dk
(2π)2

log D̂k (ŵ). (5.37)

Here D̂k (ŵ) = ŵ2
z|1 − eik1|

2
+ ŵ2

x|1 − eik2|
2.

Proposition 5.15.The functionŵ 7→ F(ŵ) is minimized (only) by vectorŝw = ±êx
andŵ = ±êz.

The proofs of these propositions consist of technical steps which are deferred to the
Appendix. We now finish the formal proof of the theorem subject to these propositions:

Proof of Theorem 5.12 completed.As already mentioned, the bad event is invariant
under both spatial reflectionsθt and the “internal” reflectionσ; henceϑt(B) = τBt(B)
as desired. Second, if two distinct good events occur in neighboring blocks, say3B
and3B + Bê1, then at least one of the bonds between these blocks must obey (5.29);
i.e., the box3B + ê1 is (energetically) bad. Third, we need to show thatpL ,β(B) is
small. We will set1 andB to the values

1 = β−
5
12 and B ≈ logβ. (5.38)

These choices makepL ,β(BE) small onceβ is sufficiently large and, at the same time,
ensure that (5.36) holds for any givenδ. Since we have (5.34), Propositions 5.14-5.15
and the fact thatB(i )SW, being a subset ofB, is empty whenŵi is within, say,κ/2 of ±êx
or ±êz tell us that

pL ,β(BSW) ≤ se−
1
2εB2

(5.39)

once B is sufficiently large. Buts is proportional to1/1 and so this is small forβ
sufficiently large. We conclude that asβ → ∞, we havepL ,β(B) → 0 for the above
choice ofB and1.

Having verified all required conditions, thexz-symmetry of the model puts us in a
position to apply Proposition 3.9. Hence, for all sufficiently largeβ, there exist two
infinite-volume, translation-invariant KMS states〈−〉

(x)
β and 〈−〉

(z)
β such that (5.25)

holds. To derive (5.26), we note that, for any vectorŵ ∈ S2 and any single-spin coher-
ent state|�〉

S · ŵ|�〉 = S(ŵ ·�)|�〉 + O(
√
S). (5.40)

Hence,(S · êk)
2Q̂Gk = S2Q̂Gk + O(S3/2), where all error terms indicate bounds in

norm. Invoking (5.25), the bound (5.26) follows.ut

Remark 5.16.The 3D orbital-compass model is expected to undergo a similar kind of
symmetry breaking, with three distinct states “aligned” along one of the three lattice di-
rections. However, the actual proof—for the classical model, a version of this statement
has been established in [7]—is considerably more involved because of the existence
of (a large number of) inhomogeneous ground states that are not distinguished at the
leading order of spin-wave free-energy calculations. We also note that an independent
analysis of the classical version of the 2D orbital-compass model, using an approach
similar to Refs. [6,7] and [41], has been performed in [40].
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5.5. Order-by-disorder transitions: 120-degree model.The statements (and proofs) for
the 120-degree model are analogous, though more notationally involved. Consider six
vectorsv̂1, . . . , v̂6 defined by

v̂1 = êx, v̂2 =
1
2êx +

√
3

2 êz, v̂3 = −
1
2êx −

√
3

2 êz (5.41)

v̂4 = −êx, v̂5 = −
1
2êx −

√
3

2 êz, v̂6 =
1
2êx −

√
3

2 êz. (5.42)

As is easy to check, these are the six sixth complex roots of unity. The reflection-positive
version of the Hamiltonian onTL then has the form

H = −S−2
∑

r ∈TL

∑
α=1,2,3

(Sr · v̂2α)(Sr +êα · v̂2α), (5.43)

whereê1, ê2, ê3 is yet another labeling of the usual triplet of coordinate vectors inZ3.
To define good block events, letκ > 0 satisfyκ � 1 and letG1, . . . ,G6 be theB-block
events that all spins�r , r ∈ 3B, are such that

�r · v̂α ≥ cos(κ), α = 1, . . . ,6, (5.44)

respectively. Then we have:

Theorem 5.17 (120-degree model).Consider the 120-degree model with the Hamilto-
nian (5.43). For eachε > 0 there existκ > 0, β0 > 0 and c > 0 and, for eachβ
with β0 ≤ β ≤ c

√
S, there is a number B and six distinct, translation-invariant

states〈−〉
(α)
β , α = 1, . . . ,6, such that〈

Q̂Gα
〉(α)
β

≥ 1 − ε, α = 1, . . . ,6. (5.45)

In particular, for all β with β0 ≤ β ≤ c
√
S,〈

Sr · v̂α
〉(α)
β

≥ S(1 − ε), α = 1, . . . ,6. (5.46)

Fix κ > 0 (with κ � 1) and letB and1 be as in (5.38). LetB = (G1 ∪ · · · ∪ G6)
c

be the relevant bad event. It is easy to check thatB is invariant with respect toσ and,
consequently,ϑt(B) = B for all r ∈ TL/B as required. Introducing the projections

