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Quantum spin systems at positive temperature
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Abstract: We develop a novel approach to phase transitions in quantum spin models
based on a relation to their classical counterparts. Explicitly, we show that whenever
chessboard estimates can be used to prove a phase transition in the classical model, the
corresponding quantum model will have a similar phase transition, provided the inverse
temperaturg’ and the magnitude of the quantum spifisatisfy f <« +/S. From the
quantum system we require that it is reflection positive and that it has a meaningful clas-
sical limit; the core technical estimate may be described as an extension of the Berezin-
Lieb inequalities down to the level of matrix elements. The general theory is applied to
prove phase transitions in various quantum spin systemsSnith1. The most notable
examples are the quantum orbital-compass modél?and the quantum 120-degree
model onZ3 which are shown to exhibit symmetry breaking at low-temperatures de-
spite the infinite degeneracy of their (classical) ground state.
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1. Introduction

It is considered common knowledge that, for spin systems, the behavior of a quantum
model at finite temperature is “like” the behavior of the corresponding classical model.
However, beyond the level of heuristics, it is far from clear in what sense the above
statement is meaningful. Another, slightly more academic way to “recover” the clas-
sical spin system is to consider spin-representations with spin-magfitaae then

let S — oo. A standard argument as to why this should work is that the commutators
between various spin operators are ordé$-smaller than the quantities themselves,
and so the spins behave essentially classically whénlarge. Notwithstanding, pre-

cise statements along these lines have only been made {8rthexo limit of the free
energies [4,27,28, 36,45] and specific types & torrections [12, 38, 39].

A common shortcoming of the above studies is that neither spells explicit conditions
on the relative magnitude g@f andS for which the classical behavior is exhibited. This
is of importance because, at sufficiently low temperatures, the relevant excitations are
guantum For example, while the classical Heisenberg antiferromagnet on a finite bi-
partite graph has a continuum of ground states (related by the SO(3) symmetry), the
quantum Heisenberg antiferromagnet has a unique ground state [37]. Another example
is the 111-interface in the classical Ising model which, at zero temperature, is disor-
dered but may be stabilized by appropriate (but arbitrarily small) quantum perturba-
tions [9, 32]. The control of the relevant quantum excitations is a non-trivial subject and
is usually accomplished only when finite-temperature effects are of little significance
for the overall behavior.

The preceding discussion is particularly important for systems which undergo phase
transitions. Here several techniques have been available—infrared bounds [20, 26],
chessboard estimates [23-25, 33] and contour expansions [10, 13, 14, 35]—some of
which (specifically, the latter two) are more or less based on the assumption that the
quantum system of interest has a strong classical component. However, while certain
conclusions happen to apply uniformly well even &s— oo, the classical refer-
ence state of these techniques is usuditgrete(e.g., Ising type). This is quite unlike
theS — oo limit which inherently leads to aontinuous-spinHeisenberg-like model.
Thus, the relation between the above “near-classical” techniques agt-thex re-
sults discussed in the first paragraph is tenuous.

The purpose of this paper is to provide a direct connection betweeh theco ap-
proach to the classical limit of quantum spin systems and the proofs of phase transitions
by the traditional means of chessboard estimates. Explicitly, we establish the following
general factWhenever chessboard estimates can be used to prove a phase transition in
the classical system, a corresponding transition will occur in the quantum system pro-
vided /S is sufficiently larger than the inverse temperature. This permits us to prove
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phase transitions in systems with highly degenerate ground states, but without contin-
uous symmetry, as well as certain temperature driven phase transitions which have not
been accessible heretofore.

To highlight the main idea of our approach, let us recall how chessboard estimates
enter the proofs of phase transitions. Suppose a quantum system on the torus is parti-
tioned into disjoint blocks and a projector on a “bad event” is applied in some of the
blocks. The goal is to show that the expectation—in the quantum Gibbs state—of the
product of these projectors decays exponentially with the number of bad blocks. Here
the chessboard estimates offer a non-trivial simplification: The expectation to the in-
verse number of bad blocks is maximized by the configuration in which all blocks are
bad. In classical models, the latter quantity—sometimes referred to anitle¥sal con-
tour—is often fairly easy to estimate by properly accounting for energy and entropy of
the allowed configurations. However, this is not the case once quantum effects get into
play; the only general technique that has been developed for this purpose is the “prin-
ciple of exponential localization” [25] which hinges on an approximate diagonalization
of the “universal projectors” and model-specific spectral estimates.

The main feature of our approach is that we bound the (relevant) universal contours
directly—namely, by the universal contours for ttlassical(i.e., S = oco) version of
the quantum system. The technical estimate making this possible is a new bound on the
matrix element of the Gibbs-Boltzmann weight relativetterent statel2), which is
close in the spirit to the celebrated Berezin-Lieb inequalities [4, 36]. The result is that
(Qle~#H|Q) is dominated by the classical Gibbs-Boltzmann weight times a correction
that is exponential ifD (8/+/S) x volume. Hence, iff « +/S, the exponential growth-
rate of partition functions, even those constrained by various projectors, is close to that
of the classical system. This is ideally suited for an application of chessboard estimates
and the corresponding technology—developed in [23-25, 33]—for proving first-order
phase transitions. Unfortunately, the bound in terms of universal contour has to be per-
formed before the “conversion” to the classical setting and so we still require that the
quantum system is reflection positive.

To showcase our approach, we provide proofs of phase transitions in the following
five quantum systems (defined by their respective formal Hamiltonians):

(1) The anisotropic Heisenberg antiferromagnet:
H=+ > SAUSS + 1YY +5F) (1.1)
(r,r’)

where 0< Jqi, J» < 1.
(2) The non-linear XY-model:

Hoo 3 :p(—s*xﬁx/ * Sysfy/) (1.2)

52
(r,r’)

whereP(x) = P1(x?) + xP2(x?) for two polynomialsPy, P, (of sufficiently high
degree) with positive coefficients.
(8) The non-linear nematic model:

H==2 P& -5 (1.3)
(r,r’)

whereS; - S = § + Y, + ¥ and whereP is a polynomial—typically of
high degree—with positive coefficients.



4 M. Biskup, L. Chayes and S. Starr

(4) The orbital compass model @¥:

S22, ifri=r4+é,
H=>" TS (1.4)
o 1857299, ifri=r=+8.
(5) The 120-degree model &¥:
H=> S2TT) if r'=r=+g (1.5)
rr)
where
g ifj =1,
T = -1+ 29, if j =2, (1.6)
g - B9, if j =3,

Here(r, r’) denotes a nearest-neighbor pairZfh—where unless specified we are only
assumingd > 2—the symbok; stands for the unit vector in theth lattice direction
andS = (S, g, ) is a triplet of spinS operators for the spin at site The scaling
of all interactions by the indicated inverse powersa$ necessary to make tle— oo
limit meaningful.

Model (1) has been included only for illustration; the requisite transition was proved
for large anisotropy [25] and, in the context of the ferromagnet (which is not even re-
flection positive), for arbitrarily small anisotropy [31]. The classical versions of models
(2-4) feature strong order-disorder transitions at intermediate temperatures; cf [1, 16,
22, 33]. Here we will prove that corresponding transitions occur for l&ggrantum
versions of these systems. Models (4-5) are quite unusual even at the classical level:
Notwithstanding the fact that the Hamiltonian has only discrete symmetries, there is a
continuumof ground states. As was shown in [6, 7], at positive temperatures the de-
generacy is lifted leaving only a finite number of preferential directions. The proofs
of [6, 7] involve (classical) spin-wave calculations not dissimilar to those of [18, 19].
However, since the massless spin-wave excitations are central to the behavior of these
systems—even at the classical level—it is by no means clear how to adapt the methods
of [10,13, 14,20, 23-25, 31, 33, 35] to these cases.

The remainder of the paper is organized as follows: In the next section, we recall
the formalism of coherent states, which is the basis of m&mp oo limit results,
and the techniques of reflection positivity and chessboard estimates, which underline
many proofs of phase transitions in quantum systems. In Sect. 3 we state our main
theorems; the proofs come in Sect. 4. Applications to the various phase transitions in
the aforementioned models are the subject of Sect. 5. The Appendix (Sect. 6) contains
the proofs of some technical results that would detract from the main line of argument
in Sects. 5.3-5.5.

2. Preliminaries

In this section, we summarize standard and well-known facts about tf#® Stherent

states (Sect. 2.1) and the techniques of chessboard estimates (Sect. 2.2). The purpose of
this section is mostly informative; a reader familiar with these concepts may skip this
section altogether and pass directly to the statement of main results in Sect. 3.
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2.1. Coherent statesHere we will recall the Bloch coherent states which were the basis
for rigorous control of various classical limits of quantum spin systems [4,27,28,36,45].