�(α)r = �r · v̂α, α = 1, . . . ,6, (5.47)

and noting that, for any vector̂w ∈ S2,∑
α=1,2,3

(ŵ · v̂α)
2

=
3

2

[
1 − (ŵ · êy)

2], (5.48)

the classical HamiltonianH∞(�) can be written in the form

H∞(�) =
1

2

∑
r ∈TL

∑
α=1,2,3

(�(2α)r −�
(2α)
r +êα

)2 +
3

2

∑
r ∈TL

(�r · êy)
2
−

3

2
|TL |. (5.49)

As for the orbital-compass model, we will estimatepL ,β(B) by further decomposingB
into more elementary bad events.
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Let BE denote the event that the block3B contains an energetically “charged” site
or bond. Explicitly,BE is the event that either for somer ∈ 3B we have

|�r · êy| ≥ c1
1

B
, (5.50)

or, for some nearest-neighbor pair〈r , r + êα〉 in 3B, we have∣∣�r · v̂2α −�r +êα · v̂2α
∣∣ ≥ c2

1

B
. (5.51)

Herec1 andc2 are constants that will be specified later. The complementary part ofB
will be denoted byBSW, i.e.,

BSW = B \ BE. (5.52)

By the fact thatBSW ⊂ Bc
E, onBSW the energetics of the entire block is good—i.e.,

the configuration is near one of the ground states. Clearly, all constant configurations
with zeroy-component are ground states. However, unlike for the 2D orbital-compass
model, there are other, inhomogeneous ground states which make the treatment of this
model somewhat more complicated. Fortunately, we will be able to plug in the results
of [6] more or less directly.

As for the orbital-compass model, to derive a good bound onpL ,β(BSW)we will fur-
ther partitionBSW into more elementary events. We begin with the events corresponding
to the homogeneous ground states: Given a collection of vectorsŵi , i = 1, . . . , s, that
are uniformly spaced on the circleS1 ⊂ S2 in the xz-plane, we defineB(i )0 to be the
subset ofBSW on which

�r · ŵi ≥ cos(1), r ∈ 3B. (5.53)

To describe the remaining “parts ofBSW,” we will not try to keep track of the en-
tire “near ground-state” configuration. Instead, we will note that each inhomogeneous
ground state contains a pair of neighboring planes in3B where the homogenous con-
figuration gets “flipped” through one of the vectorsv̂1, . . . , v̂6. (We refer the reader
to [6], particularly page 259.) Explicitly, given a lattice directionα = 1,2,3 and a vec-
tor ŵ ∈ S1, let ŵ?i denote the reflection of̂wi throughv̂2α−1. For eachj = 1, . . . , B−1,

we then defineB(i )α, j to be the set of spin configurations inBSW such that for allr ∈ 3B,

�r · ŵi ≥ cos(1) if r · êα = j,

�r · ŵ?i ≥ cos(1) if r · êα = j + 1.
(5.54)

(Note thatr · êα = j means that theα-th coordinate ofr is j . Hence, onB(i )α, j , the
spins are near̂wi on the j -th plane orthogonal tôeα and nearŵ?i on the j + 1-st plane
in 3B.) The conditions under which these events form a partition ofB is the subject of
the following claim:

Proposition 5.18.Givenκ > 0, there exist c1, c2 > 0 such that ifBE andBSW are
defined as in (5.50–5.52) and if1 and B are such that B1 � κ � 1 and s1 > 4π ,
then

BSW ⊆

s⋃
i =1

(
B(i )0 ∪

⋃
α=1,2,3

B−1⋃
j =1

B(i )α, j

)
(5.55)
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Next we will attend to the estimates ofpL ,β for the various events constitutingB.
As for the orbital-compass model, the eventBE is dismissed easily:

pL ,β(BE) ≤ cβB3e−c̃β12/B2
, (5.56)

wherec andc̃ are positive constants. As to the eventsB(i )0 , here we get:

Proposition 5.19.For eachκ > 0 there existsδ > 0 such that ifβ and1 obey

β12 >
1

δ
and β13 < δ, (5.57)

then for all L sufficiently large,

pL ,β(B(i )0 ) ≤ e−B3ρ1(κ), i = 1, . . . , s. (5.58)

Hereρ1(κ) > 0 for all κ � 1.

For the “inhomogeneous” events the decay rate is slower, but still sufficient for our
needs.

Proposition 5.20.For eachκ > 0 there existsδ > 0 such that ifβ,1 andδ obey(5.57),
then for all j = 1, . . . , B − 1, all α = 1,2,3 and all L sufficiently large,

pL ,β(B(i )α, j ) ≤ e−B2ρ2(κ), i = 1, . . . , s. (5.59)

Hereρ2(κ) > 0 for all κ � 1.

Again, the proofs of these propositions are deferred to the Appendix.

Proof of Theorem 5.17 completed.We proceed very much like for the orbital com-
pass model. The core of the proof again boils down to showing thatpL ,β(B) is small,
provided B is chosen appropriately. Let1 and B be related toβ as in (5.38). By
(5.56), this choice makespL ,β(BE) small and, at the same time, makes (5.57) eventu-
ally satisfied for any fixedδ > 0. Invoking Propositions 5.19-5.20, and the subadditivity
of A 7→ pL ,β(A), we have

pL ,β(BSW) ≤ s
(
e−B3ρ1(κ) + 3Be−B2ρ2(κ)

)
(5.60)

which by the fact thats = O(1−1) implies pL ,β(BSW) � 1 onceβ is sufficiently
large. Using thatpL ,β(B) ≤ pL ,β(BE) + pL ,β(BSW), the desired boundpL ,β(B) � 1
follows.

It is easy to check, the bad eventB is preserved by “complex conjugation”σ as well
as reflections and so theϑt ’s act on it as mere translations. Moreover, onceκ � 1,
if two distinct types of goodness occur in neighboring blocks, all edges between the
blocks are of high-energy—any block containing these edges is thus bad. Finally, the
model on torus is invariant under rotation of all spins by 60◦ in thexz-plane. This means
that all conditions of Proposition 3.9 are satisfied and so, forβ � 1 andS � β2, the
quantum model features six distinct states obeying (5.45). From here we get (5.46).ut
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6. Appendix

This section is devoted to the proofs of various technical statements from Sects. 5.3, 5.4
and 5.5. Some of the proofs in the latter two subsections are based on the corresponding
claims from [6,7]. In such cases we will indicate only the necessary changes.

6.1. Technical claims: Large-entropy models.Consider a sequence(c(p)) satisfying the
large-entropy property and assume, without loss of generality, that‖c(p)‖ = 1 for
all p ≥ 1. Our goal here is to provide the bounds onpL ,β(B) and the asymptotic state-
ments concerning the dominance of the two types of goodness which were claimed in
Propositions 5.9 and 5.10. We begin with a lower estimate on the full partition function.

Lemma 6.1.Let t > 0 be fixed. Then there exists p1 < ∞ and constants c1, c2 ∈

(0,∞) such that for all p≥ p1 and allβ ≥ 0,

lim inf
L→∞

(ZL)
1/Ld

≥ max
{
c1εp eβd Ap(t), c2

}
. (6.1)

Proof.We will derive two separate bounds on the partition function per site. Focussing
on the cases when�r � �r ′ involves all three components of the spins, let us restrict
attention to configurations when every spin is within anglec

√
εp of the vector(0,0,1),

wherec is a constant to be determined momentarily. Let� and�′ be two vectors with
this property. Then the (diamond) angle between� and�′ is less than 2c

√
εp and so

� ��′
≥ cos

(
2c

√
εp

)
≥ 1 − 2c2εp. (6.2)

Choosing 2c2
= t , we thus have� � �′

≥ 1 − tεp. This means that the energy of any
bond in the configuration obeying these constraint is at leastAp(t); while each spin has

at least 1− cos(c
√
εp) ≈

1
2c2εp surface area at its disposal. This implies that(ZL)

1/Ld

is bounded by the first term in the maximum withc1 ≈
1
2c2. The other interpretation

of �r ��r ′ is handled analogously.
In order to derive the second bound, we will restrict all spins to a sector of angular

apertureπ/2, e.g., the one described as{� = (�1, �2, �3) ∈ S 2 : �1 > 1/
√

2}. This
has areaa which is a fixed positive number. Moreover, the constraint ensures that the
interaction between any two spins is non-positive; the partition function per site then
boils down to the entropy of such configurations. To evaluate this entropy, we fix the
configuration on the even sublattice. Every spin on the even sublattice is then presented
with 2d “spots” on this sector which it must avoid. The area of each such spot is a
constant timesεp. It follows that (ZL)

1/Ld
≥ a − O(εp) which is positive oncep is

sufficiently large. ut

Our next bound concerns the constrained partition functionZmix
L (L) obtained by

disseminating a particular patternL of ordered and disordered bonds (i.e. energetically
and entropically good bonds) over the torus, whenL is a genuine mixture of the two.
That is, we assume thatL contains bonds of both phenotypes. We remark that this dis-
semination is carried out by means of reflections inplanes of sites(which is permissible
by the nearest-neighbor nature of the interaction). Recall thatad = d2d−1 is the number
of bonds entirely contained in the 2× · · · × 2 block3B.
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Lemma 6.2.Let t > 0 be such that

1 − (1 − b)/ad

Ap(t)
≤ 1 (6.3)

and

1
def
= min

{
1 +

1

ad
−

1

Ap(t)
,

1

ad
−

b

Ap(t)

}
> 0. (6.4)

Then there exists a constant c3 < ∞ such that for anyβ ≥ 0 and any patternL of
ordered and disordered bonds (i.e. energetically and entropically good bonds) on3B
containing at least one bond of each phenotype,

lim sup
L→∞

Zmix
L (L)1/Ld

≤ c3 max
{
c1εp eβd Ap(t), c2

}
(εp)

1. (6.5)