In a well defined sense, these states are the “closest” objects to classical states that
one can find in the Hilbert space. Our presentation follows closely Lieb’s article [36];
some of the calculations go back to [3]. The theory extends to general compact Lie
groups, see [17, 45] for results at this level of generality. The literature on the subject
of coherent states is quite large; we refer to, e.qg., [2,42] for comprehensive review and
further references.

GivenS e {Y,, 1,305, ...}, consider thé€2S + 1)-dimensional irreducible represen-
tation of the Lie algebrau(2). The generatorgS*, $¥, S%), obeying the commutation
rules[S, Sl]= 2ieiijk, are operators actingonsgéd): M = -8, S+1,...,S—

1, S} =~ C25+1 In terms of spin-rasing/lowering operato&; = S* +iSY, we have

FIM) = M M),
SHIM) = /S S +1) — M(M + 1) |[M + 1), (2.1)
SIM) =SS +1)— MM —1)|M —1).

In particular,S* andS* are real whileSY is purely imaginary.

The classical counterpart efi(2)-spins are vectors on the two-dimensional unit
sphere# in R3. For each € .%%, one defines the coherent state vector in the direction
Qto be

S

Y,
Q)= > (Szf,v,)  [oost?2)]S M [sin@p1S M S My (2.2)
M=-S§

Here (0, ¢) are the spherical coordinates Qf with ¢ denoting the azimuthal angle
and¢ denoting the polar angle. Lgt= tan(?/,)é? denote the stereographic projection
from # to C. Then (2.2) can be written as

Q) = S <SS = [L+ (S &S 1S)
= [cos(9/2)]% exptan?/2)9S7) |S) . (2.3)

One important property of the coherent st@g s that it is an eigenvector of the matrix
Q - Swith maximal eigenvalue:

(Q-9|Q) = S|1Q). (2.4)

This equation characterizes the ved@j up to a phase factor. The choice of the phase

factors may seem arbitrary, but in practice they will cancel in all the formulas we use.
The fact that the statéQ) have been defined relative to the basis in (2.1) is inconse-

guential. Indeed, a rotation of a coherent state is, to within a harmless phase factor, the

coherent state corresponding to the rotated vector. More precisely, foweach, and

t e R, one may consider the unitaty,,; = €' Then, for anyQ e .#5, a simple

calculation shows that

Uot(Q-9US = Rut(Q)-S, (2.5)

whereR,+ € SO(3) is the rotation about the ray passing througlby the anglet.
Because of thi§), 1|Q) satisfies (2.4) witlQ replaced byR,, ¢ (€2) and so

Uy tlQ) = €T@2D R, (Q)),
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for some phase factdr(Q2, o, t). Since SU(2) is a double cover of SO(3)X2, w, 27)
is not necessarily 0 (modrd; rather &f (2.».21) — (_1)25

The explicit formula (2.2) fotQ) yields
(Q1Q) = [cog?%) cog?/2) + €@~ sin()y) sin(e’/z)]zs . (2.6)
Defining the angle betwee®@ andQ’ to be®, one also has
(1] = [cos(®/)]*°. 27
Another formula that is directly checked from (2.2) is

_25+1
T 4 2

1 dQ |Q)(Q, (2.8)

where d2 denotes the uniform surface measuresgnwith total mass 4.
Given any operatoA on C25*1, one can form what is commonly known as the
lower symbalwhich is a functiom — (A)q defined by

(A)g:= (QIAIQ). (2.9)

(Here and henceforthQ| A|Q) denotes the inner-product () with the vectorA|Q).)
While not entirely obvious, it turns out that the tracefoédmits the formula

25+1
T S

Tr(A) = dQ (A)e. (2.10)

There is also a generalization of (2.8): There exists a fun€en [A]q such that

_28+1
T

A

/ dQ[A]lq |Q)(Q]. (2.11)
2

Any suchQ — [A]q is called arupper symbolor A. Unfortunately, such a function is
not unique and sa4]q actually represents an equivalence class of functions. Obviously
(A+B)g = (A)q + (B)q. For the upper symbols, iff]o and [B]q are upper symbols
for A andB then [A + B]qo= [Ala+[B]q is an upper symbol foA + B.

When A = 1, one has(l)g = 1 and, by (2.8), one can also choosdf= 1.
However, it is usually not the case that the lower symbol is also an upper symbol, e.g.,
we have

(Syq = S sind cosg, [S]a = (S +1) sind cosg,
(F)q = S sind sing, [F]a = (S + 1) sind sing, (2.12)
(g = S cosb, [S9a = (S +1) cosd.

As is easily checked, the leading ordedrof these expressions is exactly the classical
counterpart of the corresponding operator. For more complicated products of the spin
components, both symbols develop lower-order “non-classical” corrections but, as was
shown in [17, Theorem 2], the leading order term is always the classical limit.

The above formalism generalizes to collections of many spinsALle¢ a finite set
and, for each e A, let (S, §, S°) be the spin operator for the spinratWe will as-
sume that the spins at all sites have magnitbigeo we assume to have a joint (product)
representation of these spins Bf) = ®rEA[(CzS+1]r. Consider an assignment of a
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classical spin); € % to eachr € A and denote the resulting configuratit®; ), c o
by Q. The desired product coherent state then is

Q)= ) 1). (2.13)

reA

Given an operatoA onH 4, we define its lower symbol by the generalization of (2.9),
(Alg = (QIAIQ), Qe ()M (2.14)

With this lower symbol we may generalize (2.10) into

28 + 1\
TrHA(A)z( + ) / dQ (A)o. (2.15)
4 (SN
There is also a representationAin terms of an upper symbol]q,
28 + 1\
A= (55) ) @ maiaal, (2.16)
4 ()N

where d2 is the product surface measure @#,)'*! and whereQ — [A]q is now a
function (#2)!*1 — C. A special case of this formula is the resulution of the identity
onHx. Note that (2.16) allows us to substitut&]f, for (A)q in (2.15).

It is easy to check tha® — [A]q has the expected behavior under (tensor) prod-
uct of operators, provided these respect the product structurg, ofndeed, suppose
that A is the disjoint union ofA; and A, and let|Q) and|Qp) be product coherent
states fronfH, andH,,, respectively. Given two operatods;: Ha, — Ha, and
Az Ha, = Ha,, let[Ar]lq, and [Az]q, be their associated upper symbols. Then

[A1 ® Al = [Adle, [A2la, (2.17)

is an upper symbol oA; ® Ao relative to stat¢(Q1, Qo)) = [Q1) ® |Q2). On the other
hand, if [A]q depends only 06Q; )r cx- WhereA” S A, then we can perform a partial
trace in (2.16) by integrating over thi€; ); co~.a’ @nd applying (2.8) for each integral.

2.2. Chessboard estimateblext we will review the salient features of the technology

of reflection positivity/chessboard estimates which was developed and applied to both
classical and quantum systems in the works of F. Dysonahlieh, R. Israel, E. Lieb,

B. Simon and T. Spencer [20, 23-26].

Consider &C*-algebra?( and suppose th& . and2(_ arecommutingsubalgebras
which are “mirror images” of each other in the sense that there is an algebraic automor-
phismé: A — A such that () = A= andd? = id. Assuming thal is represented
in terms of complex matrices, fagk € 2 we defineA to be the complex conjugatenst
the adjoint—ofA. We will always assume th& is closed under complex conjugation.
Note that, since complex conjugation is not a “covariant operation,” the representation
of 2l ought to stay fixed throughout all calculations involving complex conjugation.

A relevant example of the above setting is a quantum $pBystem on thel-
dimensional toru§| of L x --- x L sites, withL even, which we think of as a union
of two disjoint symmetric haIves]l“JLr and T . (Note thatT, can also be identified

with Z4/LZ9. Of course the origin & Z% maps to the origin of the torus.) Th&his
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the C*-algebra of all observables—represented®§ + 1)/t dimensional complex
matrices—and! are the sets of observables Tﬁﬁ, respectively. Explicitly2l, are
matrices of the formA; ® 1, whereA, “acts” only onT;", while the matrices if(_
take the forml® A_. The operatiod is the map that interchanges the “left” and “right”
half of the torus; e.g., in a properly parametrized batig,, ® 1) = 1 ® A,. The fact
thaté arises from a reflection leads to the following concept:

Definition 2.1. Let (—) be a state—i.e., a continuous linear functional—and letd
be as above. We say thiat) is reflection positivgrelative tod) if for all A, B € 2,

(AO(B)) = (BO(A)) (2.18)

and
(AO(A)) = 0. (2.19)

The following condition, derived in [20, Theorem E.1] and in [25, Theorem 2.1], is
sufficient for the Gibbs state to have the above property:

Theorem 2.2 (Reflection positivity—sufficient condition).Given a reflection ofl',
as described above and usifgto denote the associated reflection operator, if the
Hamiltonian of a quantum system @h can be written as

H=C +Wc:)—/g(da) D, (D), (2.20)

where G D, € 24 andg is a (finite) positive measure, then the canonical Gibbs state
(=)L p» which is defined by

Ty €A

(ALp= W, (2.21)

is reflection positive relative t@ for all § > 0.