Proof. Fix a patternL as specified above. As usual, we call a bond disordered if it
is entropically good. Letfb denote the fraction of disordered bonds in patternL. Let
us call a vertex an “entropic site” if all bonds connected to it are disordered. (Note
that this has two different, but logically consistent, connotations depending on whether
we are speaking of a vertex in3B or in TL .) Let fs denote the fraction of entropic
sites inL. Upon dissemination (by reflections through planes of sites), these numbers
fb and fs will represent the actual fractions of disordered bonds and entropic sites
in TL , respectively. Now each disordered bond has an energetic at mostb, while we
may estimate the energy of each ordered bond by 1. For each entropic site we will
throw in full measure so we just need to estimate the entropy of the non-entropic sites.
Here we note that each ordered bond disseminates into a “line” of ordered bonds, upon
reflections. If we disregard exactly one bond on this “line of sites”, then we see that
there is a total measure proportional toO(εL−1

p ). Since this entropy is shared by theL
vertices on this line, the entropy density of each vertex on this line isO(εp) in the
L → ∞ limit. This is an upper bound for the entropy density for each non-entropic site.

The bounds on energy show that the Boltzmann factor is no larger than

eβd(1− fb)+βdbfb = eβd[1−(1−b) fb] . (6.6)

We thus conclude that, for some constantc̃3,

lim sup
L→∞

ZL(L)1/Ld
≤ c̃3(εp)

1− fseβd[1−(1−b) fb] . (6.7)

Now, we may write the right-hand side as

c̃3

(
εpeβd Ap(t)

)1−(1−b) fb
Ap(t) (εp)

1(L) (6.8)

where

1(L) = 1 − fs −
1 − (1 − b) fb

Ap(t)
. (6.9)

SinceL contains at least one entropic bond, we knowfb > 1/ad. Our choice oft
guarantees that 1−(1−b) fb ≤ 1−(1−b)/ad ≤ Ap(t) and so the complicated exponent
in (6.8) is bounded by 1. We may use the famous identityXλY1−λ

≤ max(X,Y), true
wheneverX,Y ≥ 0 and 0≤ λ ≤ 1, to bound the term with the complicated power
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in (6.8) by the maximum in (6.5). (We setX = c1εp eβd Ap(t) andY = c2, absorbing
extra order-1 constants into our eventualc3.) It remains to show that1(L) exceeds1
in (6.4) wheneverL contains both phenotypes of bonds.

We will derive a relation betweenfs and fb that holds wheneverL contains both
phenotypes of bonds. We may give the argument in either picture—where we restrict
to the small block3B or where we consider the full torusTL after disseminatingL—
which are entirely equivalent since the fractions of entropic bonds and sites are the
same. We will give the argument in the small 2× · · · × 2 block3B. SinceL contains
bonds of both phenotypes there are at least two vertices in3B each of which “em-
anates” bonds of both phenotypes. We mark these sites, and for each of them we mark
one of the incident entropically good (disordered) bonds. We now consider the bonds
of 3B to be split into half-bonds each of which is associated to the closest incident
vertex (disregarding the midpoints). We label each half-bond as entropic or energetic,
according to whether it is half of a full bond which is entropically or energetically good.

Let H be the total number of entropic half-bonds. Now note that for each entropic
vertex, alld of the half-bonds emanating from it (and contained in3B) are “entropic
half-bonds”. We also have at least two additional entropic half-bonds associated to the
two marked sites. Therefore the number of entropic half bonds satisfies the boundH ≥

d2d fs + 2. (Note that there are 2d fs entropic sites.) Since there are 2ad = d2d total
half-bonds in3B, the proportion of entropic half bonds is at leastfs + 1/ad. At this
point let us observe that the proportion of entropic half-bonds is exactly the same as the
proportion of entropic full-bonds,fb. Therefore

fb ≥ fs +
1

ad
. (6.10)

Plugging this into the formula for1(L) we thus get

1(L) ≥ 1 +
1

ad
− fb −

1 − (1 − b) fb
Ap(t)

. (6.11)

Allowing fb to take arbitrary values in [0,1], the right-hand side is minimized by one
of the values in the maximum in (6.4). Hence,1(L) ≥ 1 whereby (6.5) follows. ut

Proof of Proposition 5.9.As usual, we consider events disseminated by reflections in
planes of lattice sites. Letb0 < 1

1+ad
. If b ≤ b0, then, as a calculation shows, the

bound (6.4) holds as well as (6.3) fort such thatAp(t) ≥ 1 − b. Such at can in turn
be chosen by the assumption that the model obeys the large-entropy condition. (This is
where we need thatp is sufficiently large.) Hence, the bound in Lemma 6.2 is at our
disposal. Now the maximum on the right-hand side of (6.5) is a lower bound on the
full partition function per site; the lemma thus gives us bounds onpL ,β of the events
enforcing the various patterns on3B. SinceB can be decomposed into a finite union of
such pattern-events, the desired inequality (5.20) follows.ut

Proof of Proposition 5.10.Again we work with events disseminated using reflections
in planes of sites. In order to prove (5.21), we note thatEp(�r � �r ′) ≥ b—which
is what every bond〈r , r ′

〉 in 3B satisfies provided� ∈ Gord—implies�r � �r ′ ≥

1−cεp. The neighboring spins are thus constrained to be within angleO(
√
εp) of each

other. Disregarding an appropriate subset of these constraints (reusing the “line of sites”
argument from the first part of the proof of Lemma 6.2) the desired bound follows.
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To prove (5.22), we note that the disseminated eventGdis forces all bonds to have en-
ergy less thanb. Lemma 6.1 implies that the correspondingpL ,β -functional is bounded
above byC̃1(εp)

−1eβd[b−Ap(t)] . Assuming thatb < 1/2 andt is chosen so thatAp(t)−

b > 1/2, we see that ifβ is large enough to satisfy

eβd
≥ ε−2(1+11)

p , (6.12)

then thepL ,β bound is less thañC1(εp)
11. ut

Given the existing results on the discontinuity of energetic bonds, it is almost in-
conceivable that the energy density itself could be continuous. To mathematically rule
out this possibility, we will show that, in actuality very few of the energetic bonds have
value in the vicinity ofb. So while the previous argument only considered two types of
bonds, we will henceforth have the following three types of bonds:

(1) strongly orderedif Ep(�r ��r ′) ≥ 1 − b′,
(2) weakly orderedif 1 − b′ > Ep(�r ��r ′) ≥ b,
(3) disorderedif Ep(�r ��r ′) < b.

Here 0< b′,b < 1/2 are constants which we will choose later, although we already
know that we have the restrictionb < 1/(1 + ad) as was necessary in the proof of
Proposition 5.9. A rather similar line of argument to that previously used for mixed
patterns of ordered and disordered bonds handles the situation for mixed patterns of
weak and strong order. For each patternL of weakly and strongly ordered bonds on
3B, let Zord

L (L) denote the partition function obtained by disseminatingL all over the
torus. Then we have:

Lemma 6.3.Let t > 0 be a number such that

1′ def
= 1 −

1 − b′/ad

Ap(t)
> 0. (6.13)

There exists a constant c4 < ∞ such that for anyβ ≥ 0 and any patternL of weakly
and strongly ordered bonds on the2× · · · × 2 block3B containing at least one weakly
ordered bond,

lim sup
L→∞

Zord
L (L)1/Ld

≤ c4 max
{
c1εp eβd Ap(t), c2

}
(εp)

1′

. (6.14)

Proof.Consider an ordered patternL with fraction fw of weakly ordered bonds. After
dissemination all overTL , there is a fractionfw of bonds onTL that are weakly ordered
and a fraction fraction 1− fw that are strongly ordered. Putting energy 1− b′ for each
weakly ordered bond and 1 for each strongly ordered bond, the Boltzmann weight of
any spin configuration contributing toZord

L (L) is at most

eβd(1−b′) fw+βd(1− fw) = eβd(1−b′ fw). (6.15)

To calculate the entropy, we again use the “line of sites” argument from the first part of
the proof of Lemma 6.2, which gives an entropy per site on the order ofO(εp) in the

L → ∞ limit. This implies that the limsup ofZord
L (L)1/Ld

is bounded by a constant
timesεpeβd(1−b′ fw). Since 1− b′ fw ≤ 1 − b′/ad we get

lim sup
L→∞

Zord
L (L)1/Ld

≤ c̃4

(
εpeβd Ap(t)

)1−b′/ad
Ap(t) (εp)

1′

, (6.16)
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for some constant̃c4 < ∞. By (6.13), the exponent of the termεpeβd Ap(t) is less than 1
and so the famous identity,XλY1−λ

≤ max{X,Y}, may be used again (as in the proof
of Lemma 6.2) which readily yields the bound (6.14).ut

Proof of Corollary 5.8.The proof is based on thermodynamical arguments. First, stan-
dard calculations using coherent states show that

Ep
(
S−2(Sr � Sr ′)

)
|�〉 = Ep(�r ��r ′)|�〉 + O(1/

√
S) (6.17)

where the error term depends implicitly onp. Hence, for a givenp andδ > 0, we can
find S so large that for anyr , r ′

∈ 3B〈
�

∣∣Ep
(
S−2(Sr � Sr ′)

)
Q̂A

∣∣�〉〈
�

∣∣Q̂A∣∣�〉 {
≥ 1 − b′

− δ, if A = Gord,

≤ b + δ, if A = Gdis.
(6.18)

(At the classical level the second case is by definition, whereas the first case follows
from Lemma 6.3.) Sinceβ 7→ e(β) is increasing, we conclude that (5.19) holds. As
a technical point, we note that in the statement of the corollary we did not include the
small corrections corresponding toδ > 0. This was primarily for æsthetic reasons: we
wanted to state the simplest possible result. We can clearly accomplish this by takingb
andb′ to be a little smaller than is otherwise needed.ut

6.2. Technical claims: Orbital-compass model.Here we will prove Propositions 5.13-
5.15 concerning the orbital-compass model. The proofs follow the strategy developed
in the context of the 120-degree model [6].