The crux of the proof of (2.19) is the fact that tjfe= 0 state isgeneralized re-
flection positivei.e., (A16(A1) ... Anf(An))L,0 > 0. The rest follows by a Lie-Trotter
expansion of 8’1 into powers of the last term in (2.20)—hence the need fmiraus
sign in front of the integral.

Remark 2.3We reiterate that the reflections @f considered here are always for
“planes of reflections’betweensites. In classical models one can also consider the
(slightly more robust) reflections for “planes” on sites. However, due to nhon-commu-
tativity issues, Theorem 2.2 does not seem to generalize to quantum systems for these
kinds of reflections.

Reflection positivity has two important (and related) conseque@asssian domi-
nation—leading ultimately to infrared bounds—aokessboard estimatels this work
we make no use of the former; we proceed by discussing the details of the latter.

Let Ag be a block ofB x --- x B sites with the “lower-left” corner at the ori-
gin. Assuming that is a multiple of B, we can tileT| by disjoint translates of\g.
The positions of these translates are giverBagnultiples of vectorg from the factor
torusT,g. In particular, if Ag 4+ r denotes the translate ofg by r € T, thenT,_
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is the disjoint union it ,(As + Bt). Let2l,, denote the algebra of observables

in Ag, i.e., eachA € 2, has the formA = Ag ® 1, whereAg acts only on the por-
tion of the Hilbert space correspondingAg. For eachA € 25, and eacht € T /g

with [t| = 1, we can define an antilinear operaﬁa(A) in Ag + Bt by
De(A) = 0(A) (2.22)

whered is the operator of reflection along the corresponding sidé gf By taking
further reflections, we can defing(A) for everyt € T ;. (Thusv is linear for even-
parityt and antilinear for odd-parity if every component of is even then, is simply

the translation byBt.) It is easy to check that the resultinig(A) does not depend on
what sequence of reflections has been used to generate it.

The fundamental consequence of reflection positivity, derived in a rather general
formin [25, Theorem 2.2], is as follows:

Theorem 2.4 (Chessboard estimateSuppose that the state-) is reflection positive
for any “plane of reflection” between sites @ . Then for any A, ..., Am € A,
and anydistinctvectorsty, ..., tm € T8,

m m (B/L)¢
<1‘[f9tj(A,-)>s H< I1 ét(Aj)> : (2.23)
j=1

j=1 IETL/B

By (2.23) we may bound the expectation of a product of operators by product of ex-
pectations of so called “disseminated” operators. As we will show on explicit examples
later, these are often easier to estimate. Note that the giant products above can be written
in any order by our assumption that the block-operators in different blocks commute.

A corresponding statement works also for classical reflection-positive measures.
The only formal difference is that th4;’s are replaced by functions, or indicators
of eventsA;, which depend only on the spin configuratiorAig. Then equation (2.23)

becomes
m m (B/L)
p(Noan) < [T#( 0 ac) (2:24)
j=1

j=1 '[GTL/B

Here#;(A) is the (usual) reflection ofl to the blockAg + Bt. (We reserve the sym-

bol 9;(A) for an operation that more closely mimiggin the coherent-state represen-
tation; see the definitions right before Proposition 3.4.) Refs. [5, 6, 8] contain a detailed
account of the above formalism in the classical context; the original statements are, of
course, due to [23-25].

Remark 2.5Unlike its classical counterpart, the quantum version of reflection positiv-
ity is a rather mysterious concept. First, for most of the models listed in the introduction,
in order to bring the Hamiltonian to the form (2.20), we actually have to perform some
sort of rotation of the spins. (We may think of this as choosing a different representation
of the spin operators.) The purpose of this operation is to have all spins “represented”
by real-valued matrices, while making the overall sign of the interactions negative. This
permits an application of Theorem 2.2.

It is somewhat ironic that this works beautifully for antiferromagnets, which thus
become effectively ferromagnetic, but fails miserably [47] for genuine ferromagnets.
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For XY-type models, when only two of the spin-components are involved in the inter-
action, we can always choose a representation in which all matrices are real valued. If
only quadratic interactions are considered (as for the nematics) the overall sign is in-
consequential but, once interactions of different degrees are mixed—even if we just add
a general external field to the Hamiltonian—reflection positivity may fail again.

3. Main results

We now give precise statements of our main theorems. First we will state a bound
on the matrix elements of the Gibbs-Boltzmann weight in the (overcomplete) basis of
coherent states. On the theoretical side, this result generalizes the classic Berezin-Lieb
inequalities [4, 36] and thus provides a more detailed demonstration of the approach to
the classical limit ass§ — oco. On the practical side, the bound we obtain allows us to
replace the “exponential localization” technique obRliich and Lieb [25]—which is
intrinsically quantum—Dby an estimate for the classical version of the model.

The rest of our results show in detail how Theorem 3.1 fits into the standard line of
proof of phase transitions via chessboard estimates. In Sect. 5 we will apply this general
strategy to the five models of interest.

3.1. Matrix elements of Gibbs-Boltzmann weighfge commence with a definition of
the class of models to which our arguments apply. Consider a finite seZZ¢ and, for
eachl’ C A, lethr be an operator o, = (X)reA[(CZSJrl]r that depends only on the
spins inl’. (l.e.,hr is a tensor product of an operator By and the unity orf{ao-r.)

We will assume thahr = 0 if the size ofl" exceeds some finite constant, i.e., each
interaction term involves only a bounded number of spins. The Hamiltonian is then

H= > hr. (3.1)

' TcA

Most of the interesting examples are such that= 0 unlesd" is a two point setx, y}
containing a pair of nearest neighbors&h—as is the case of all of the models (1-5)
discussed in Sect. 1.

As already noted, our principal technical result is a bound on the matrix element
(Qle#H|QY). To state this bound precisely, we need some more notatiorQLet
[hr]a be an upper symbol of the operator which, by (2.17), may be assumed inde-
pendent of the component®; )xqr. Wefix the upper symbol oH to

[Hlo= > [hrlo. (3.2)

I''TcA

We will also useI'| to denote the number of elements in theBeind | hr || to denote
the operator norm dfiir onH, .

Let|Q, —Q; | denote the (3-dimensional) Euclidean distance of the poip&ndQ;,
on.%, and consider the following! and¢2-norms on(.#%)!Al:

Q- =D 10 -] (3.3)
reA
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and
v

12— Q2 = (Z|Qr —QHZ) . (3.4)

reA

Besides these two norms, we will also need the “mixed” quantity

ds(Q, Q) = D" (VSIQr — QI ASIQ — 4 1?), (35)
reA

whereA denotes the minimum. This is not a distance function but, as will be explained
in Lemma 4.2, it does satisfy an inequality which could be compared to the triangle
inequality. Finally, from (2.7) we know th&tQ, |Q; )| = 1— O(S|Qr — & 12). Hence,
there isy > 0 such that

(Qle)| < e SIe-2I (3.6)
holds for allS, all Q, Q' e (.#2)!* and allA. We fix this ; throughout all forthcoming
derivations. (Since [c@8/2)]°= 1 — Y4]|Q — Q'||? for a single spin, we have = Y.

But # plays only a marginal role in our calculations so we will leave it implicit.) Our
first main theorem then is:

Theorem 3.1.Suppose that there exists a number R such that
II'l>R = hr=0, 3.7

and that, for some constantg and ¢ independent of and A, we have

sup > hrll <co (3.8)

XEA ToyelCA

as well as the Lipschitz bound
[hrle—[hrlo| < clQ — Qallhrl, T cA. (3.9)

Then for any constanbc> 0, there exists a constang ¢- 0, depending only ongg c1,
¢z and R, such that for alp < c+/S,

(QleH Q)| < e lHIa—nds@)+eapinl /G (3.10)

holds for allQ, Q' € (#2)!* and all finite A.