Proof of Proposition 5.13.The proof goes by one more partitioning ofB(i )SW. Consider a

spin configuration� = (�r )r ∈TL ∈ B(i )SW. SinceB(i )SW ⊂ BSW and1 � 1, it is easy to
check the following facts:

(1) they-components of all spins in3B are small.
(2) thex-components of the spins along each “line of sites” (in3B) in thex-direction

are either all near thex-component of vector̂wi or its negative.
(3) same is true for thez-components of the spins on “lines of sites” in thez lattice

direction.

Thus, at the cost of reflecting thex-components of spins along each “line of sites” in
the x-direction, and similarly for thez-components, we may assume that all spins are
aligned withŵi in the sense that

�r · ŵi ≥ cos(1), r ∈ 3B. (6.19)

Let B(i,0)SW denote the set of configurations satisfying (6.19). The above reflection pre-

serves both thea priori measure and the Hamiltonian (5.27); the eventB(i )SW is thus

partitioned into 22B “versions” of eventB(i,0)SW all of which have the same value ofpL ,β -
functional. Invoking the Subadditivity Lemma, (5.34) is proved once we show that

pL ,β(B(i,0)SW ) ≤ e−B2(FL ,1(ŵi )−FL ,1(ê1)). (6.20)
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This follows by noting that e−B2 FL ,1(ŵi ) is, to within a convenient multiplier, the inte-
gral of the Boltzmann weight e−βH∞(�) on the eventB(i,0)SW while e−B2FL ,1(ê1) provides
a lower bound on the partition function (again, to within the same multiplier which thus
cancels from the ratio). ut

Proof of Proposition 5.14.The principal idea is to derive upper and lower bounds on
FL ,1(ŵ) which converge, in the limitL → ∞, to the same Gaussian integral. Let
us parametrizêw ∈ S ++

1 as(cosθ?,0, sinθ?) and, given a spin configuration� that
satisfies�r ·ŵ ≥ cos(1) for all r ∈ TL , let us introduce the deviation variables(ϑr , ζr )
by the formula

�r =

(√
1 − ζ 2

r cos(θ? + ϑr ), ζr ,

√
1 − ζ 2

r sin(θ? + ϑr )
)
. (6.21)

Noting that bothϑr andζr are order1, we derive thatH∞(�) + |TL | is, to within a
quantity of orderL213, equal to the quadratic form

IL ,ŵ(ϑ, ζ ) =
1

2

∑
r ∈TL

{
ŵ2

z (ϑr − ϑr +êx )
2
+ ŵ2

x (ϑr − ϑr +êz)
2
}

+

∑
r ∈TL

ζ 2
r (6.22)

The Jacobian of the transformation�r 7→ (ϑr , ζr ) is unity.
Next we will derive upper and lower bounds on the integral of e−βIL ,ŵ against the

product of indicators in (5.35). For the upper bound we invoke the inequality∏
r ∈TL

1{�r ·ŵ≥cos(1)} ≤ e
1
2λβL212

exp
{
−
λβ

2

∑
r ∈TL

ϑ2
r

}
, (6.23)

valid for eachλ ≥ 0. Theζr ’s are then unrestricted and their integrals can be per-
formed yielding a factor

√
2π/β per integral. The integral overϑr ’s involves passing

to the Fourier components, which diagonalizes the covariance matrix. The result is best
expressed inL → ∞ limit:

lim inf
L→∞

FL ,1(ŵ) ≥ O(β13)+
1

2
λβ12

+ F(λ, ŵ), (6.24)

where

F(λ, ŵ) =
1

2

∫
[−π,π ]2

dk
(2π)2

log
[
λ+ D̂k (ŵ)

]
(6.25)

By the Monotone Convergence Theorem,F(λ, ŵ) converges toF(ŵ) asλ ↓ 0. Since
β13 is less thanδ, which is up to us to choose, takingλ ↓ 0 on both sides of (6.24) we
deduce thatFL ,1(ŵ) ≥ F(ŵ)− ε for L sufficiently large.

It remains to derive the corresponding lower bound. Here we will still work with the
parameterλ above but, unlike for the upper bound, we will not be able to takeλ ↓ 0 at
the end. Consider the Gaussian measurePλ which assigns any Borel setA ⊂ (R×R)TL

the probability

Pλ(A) =
1

ZL(λ)

∫
A

( β
2π

)TL
exp

{
−βIL ,ŵ(ϑ, ζ )−

βλ

2

∑
r ∈TL

ϑ2
r

} ∏
r ∈TL

dϑr dζr .

(6.26)
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Let Eλ denote the corresponding expectation. Fromβλ ≥ 0 we get∫
(S2)

|TL |

d� e−βIL ,ŵ(ϑ,ζ )

( ∏
r ∈TL

1{�r ·ŵ≥cos(1)}

)
≥ ZL(λ) Eλ

( ∏
r ∈TL

1{�r ·ŵ≥cos(1)}

)
.