Note that we do not assume that the Hamiltonian is translation-invariant. In fact, as
long as the conditions (3.7-3.9) hold as stated, the geometry of the underlying set is
completely immaterial. For the diagonal elements—which is all we need in the subse-
quent derivations anyway—the above bound becomes somewhat more transparent:

Corollary 3.2. Suppose (3.7-3.9) hold and letand ¢ be as in Theorem 3.1. Then for
all #andS with g < c24/S, allQ e ()M and all A,

e_ﬁ<H>Q < <Q|e—ﬁH|Q> < e—ﬁ[H]Q+Csﬂ|/\|/~@ (311)
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It is interesting to compare this result with the celebrated Berezin-Lieb inequali-
ties [4, 36] which state the following bounds between quantum and classical partition
functions:

aQ Try, (€77H) aQ
/( e < e < / A € Me (3.12)
()l (4m) 25+1 ()l (A)

(An unpublished proof of E. Lieb, cf [46], shows both inequalities are simple conse-
quences of Jensen’s inequality; the original proof [36] invoked also the “intrinsically
non-commutative” Golden-Thompson inequality.) From Corollary 3.2 we now know
that, to within a correction of orde#/+/S, the estimates corresponding to (3.12) hold
even for the (diagonal) matrix elements relative to coherent states. However, the known
proofs of (3.12) use the underlying trace structure in a very essential way and are not
readily extended to a generalization along the lines of (3.11).

Remarks 3.3Some comments are in order:

(1) The correction of orde|A|/+/S is the best one can do at the above level of gener-
ality. Indeed, whe®2 andQ)’ are close in the seng€ — Q'[|1 = O(JA|/V/S), then
[H]q and H]¢q differ by a quantity of ordecy|A|/+/S. Since the matrix element
is symmetric inQ and Q’, the bound must account for the difference. However,
there is a deeper reason wfiy+/S needs to be small for the classical Boltzmann
weight to faithfully describe the matrix elements of the quantum Boltzmann weight.
Consider a single spin with the Hamiltoni&h = S~1S7, and letQ correspond to
the spherical angle@, ¢). A simple calculation shows that then

(QleM1Q) = [cod(2)e /S 4 sint (eS|
3.13
_ B cosﬁ+%(l—cos’-9)+0(/33/82) ( )

The termp cosé is the (now unambiguous) classical interaction in “sta®eThe
leading correction is of ordgt?/S, which is only small iff <« +/S.

(2) Another remark that should be made, lest the reader think about optimizing over
the many choices of upper symboils in (3.10): The constadépends on the upper
symbol. Forhr being a polynomial in spin operatoréy] may be chosen a poly-
nomial too [17, Proposition 3]. This automatically ensures properties such as the
Lipschitz continuity (as well as existence of the classical limit, cf (3.14)). For more
complexhr’'s—e.g., those defined by an infinite power series—one must carefully
check the conditions (3.7-3.9) before Theorem 3.1 can be applied.

3.2. Absence of clusteringOur next task is to show how Theorem 3.1 can be applied to
establish phase transitions in models whase{ o) classical version exhibits a phase
transition that can be proved by means of chessboard estimates. The principal conclu-
sion is theabsence of clusteringshich, as we will see in Sect. 3.3, directly implies a
guantum phase transition.

Consider the setting as described in Sect. 2.2, i.e., we have ditofsideL which
is tiled by (L /B)? disjoint translates of a block g of side B. For each operator in g
and eacht € T /g, we write Uy (A) for the appropriate reflection—accompanied by
complex conjugation if is an odd parity site—oA “into” the block Ag + Bt. In addi-
tion to the operators o, = ®te1rL [C25+1],, we will also consider eventd on the
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space of classical configuratiofis’)!Tt! equipped with the Borel produetalgebra
and the product surface measute & [ [, ., dQ. If Ais an event that depends only
on the configuration im g, we will call 4 a B-block eventFor eacht € T /g, we
useb;(A) to denote the event ilhg + Bt that is obtained by (pure) reflection gf
“into” Ag + Bt.

Given a quantum Hamiltoniakl of the form (3.1), let(—), z denote the thermal
state (2.21). Considering theassicalHamiltonian H>®: ()Tl — R, which we
define as

H®(@Q) = lim (H)g = lim [H]q, (3.14)
S— oo S— oo

we useP_ ; to denote the usual Gibbs measure. Explictly, for any eveat (H)\ Tl

e AHE @)

whereZ| (p) is the classical partition function. For eaBhblock event4 we will also
consider its disseminated versiﬁ]}eTL/B 0 (A) and introduce the abbreviation

(B/L)¢
} (3.16)

pL,ﬂ(A)Z[PL,ﬁ< N 9t(A))

tETL/B

for the corresponding quantity on the right-hand side of (2.24). An application of (2.23)
shows that4 — p z(A) is an outer measure on thealgebra ofB-block events
(cf [6, Theorem 6.3]).

For each measurable sétc ()Tt! we consider the operator

R 28 +1 [Te]
QA:( 4+ ) /dQ 1Q)(Q). (3.17)
7 A

Since the coherent states are overcomplete, this operator is not a projection; notwith-
standing, we mayhink of it as a non-commutative counterpart of the indicator of the
eventA. In order to describe the behavior @‘A underd;, we introduce the classi-

cal versiond; of Jy which is defined as follows: Consider a “complex-conjugation”

mapo: (%) Tl — (%)Ll which, in a given representation of the coherent states,
has the effect
1Q)(Q] = |0Q) (cQ|. (3.18)

For the representation introduced in Sect. 2.1, we can chedsebe the reflection
through thexz-plane (in spin space), i.e., & = (0, ¢) theno(Q) = (@, —¢). For

even parityt € T /g, we simply havedy = 6; while for odd parityt € T ,g we

havev; = 6; o 0.

Here are some simple facts about theperators:
Proposition 3.4.For any B-block eventl we have

D1(Q4) = Quy()» teTLB. (3.19)

Moreover, ifA, ..., Am are B-block events and, . . ., tm are distinctelements from
TL/B: then

[Qa, (4 QHIJ(AJ-)]Z 0, 1<i<js<m, (3.20)



14 M. Biskup, L. Chayes and S. Starr

and
Qatl(Al) o Qo (A = Qatl(Al) e Oty (Am) (3.21)

Finally, Q of the full space (i.e(.#)'Tt!) is the unity,Qg = 0, and if A1, Ay, ... isa
countable collection of disjoint events, then (in the strong-operator topology)

Quzy Ar = D Qe (3.22)
n=1

In particular, Q 4c = 1 — Q 4 for any eventA.

Proof. The mapd; is a pure reflection for even-paritye T\ g and so (3.19) holds by
the fact that pure reflection @ 4 is O of the reflectedd. For odd-parityt, the relation

(3.18) impIiesQA = Q,,(A), which yields (3.19) in these cases as well. The remaining
identities are easy consequences of the definitions and (28).

Remark 3.5The last few properties listed in the lemma imply that the ndap> QA
is apositive-operator-valued (POV) measuie the sense of [15]. As a consequence,

if A c A thenQy < Q4 while if {4y} is a countable collection of events, not
necessarily disjoint, then

QUi An < 2 Qun- (3.23)
n=1

Both of these properties are manifestly true by the definition (3.17).

Before we state our next theorem, let us recall the “standard” setting for the applica-
tion of chessboard estimates to proofs of phase transitiariassicalmodels. GiverB
that dividesL, one typically singles out a collectiofy, ..., Gn of “good” B-block
events and defines

B=(GiU---UGn)E (3.24)

to be the corresponding “badB-block event. Without much loss of generality we will
assume thaB is invariant under “complex” reflections, i.e%(B) = rgi(5), wherer;
denotes the shift by on (#2)/TLl. In the best of situations, carefully chosen good
events typically satisfy the conditions in the following definition:

Definition 3.6. We say that the “good” B-block events a@recompatibleif

(1) they are mutually exclusive, i.€i, N Gj = @ whenever i# j;
(2) their simultaneous occurrence at neighboring blocks forces an intermediate block
(which overlaps the two neighbors) i.e., there exdstgth 1 < ¢ < B such that

6:(Gi) N6y (Gj) C tBt4er—t)(B) (3.25)

holds for all i # j and anyt, t’ € T /g with |t — t'| = 1. Herezr, is the shift byr .
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These conditions are much easier to achieve in situations where we are allowed to
use reflections through planes containing sites. Then, typically, one defingssise
that the neighboring blocksannothave distinct types of goodness. But as noted in
Remark 2.3, we are not allowed to use these reflections in the quantum setting. Nev-
ertheless, (1) and (2) taken together do ensure that a simultaneous occurrence of two
distinct types of goodness necessarily enforces a “contour” of bad blocks. The weight
of each such contour can be bounded by the quaptity(B) to the number of consti-
tuting blocks; it then remains to show that z(B) is sufficiently small. For quantum
models, appropriate modifications of this strategy yield the following result:

Theorem 3.7.Consider a quantum spin system Bp with spinS and interaction for
which the Gibbs state—)_ 4 from (2.21)is reflection positive for reflections through
planes between sites @h . Let H* be a function and’ > 0 a constant such that, for
allL >1,

sup |[Hloa—H®@)|+ sup [(Hgq—H®@)|<&ITLl.  (3.26)
Qe(.7)\TL Qe(.7)TL!

Letds, ..., Gy be incompatible “good” B-block events and defiias in(3.24) Sup-

pose thatB is invariant under reflections and conjugatieni.e., %;(3) = rgt(B) for
allt e T /g. Fix e > 0. Then there exist$ > 0 such that if8 < c,+/S and

pLp(B) P CHRIVS) 5, (3.27)

where ¢ and g are as in Theorem 3.1, we have

(Qs) 4 <€ (3.28)
and, foralli=1,...,n and all distinctty, t, € T\ /g,
<Q%@ﬁ1_Q%@ﬂ%ﬁ<e. (3.29)

Hered may depend oa and d, but not orf8, S, n nor on the details of the model.

Remarks 3.8Here are some notes concerning the previous theorem:

(1) By general results (e.g., [17]) on the convergence of upper and lower symbols
asS — oo, the quantity¢ in (3.26) can be made arbitrarily small by increasihg
appropriately. In fact, for two-body interactions,is typically a small constant
times 1S and so it provides a harmless correction to the tesin/S in (3.27).

In particular, apart from the classical bound thats(8) <« 1, (3.27) will only
require thatp <« v/S.

(2) Note that the result is stated for pure reflectiohsyi), of the good events, not
their more complicated counterpars(Gi). This is important for maintaining a
close link between the nature of phase transition in the quantum model and its clas-
sical counterpart. We also note thaf° is not required to be reflection positive for
Theorem 3.7 to hold. (Notwithstanding, the classical Hamiltonian will be reflection
positive for all examples in Sect. 5.)
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(3) The stipulation that thé;’s “act” on 5 only as translations is only mildly restrictive:
Indeed,s(B) = B in all cases treated in the present work. However, if it turns out
that o(B) # B, the condition (3.27) may be replaced by

\/ pLsBpL g (o(B)) FETSINS <, (3.30)

which—sincep ;(a(B)) < 1—is anyway satisfied by a stricter version of (3.27)
(this does need reflection positivity 6f°°). Note thats() = B implies that every
configuration ino(G;i) is also good. In most circumstances we expect @t) is
one of the good events.

3.3. Phase transitions in quantum modelsremains to show how to adapt the main
conclusion of Theorem 3.7 to the proof of phase transition in quantum systems. We
first note that (3.27) is a condition on tlktassicalmodel which, fors small, yields a
classical variant of (3.29),

PLp (6, (G) N6, (GY)) <¢,  1<i<n. (3.31)

Under proper conditions on and the probabilities of thg;'s, this yields absence of
clustering for the classical torus Gibbs state which, by a conditioning “on the back of
the torus"—see the paragraph before Lemma 4.5—implies the existence of multiple
infinite-volume Gibbs measures.

For a quantum system with an internal symmetry, a similar argument allows us to
deal with the cases when the symmetry has been “spontaneously” broken. For instance
(see [25]) in magnetic systems (3.29) might imply the non-vanishing of the sponta-
neous magnetization which, in turn, yields a discontinuity in some derivative of the free
energy, i.e., dhermodynamighase transition. In the cases with no symmetry—or in
situations where the symmetry is not particularly useful, such as for temperature-driven
phase transitions—we can still demonstrate a thermodynamic transition either by con-
cocting an “unusual” external field (which couples to distinct types of good blocks) or
by directly proving a jump e.g. in the energy density.

An elegant route to these matters is via the formalism of infinite-volume KMS states
(see, e.g., [30,46]). Let us recall the principal aspects of this theory: Consider tie
gebra?l of quasilocal observables defined as the norm-closutg pf;q« %A, where
the union is over all finite subsetsand wherél 5 is the set of all bounded operators on
the Hilbert spacé{y = ®reA[C28+1]r' (To interpret the union properly, we note that
if A c A/,then(, is isomorphic to a subset & 5/, via the mapA - A® 1 with 1
being the identity irk(,n o.) For eachL > 1, let us identifyT', with the blockA and
let H_ be the Hamiltonian o', which we assume is of the form (3.1) witly finite
range and translation invariant.

For each observabla e Ay, leta") (A) = &tHL Ae=itHL pe the strongly-conti-
nuous one-parameter family of operators representing the time evolutiénirothe
Heisenberg picture. FoA local andH_ finite range, by expanding into a series of
commutators

at(L)(A):Z(I:]—?[HL[HL...[HL,A]...]], (3.32)
n>0
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the mapt — at(L)(A) extends to alt € C, see [30, Theorem 111.3.6]. Moreover, the
infinite series representation afL)(A) converges in norm, ak — oo, to a one-
parameter family of operators (A), uniformly int on compact subsets &f. (These
facts were originally proved in [43].)

A state(—)s on®—i.e., a linear functional obeyingA); > 0if A > 0 and(1)s =
1—is called aKMS state(for the translation-invariant, finite-range interactibh at
inverse temperaturg) if for all local operatorsA, B € 2, the equality

(AB); = (a-ip(B)A),, (3.33)

also known as th&MS condition holds. This condition is the quantum counterpart
of the DLR equation from classical statistical mechanics and a KMS state is thus the
counterpart of the infinite-volume Gibbs measure.

We proceed by stating two general propositions which will help us apply the results
from previous sections to the proof of phase transitions. We begin with a statement
which concerns phase transitions due to symmetry breaking:

Proposition 3.9.Consider the quantum spin systems as in Theorem 3.7 and suppose
that the incompatible good block evegts . . ., G, are such that ng>|_’ﬁ is the same
forallk = 1,...,n. If (3.28-3.29) hold with am such that(n + 1)e < 1, then there

exist n distinct, KMS state{s—)(ﬂk), k=1,...,n,which are invariant under translations

by B and for which

(ng);“ >1-(n+1e, k=1,...,n (3.34)

The proposition says that there are at leadtstinct equilibrium states. There may
be more, but not less. This ensures a phase transition, via phase coexistence.

Our second proposition deals with temperature driven transitions. The following is
a quantum version of one of the principal theorems in [33, 34]:

Proposition 3.10.Consider the quantum spin systems as in Theorem 3.7 ari} let
and G, be two incompatible B-block events. IA&t < f> be two inverse temperatures
and suppose that € [0, 1) is such that for all L> 1,

(1) the bounds (3.28-3.29) hold for #ll [1. 2],
(2) (Qg,)L,p = 1—2e and(Qg,)L,p, > 1 — 2e.

Then there exists an inverse temperatfirec [f1, f2] and two distinct KMS states
(—)2? and(—)g) at inverse temperaturg which are invariant under translations by B
and for which

(Qa)y > 1—4¢ and (Qg,)7 > 1-4e. (3.35)

The underlying idea of the latter proposition is the existence of a forbidden gap in the
density of, saygi-blocks. Such “forbidden gap” arguments have been invoked in (lim-
iting) toroidal states by, e.g., [29, 33, 34]; an extension to infinite-volume, translation-
invariant, reflection-positive Gibbs states has appeared in [8]. Both propositions are
proved in Sect. 4.3.
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4. Proofs

Here we provide the proofs of our general results from Sect. 3. We begin by the es-
timates of matrix elements of Gibbs-Boltzmann weight (Theorem 3.1) and then, in
Sect. 4.2, proceed to apply these in quasiclassical Peierls’ arguments which lie at the
core of Theorem 3.7. Finally, in Sect. 4.3, we elevate the conclusions of Theorem 3.7
to coexistence of multiple KMS states, thus proving Propositions 3.9-3.10.