(6.27)
The free-energy corresponding to the normalization constantZL(λ) is exactlyF(λ, ŵ)
above. Thus, givenε > 0, we can findλ > 0 such thatZL(λ) ≥ e−L2[F(ŵ)+ε/2]

onceL � 1. It remains to show that the expectation is at least e−L2ε/2 providedδ in
(5.36) is sufficiently small.

Here we first decrease the product by noting that

1{�r ·ŵ≥cos(1)} ≥ 1
{|ϑr |≤1/2}

1
{|ζr |≤1/2}

. (6.28)

This decouples theζr ’s from theϑr ’s and allows us to use the independence of these
fields underPλ. Since theζr ’s are themselves independent, the integral overζr boils
down to

Eλ

( ∏
r ∈TL

1
{|ζr |≤1/2}

)
=

∏
r ∈TL

Pλ
(
|ζr | ≤ 1/2

)
≥

(
1 − e−λβ12/4)L2

, (6.29)

where we used the standard tail bound for normal distribution. Note that, for any fixed
λ > 0, the term 1− e−λβ12/4 can be made as close to one as desired by increasingβ12

appropriately.
Theϑr ’s are not independent, but reflection positivity through bonds shows that the

corresponding indicators are positively correlated, i.e.,

Eλ

( ∏
r ∈TL

1
{|ϑr |≤1/2}

)
≥

∏
r ∈TL

Pλ
(
|ϑr | ≤ 1/2

)
. (6.30)

The probability on the right-hand side is estimated using a variance bound:

Pλ
(
|ϑr | > 1/2

)
≤

( 2

1

)2
Var(ϑr ) =

4

12

1

L2

∑
k∈T?L

1

β[λ+ D̂k (ŵ)]
≤

4

λβ12
, (6.31)

whereT?L denotes the reciprocal torus. Again, for any fixedλ, Pλ(|ϑr | ≤ 1/2) can
be made as close to one as desired onceβ12 is sufficiently large. We conclude that,
given ε > 0, we can chooseδ such thatFL ,1(ŵ) ≤ F(ŵ) + ε onceL � 1. This
finishes the proof. ut

Proof of Proposition 5.15.Sinceŵ2
x + ŵ2

z = 1, this is a simple consequence of Jensen’s
inequality and the strict concavity of the logarithm.ut

6.3. Technical claims: 120-degree model.Here we will provide the proofs of technical
Propositions 5.18-5.20. The core of all proofs is the fact that any spin configuration(�r )
can be naturally deformed, by rotating along the main circle orthogonal to thexz-plane,
to have zeroy-component. An explicit form of this transformation is as follows: Let us
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write each�r ∈ S2 using two variablesζr ∈ [−1,1] andθr ∈ [0,2π) interpreted as
the cylindrical coordinates,

�r =

( √
1 − ζ 2

r cosθr , ζr ,

√
1 − ζ 2

r sinθr
)
. (6.32)

Then�′
r is the vector in which we setζr = 0, i.e.,

�′
r = (cosθr ,0, sinθr ). (6.33)

(We have already used this transformation in the proof of Proposition 5.14.) An ad-
ditional useful feature of this parametrization is that the surface (Haar) measure d�r
on S2 then decomposes into the product of the Lebesgue measure d�′

r on S1 and the
Lebesgue measure dζr on [−1,1].

Proof of Proposition 5.18.We will use the fact that, for configurations on3B with
vanishingcomponent in they-direction, this was already proved as Theorem 6.4 in [6].
Let (�r ) ∈ BSW and define(�′

r ) be as above. Since|�r · êy| ≤ c11/B for all r ∈ 3B,
we have ∣∣(�r −�′

r ) · êy
∣∣ ≤ c11/B (6.34)

while
(�r −�′

r ) · êα = O(12/B2), α = x, z. (6.35)

In particular, the configuration(�′
r ) is contained in the version of eventBSW from [6],

providedc2 is a sufficiently small numerical constant. Thus, under the conditionB1 �

κ � 1—which translates to the conditionB
√
0 � κ � 1 of [6, Theorem 6.4]—(�′

r )
is contained in one of the events on the right-hand side of (5.55). But, at the cost of a
slight adjustment of1, the corresponding event will then contain also(�r ). ut

To prove the bounds in the remaining two propositions, we will more or less directly
plug in the results of [6]. This is possible because they-component of the spins con-
tributes only an additive factor to the overall spin-wave free energy. The crucial estimate
is derived as follows:

Lemma 6.4.There exists a constant c> 0 such that the following is true: Let1 � 1
and let� = (�r ) be a configuration onTL such that|�r · êy| ≤ 12 and |�

(2α)
r −

�
(2α)
r +êα

| ≤ 1, for all α = 1,2,3. Define�′
= (�′

r ) as above. Then∣∣∣∣ H∞(�)− H∞(�′)−
3

2

∑
r ∈TL

(�y · êy)
2
∣∣∣∣ ≤ c13L3. (6.36)