4.1. Bounds on matrix element$he proof of Theorem 3.1 is based on a continuity
argument whose principal estimate is encapsulated into the following claim:

Proposition 4.1. Suppose that (3.7-3.9) hold with constants R.and g. Let Ho =
H —[H]q. Suppose there exisi ¢ 0 ande > 0 such that for allf < c+/S,

[(QleFPejqy)| < e1ds@.Q)+pelAl (4.2)

is true for allQ, Q' e (%)M, Then there exists a constant@gepending ong; c1, ¢
and R (but notA, S or €) such that for allg < co+/S,

Qle#he )

d C3 —1ds (Q.Q)+fe|A

— < = |A| e 19s(Q.Q)felAl (4.2)
‘d/)’ NS
Before we commence with the proof, we will make a simple observation:

Lemma4.2.Forall A and allQ, @/, Q" e (),

ds(Q, Q) < ds(Q, Q) + VS |1Q— Q" |1+ Z Lo, +an)- (4.3)
reA

Proof. Since all “norms” in the formula are sums overe A, it suffices to prove
the above forA having only one point. This is easy: F& = Q" the inequality is
actually an equality. Otherwise, we apply the boundg@, Q') < V/S|Q — Q| and
ds(Q, Q") + 1 > /S| — Q| to convert the statement into the triangle inequality
for the¢*-norm. O

Proof of Proposition 4.1L et us fixQ andQ’ for the duration of this proof and abbre-
viate M(8) = (Qle”/H2|Q’). We begin by expressing the derivative Mf(5) as an
integral over coherent states. Indeddf(5) = —(Q|Hq e #H2|Q) and so inserting
the upper-symbol representation (2.16) s = > -, (hr — [hr]a), we have

/ 28 + 1 Al /i AT —ﬂﬁ /
M =-2> (= Q7 (QIQ Qe PP ([hr) g —[hrla).
rcA T COU
B (4.4)
By the fact that fir]g. —N[hr]Q depends only on the portion 6’ on T, the integrals
over the components §” outsidel’ can be carried out which yields

/ 25+1 Il /” /" " a—BFa) 0
M (ﬁ)——%\( = ) /( %)mdgr (QriQf)(Q"1e7 210y (Thr]ar—[hrla).
(4.5)
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Here, as for the rest of this prodd” is set toQ outsidel” and toQ}. in T'.
LetZr denote the integral on the right-hand side of (4.5). Using (3.6), (4.1) and (3.9)
we have

|Zr| < ca|lhr]| eﬂflAl/ dQf. e19s(@. Q)= SIQ"-QI3-f (Hlor —[Hle) | " — Q.

(A
R R (4.6)
(Recall from the definition thaHg = Hg» — [H]o+[H]gq~.) In order to bound the
right-hand side, we need a few simple estimates. First, noting that

[Hlor—[Hla= > (hrla—[hrle). (4.7)
I7:T/NT 46
(3.8) and (3.9) imply that, for some constaptdepending only oy, ¢; andR,
[[Hlo —[Hla| < cal @ - Qll1 = callQF — Qr 1. (4.8)
Second, Lemma 4.2 tells us
—ds(€, Q") < —ds(Q, Q) + VS |Qr — Q1+ T. (4.9)

Finally, |Q” — Q||1 is bounded bys—1/2 times the exponential afS | Q — Q" ||1. Since
we are assuming th# < c2+/S, we conclude that

/ 1/ e”lrl / 4
e 1ds(,Q )—ﬂ([H]QH—[H]Q)”Q” Q1 < — e—VIdS(Q,Q)-i-Cs\/gHQF—QFHl (4.10)
VA

for some constants independent of andA.
Plugging this back in the integral (4.6), we get

\Zr| < el Ihel e{;g|A|—qd3(Q,Q’)/ Q! esVS 1Qr—Q l1-n SIQr—QF 15
S ()T
(4.12)

To estimate the integral, we note that both norms in the exponent are sums over individ-
ual components. Hence, the integral is bounded by the produty afitegrals of the
form

K= [ dr” esVSii=tl=nSlr—r"i (4.12)

A2

wherer andr” are vectors on¥>—representing the corresponding 3-dimensional
components of2r and Qf—and wherejr — r”| denotes Euclidean distance R?.
Parametrizing by = |r — r”| and integrating over the polar anglerdf relative tor,
we now get

2
K :/ dr g (r)e 278 HesVSt, (4.13)
0

Here the Jacobian? (r), is the circumference of the circle”: [r”| =1, [r —r"| =
r}. But this circle has radius smaller tharand so_# (r) < 2zr. Scalingr by S1/2
yieldsK < ¢g/S for some constards > 0 independent of.

Plugging this back in (4.11), we then get

IT| )
o] < f(%e”) Ihp|| e ds@Q)+AelAl (4.14)
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Inserting this into (4.5), using (3.7) to bound the terms exponenti@l' jrby a con-
stant depending only oR—this is possible because there §r¢ factors ofS’s in the
denominator of (4.14) that can be used to cancel the fa¢gffst+ 1) in front of the
integral in (4.5)—and applying (3.8), we get (4.2a

On the basis of Proposition 4.1, the proof of Theorem 3.1 is easily concluded:

Proof of Theorem 3.1Let ¢, andcg be the constants from Proposition 4.1 andcklet
c3/~/S. We claim that (4.1) holds for ap < c+/S. First, in light of (3.6) and the
definition of ds(Q, Q’), (4.1) holds forg = 0. This allows us to defingg to be the
largest number such that (4.1) holds for alE [0, So]. Now, if § < fo A 02{3, then
Proposition 4.1 and our choice efguarantee that thg-derivative of(Qle~#He|Q)) is
no larger than that of the right-hand side of (4.2). We deduce (by continuityghat
co+/S. Using thatHg = H — [H]q, we now get (3.10). O

Proof of Corollary 3.2 First we observe that the diagonal matrix elemgie=?H |Q)

is real and positive. The upper bound is then €fe= Q version of Theorem 3.1;

the lower bound is a simple consequence of Jensen’'s—also known as the Peierls-
Bogoliubov—inequality; see, e.g., [46, Theorem 1.4.1h

4.2. Quasiclassical Peierls’ argumentQur goal is to prove the bounds (3.28-3.29).
To this end, let us introduce the quantum version of the quantity from (3.16): Fd@-any
block event4, let

(B/L)
qL,ﬁ(A)=< I Qq9t(,4)> : (4.15)

tETL/B L.g
(Note that, by (3.19), this is of the form of the expectation on the right hand side
of (2.23).) First we will note the following simple consequence of Theorem 3.1:

Lemma 4.3.Let¢ be as in(3.26)and let @ and ¢ be as in Theorem 3.1. ff < co/S,
then for any B-block everd,

1
qLp(A) < [PLp(ApL p(o(A))] 2 efCHes/VS), (4.16)
Proof. By (3.21) we have
A d ~
s =(Q" where A= () (A (4.17)
'[ETL/B

Invoking the integral representation (3.17), the bounds from Corollary 3.2 and the defi-
nition of ¢ from (3.26),

qLp(A) < P () B/ efCHeaVS), (4.18)

Now we may use (2.24) for the classical probability and we get (4.16).

Next we will invoke the strategy of [25] to write a bound on the correlator in
(3.29) in terms of a sum over Peierls contours. l£f g denote the set of connected
setsY c Ty ,g with connected complement. Byantourwe then mean the bound-
ary of a setY e .#| /g, i.e., the sebY of nearest neighbor edges @, g with one
endpoint inY and the other endpoint iti° c Ty ,g. The desired bound is as follows:
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Lemma4.4.Let Gy, ..., Gy be incompatible good events and letbe the bad event
with the property thatg(B) = J¢(B) for all t € T /g. Then for all distincty, t; €
T ,gandalli=1,...,n,

AloY]

<Qetl<gi>éet2(gf)>L p S Z 2[4qL p(B)] (4.19)
’ Y: Ye\ B
t1€Y, togY
Proof.We begin by noting that; # t2 and (3.20-3.21) give us
. R 25 + 1\ ™!
Qa, (G) Qar, (68 = ( ) / dQ |Q)(€. (4.20)
hy (Gi) 6, (GF) Ar Oty (G0 (G9)

Now pickQ € 6, (Gi) ﬂth(giC) and letY’ c T ,g be the largest connected component
of B-blocks—i.e., translates ofg by Bt, with t € T ,g—such thatt; € Y’ and
thaté;(G;) occurs for everyt € Y’. This set may not have connected complement, so
we defineY e .7 /g to be the set obtained by filling the “holes” &f, exceptthat
which containd,. Note that all translates ok g corresponding to the boundary sites

of Y are of typeg;.
In order to extract the weight of the contour, we will have to introduce some more
notation. Decomposing the set of boundary edjéinto d setso1Y, ..., dqY accord-

ing to the coordinate directions into which the edges are pointing, et a direction
where|d; Y| is maximal. Furthermore, &Y be the set of sites ifr® which are on
the “left” side of an edge i®;Y. It is easy to see that this singles out exactly half of
the sites inY® that are at the endpoint of an edgediflY. Next we intend to show that
the above setting implies the existence of at I¢‘ﬁ$¥‘| /2 bad blocks whose position is
more or less determined K.

Recall thaté; denotes the unit vector in thpth coordinate direction. Since the
good events satisfy the incompatibility condition (3.25), at least one of the following
two possibilities must occur: eithé€ e zg((B) for at least half oft e Y‘J?X‘ orQ e

TBL+08; (B) for at least half oft e Y?X‘. (Here¢ is the constant from the definition

of incompatibility.) Indeed, if the former does not occur then more than hatf of
Y‘J?Xt mark a good block, but of a different type of goodness tgarSince this block
neighbors on &; -block, incompatibility of good block events implies that a bad block
must occur lattice units along the line between these blocks.

Let us temporarily abbreviate; = |Y*J?Xt| and let%j (Y) be the set of collections
of Kj/2 sites representing the positions of the aforementidgd bad blocks. In
light of zgt(B) = ¥:(3), the above argument implies

Kj/2 Kj/2
6, (G)NGL,GH ¢ | U () (0 B) U [ 7 (0 (B) | . (4.20)
Y: Yed g (ti)ej(Y) i=1 i=1

t1€Y, togY

Therefore, using the fact that — Q 4 is a POV measure (cf Remark 3.5), this implies

Kj/2 Kj/2
Qa0 Qo0 < D, > IT Qo+ 11 Q.. (0, ®)
Y: Yes s (ti)et;(Y) \ i=1 i=1 g

t1€Y, trY
(4.22)
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Here the two terms account for the two choices of where the bad events can ocgur and
is the direction with maximal projection of the boundaryYoas defined above. Since
(2.23), (3.19) and () = B allow us to conclude that

Kj/2
< [1 s <B>> < qLp(B)I72, (4.23)
. g

and since the translation invariance of the torus state ; implies a similar bound is
also valid for the second product, the expectation of each term in the sum in (4.22) is
bounded by g z(B)Ki/2. The sum ovext;) € j(Y) can then be estimated af2
which yields
A A exty
<Qar1(gi)Q9t2(gf>>L P >, 2[4q 5]V, (4.24)

? Y: YeﬂL/B

t1€Y, todY

From here the claim follows by noting that our choicej cil‘nplies|Y?Xt| > %|6Y| (we
assume thatgt z(B) < 1 without loss of generality). O

Proof of Theorem 3.y Lemma 4.3, the assumptions #h and (3.27) we have that
qL,s(B) < 4. Invoking a standard Peierls argument in toroidal geometry—see, e.g., the
proof of [6, Lemma 3.2]—the right-hand side of (4.19) is bounded by a quaniiy

such that;(6) | 0 asé | 0. Choosing sufficiently small, we will thus have(d) < e,

proving (3.29). The bound (3.28) is a consequence of the chessboard estimates which

yield (Qp)Lp < qupB) <d. O

4.3. Exhibiting phase coexistenck order to complete our general results, we still
need to prove Propositions 3.9 and 3.10 whose main point is to guarantee existence
of multiple translation-invariant KMS states. (Recall that, throughout this section, we
work only with translation-invariant interactions.) Let us refer to

Tf = {x e TL:—|Ya— Y2l < xa < [Ya— Y21} (4.25)

as the “front side” of the torus, and ] as the “back side.” Le2!; be theC* algebra

of all observables localized ﬁﬂf (i.e., an operator iﬁtf acts as the identity of| ).
The construction of infinite-volume KMS states will be based on the following stan-
dard lemma:

Lemma 4.5.LetT| ;g be the factor torus and lety C TL/B be ablock of Mk---xM

sites at the “back side” off_ g (i.e., we havelist(0, Ay) > -5 —M). Given a B-block
eventC, let
Pm(@ = s Z Qu©)- (4.26)
teA

Suppose thathn_,ﬁ > cforall L > 1 and some constant & 0, and define the
“conditional” state (=) .z on 2 by

(PLMm©C) AL g

. 4.27
(PLp©O))L,p (4.27)

(AL Mg =
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If (—) 4 is a (subsequential) weak limit ¢f)_ .z as L — oo (along multiples of B)
followed by M — oo, then(—); is a KMS state at inverse temperatyfewhich is
invariant under translations by B.

Proof. Translation invariance is a consequence of “conditioning” on the spatially-ave-
raged quantity (4.26). Thus, all we need to do is to prove that the limit state satisfies

the KMS condition (3.33). Let — at(l‘) be the unitary evolution off' . If B is a local
observable that depends only on the “front” side of the torus the fact that the interaction
is finite range and that the series (3.32) converges in norm, uniforntlyimplies

o (B). pLm(©] — 0 (4.28)

in norm topology, uniformly int on compact subsets @f. (Note that, for anyB lo-
calized inside a fixed finite subset @f, for large enough., it will always be in the
“front” side T}, under the projectioZ® — T = z9/L29.) This means that for any
bounded local operatos and B on the “front” side of the torus,

(ALm(C) AB)_, = <p|_ M(C)a_lﬁ(B)A>L’ﬁ+o(l), L oo, (4.29)

(Again, it is no restriction to say tha& and B are on the “front” side, by simply letting
L be large enough.) Sinoe(_"i)ﬁ(B) — a—ig(B) in norm, the stateA — (A)_ m;p
converges, ak — oo andM — oo, to a KMS state at inverse temperatyre O

Proof of Proposition 3.9By Qp + Qg, + - - - + Qg, = 1, the symmetry assumption
and (3.28) we know that

1—¢

(Qaily 4 = (4.30)

So, if pL,m(Gk) is as in (4.26), the expectatiap m(Gk))L,s iS uniformly positive.
This means that, forea¢h= 1, . .., n, we can define the sta(e),_ M: g k=1 ...,n
by (4.27) with the choic€ = Gi. Usmg (3.29) we conclude

(k) ne
(QuGolmep = 1 o k=Ll..n, (4.31)

for anyt on the “front” side ofT'_,g (provided thatM « L/g). For(n + 1)e < 1, the

right-hand side exceeds and so any thermodynamic limit c)f—)(k)M B asL —» o

andM — oo is “domintated” byGy-blocks. Since, by Lemma 4.5, any such limit is a
KMS state, we have distinct states satisfying, as is easy to check, (3.34).

Proof of Proposition 3.10Consider the state(s—>(1)M 5 and(— )(%)M;ﬁ defined by (4.27)
with C = Gy andC = G, respectively. From assumption (1) we know tlaat=
(pL.m(Gk)) > O for at least on& = 1, 2 and so, for eacf € [f1, f2], at least one of

these states is well defined. We claim that we cannot h@&@ )Lm;p < 1 —4e for
bothk = 1, 2. Indeed, if that were the case then

ALM(G) +pLm(G) +pLmB) =1 (4.32)
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and the bounds (3.28-3.29) would yield
a+a= (Q + QQz)L B
A (D A A (2 A
= <Qg1)L,M;ﬁ (le)L,ﬁ + (QQ2>L,M;/3 (ng)L,ﬁ
+(pL.m(G1) QgZ)L,ﬁ +(AL.M(G2) Qg1>L,ﬂ (4.33)

+(pLmB) L - Q5l) 4
<(1—-4de)(as+a) + 3¢

i.e., 4a1 + ap) < 3. Sincee < Y, this impliesa; + a2 < 34 < 1 — ¢, in contradiction
with assumption (1).

Hence, we conclude that the larger fl‘Q@gk)(Lk))M;ﬁ, k = 1, 2 (among those states
that exist) must be at leastd4¢. The same will be true about any thermodynamic limit
of these states. LTy C [f1, f2], k = 1, 2, be the set off e [f1, f2] for which there
exists an infinite-volume, translation-invariant KMS stéate); such that(ng>ﬁ >
1—4¢. ThenE1U &5 = [f1, f2]. Now, any (weak) limit of KMS states for inverse tem-
perature®, — £ is a KMS state aff, and so botlE; and = are closed. Sinceff, f2]
is closed and connected, to demonstrate a poirfim = it suffices to show that
both £1 and £ are non-empty. For that we will invoke condition (2) of the proposi-
tion: From(Qg, )15, > 1 — 2¢ we deduce

@ 2¢

A (1
<Q91>L,)M;ﬁl —(Qg, + QB)L Mgy = L T3 2 1— 4e, (4.34)

and similarly for{ ng |_ M By .Thusp1 € 51 andpy € 5y, i.e., both sets are non-empty
and soz1 N Z2 #£ @ as claimed. O

5. Applications

Here we will discuss—uwith varying level of detail—the five quantum models described
in the introduction. We begin by listing the various conditions of our main theorems
which can be verified without much regard for the particulars of each model. Then,
in Sect. 5.2, we proceed to discuss model (1) which serves as a prototype system for
the application of our technique. Sects. 5.3-5.5 are devoted to the details specific for
models (2-5).