Proof.By the fact that�r · êy = O(1) we have

�r · v̂α = �′
r · v̂α + O(12). (6.37)

But then the assumption�(2α)r −�
(2α)
r +êα

= O(1) yields[
(�r −�r +êα ) · v̂2α

]2
=

[
(�′

r −�′

r +êα
) · v̂2α

]2
+ O(13). (6.38)

Using (5.49), this proves the claim.ut
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Proof of Proposition 5.19.The quantitypL ,β(B(i )0 ) is the ratio of the partition function in
which all spins are constrained to make angle at most1 with ŵi , and the full partition
function. The restrictionB(i )0 ⊂ BSW can, for the most part, be ignored except for
the ŵi ’s that are close to one of the six preferred directions. In such cases the fact
that1 � κ tells us thatB(i )0 is empty whenever the angle betweenŵi and the closest
of v̂1, . . . , v̂6 is less than, say,κ/2. In particular, we may restrict attention to theŵi ’s that
are farther thanκ/2 from any of these vectors.

Viewing the collection of angles(θr ) as a configuration ofO(2)-spins, Lemma 6.4
tells us that the Hamiltonian of(�r ) is, to within corrections of orderL313, the sum of
3
2

∑
r ζ

2
r and the Hamiltonian of the classical,O(2)-spin 120-degree model evaluated at

configuration(θr ). Since the measure d�r equals the product dζr dθr on the respective
domain, we may ignore the restriction ofζr to values less thanO(1) and integrate
theζr ’s. We conclude thatpL ,β(B(i )0 ) is bounded by the same quantity as for theO(2)-

spin 120-degree model times eO(β13). Sinceβ13 is controlled via (5.57), the desired
bound follows from [6, Lemma 6.9]. ut

Proof of Proposition 5.20.The proof is very much like that of the previous proposition.
Let B̃(i )α, j denote the event that the top line in (5.54) holds for allr ∈ 3B for which r · êα
is odd and the bottom line for all suchr for which r · êα is even. Chessboard estimates
then yield

pL ,β
(
B(i )α, j

)
≤ pL ,β

(
B̃(i )α, j

)2/B
. (6.39)

On the disseminated event
⋂

t∈TL/B
θt(B̃(i )α, j ) the assumptions of Lemma 6.4 are satis-

fied. Hence, we may again integrate out theζr ’s to reduce the calculation to that for
O(2)-spins. The latter calculation was performed in detail in [6]; the desired bound is
then proved exactly as Lemma 6.10 of [6] (explicitly, applying inequality (6.24) of [6]
and the paragraph thereafter).ut
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35. R. Kotecḱy and D. Ueltschi, Effective interactions due to quantum fluctuations,Commun. Math.
Phys.206(1999), no. 2, 289–335.

36. E.H. Lieb, The classical limit of quantum spin systems,Commun. Math. Phys.31 (1973) 327–340.
37. E. Lieb and D. Mattis, Ordering energy levels of interacting spin systems,J. Math. Phys.3 (1962), no. 4,

749–751.
38. T. Michoel and B. Nachtergaele, The large-spin asymptotics of the ferromagnetic XXZ chain,Markov

Proc. Rel. Fields11 (2005), no. 2, 237–266.



Quantum spin systems at positive temperature 47

39. T. Michoel and B. Nachtergaele, Central limit theorems for the large-spin asymptotics of quantum spins,
Probab. Theory Related Fields130(2004), no. 4, 493–517.

40. A. Mishra, M. Ma, F.-C. Zhang, S. Guertler, L.-H. Tang and S. Wan, Directional ordering of fluctuations
in a two-dimensional compass model,Phys. Rev. Lett.93 (2004), no. 20, 207201.

41. Z. Nussinov, M. Biskup, L. Chayes and J. van den Brink, Orbital order in classical models of transition-
metal compounds, Europhys. Lett.67 (2004), no. 6, 990–996.

42. A. Perelomov,Generalized Coherent States and Their Applications, Texts and Monographs in Physics,
Springer-Verlag, Berlin, 1986.

43. D.W. Robinson, Statistical mechanics of quantum spin systems II,Commun. Math. Phys.7 (1968), no. 3,
337–348.

44. S.B. Shlosman, The method of reflective positivity in the mathematical theory of phase transitions of the
first kind (Russian),Uspekhi Mat. Nauk41 (1986), no. 3(249), 69–111, 240.

45. B. Simon, The classical limit of quantum partition functions,Commun. Math. Phys.71 (1980), no. 3,
247–276.

46. B. Simon,The Statistical Mechanics of Lattice Gases, Vol. I., Princeton Series in Physics, Princeton
University Press, Princeton, NJ, 1993.

47. E.R. Speer, Failure of reflection positivity in the quantum Heisenberg ferromagnet,Lett. Math. Phys.10
(1985), no. 1, 41–47.