5.1. General considerationgur strategy is as follows: For each model we will need

to apply one of the two propositions from Sect. 3.3, depending on whether we are deal-
ing with a “symmetry-breaking” transition (Proposition 3.9) or a temperature-driven
energy-entropy transition (Proposition 3.10). The main input we need for this are the
inequalities (3.28-3.29). These will, in turn, be supplied by Theorem 3.7, provided
we can check the condition (3.27). Invoking Theorem 3.1, which requires that our
model satisfies the mild requirements (3.7-3.9), condition (3.27) boils down to show-
ing thatp 4(B) is small for the requisite bad event. It is, for the most part, only the
latter that needs to be verified on a model-specific basis; the rest can be done in some
generality.
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We begin by checking the most stringent of our conditions: reflection positivity.
Here, as alluded to in Remark 2.5, we are facing the problem that reflection positiv-
ity may be available only in a particular representation of the model—which is often
distinct from that in which the model & priori defined. The “correct” representation
is achieved by a unitary operation that, in all cases at hand, is a “product rotation” of
all spins.

There are two rotations we will need to consider; we will express these by means
of unitary operatoréJy andUg. Consider the Hilbert spacdt, = ®r€TL[(C2$+1]r

and let(S, §, §) have the usual form—cf (2.1)—aHr, . In this representation, the
action ofUp on a statdy) € Hr, is defined by

Unly) = [] €25 E5 ). (5.1)

TGTL

The effect of conjugating by this transformation is the cyclic permutation of the spin
components » § — ¥ — §. The second unitaryg, is defined as follows:

Uslv)= [] €SI (5.2)
re?I‘._
odd-parity
The effect ofUg on spin operators is as follows: For even-parifythe spin operators
are as before. For odd-parity the component’ remains the same, while bot
and & pick up a minus sign. Here are the precise conditions under which our models
are reflection positive (RP):

Lemma 5.1.Let Uy and Ug be the unitary transformations defined above. Then:

(&) UaH UA‘1 is RP for models (4-5), and for model (2) wibiix) = P1(x2)+xP2(x3).
(b) UsHUg ! is RP for models (1,3).
(c) UsUaHUTUgt is RP for model (2) withP(x) = P1(x?) — xP2(x?).

Proof. (a) Under the unitara map, the Hamiltonians of models (4-5) are only using

thex andz-components of the spins, which are both real valued. The resulting interac-

tion couples nearest-neighbor spins ferromagnetically, and thus conforms to (2.20).
(b) For two-body, nearest-neighbor interactiddg, has the effect

Y - -5, a =X,z (5.3)
while the ' S, terms remain unchanged. Writing
§9 =-309)is) (5.4)

we can thus change the sign of all quadratic terms in the interaction and, at the same
time, express all operators by means of real-valued matrices. Under the conditions given
in Sect. 1, the Hamiltonians in (1.1) and (1.3) are then of the desired form (2.20).

(c) Finally, for model (2), we first apply the argument in (a). Then the effetigf
is that the minus sign ifP(x) = P1(x?) — xP2(x?) becomes a plus sign.o

Our next items of general interest are the “easy” conditions of Theorem 3.1 and
Theorem 3.7. These turn out to be quite simple to check:
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Lemma 5.2.The transformed versions—as defined in Lemma 5.1—of the five models
from Sect. 1 satisfy the conditions (3.7—3.9) with some finite R and sdn@ependent

of S. Moreover, for each of the models (1-6) there exists a constant C suc(BtB&)

holds with = C/S for all S.

Proof. All interactions involve at most two spins $0= 2 suffices to have (3.7). Writ-

ing the interaction in the form (3.1), the normalization by powers$ ohakes the cor-
responding normghr || bounded by a quantity independent®fThis means that (3.8)
holds in any finite set (including the torus, with proper periodic extension dfitls).

As to the Lipschitz bound (3.9), this is the subject of Theorem 2 and Proposition 3
of [17]. SinceS~Y[SF]a= Qr + O(1/S), and similarly for the lower symbol, the same
argument proves thgt= O(1/S). O

To summarize our general observations, in order to apply Propositions 3.9-3.10, we
only need to check the following three conditions:

(1) The requisite bad event is such thigtB) = Bforallt € T /g.

(2) The occurrence of different types of goodness at neighbd@ibtpcks implies that
a block placed in between the two (so that it contains the sites on the boundaries
between them) is bad—cf condition (2) of Definition 3.6.

(3) The quantityp 4 (B) is sufficiently small.

In all examples considered in this paper, conditions (1-2) will be checked directly but
condition (3) will require estimates specific for the model at hand. (Note that, since we
are forced to work in the representation that makes the interaction reflection positive;
the conditions (1-3) must be verified this representation.)

Remark 5.3It is noted that all of the relevant classical models—regardless of the signs
of the interactions—are RP with respect to reflections in planes of sites. We will often
use this fact to “preprocess” the event underlyjngs (B) by invoking chessboard es-
timates with respect to these reflections. We will also repeatedly use the subadditivity
property of A = p| s(A) as stated in [6, Theorem 6.3]. Both of these facts will be
used without (much) apology.

5.2. Anisotropic Heisenberg antiferromagnélonsider the reflection-positive version
of the Hamiltonian (1.1) which (in the standard representation of the spin operators) on
the torusT_ takes the form

Ho= - S2(WS'S - 29 + F). (5.5)

(r,r)

(The classical version ofi, is obtained by replacing eac by the corresponding
component o5€Q; .) The good block events will be defined on & 2 - x 2 block Ag—
i.e., B = 2—and, roughly speaking, they will represent the femomagneticstates in
the z-direction one can put on . Explicitly, let G, be the event tha®, = (&, ¢r)
satisfiedd; | < kx foralr € Ag and letG_ be the eventthdty —z| < k forallr € Ag.

Theorem 5.4 (Heisenberg antiferromagnet)Let d > 2 and let0 < J;, J» < 1 be
fixed. For eacl > Oand eachc > 0, there exist constants ¢ agig and, for all f andS
with fo < B < ¢V/S, there exist two distinct, translation-invariant KMS states;;;

and (—)E with the property
(Qgi);: >1—ec. (5.6)
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In particular, for all suchg we have
(ag); —(s); > o. (5.7)

Proof. Let B = (G4 U G_)° be the bad event. It is easy to check tifatacts onB
only via translations. Moreover, §, andG_ occur at neighboring (but disjoint) trans-
lates of Ag, then the block between these is necessarily bad. In light of our general
observations from Sect. 5.1, we thus only need to produce good boumpdsgi), the
classical probability of bad behavior. Since these arguments are standard and appear,
for all intents and purposes, in the union of Refs. [11, 23, 24, 44], we will be succinct
(and not particularly efficient).

Let A = min{(1— J1), (1— J), 2/aq} whereaq = d29-1 and fixn > Owithy <« 1
such that

1—cosy — Asinfx < 0. (5.8)

We will start with a lower estimate on the full partition function. For that we will restrict
attention to configurations whei& | < 7/, for allr € T\ . The interaction energy of

a pair of spins is clearly maximized when both thend y-terms are negative. This
allows us to bound the energy by that in the isotropic case= J, = 1—i.e., the

cosine of the angle between the spins. Hence, the energy between each neighboring
pair is at mos{(— cosy). We arrive at

ZL(p) = [V eos-’, (5.9)

where the phase volumé(rn) = 2z [1 — coq7/2)] may be small but is anyway indepen-
dent of 5.

To estimate the constrained partition function in the numeratpi gf(3), we will
classify the bad blocks into two distinct categories: First there will be blocks where not
all spins are withine of the pole and, second, there will be those bad blocks which,
notwithstanding their Ising nature, will have defects in their ferromagnetic pattern. We
denote the respective events Byand3z. To boundp 4(B1), since we may decorate
the torus from a single site, we may as well run a single site argunfetim2s. We
are led to consider the constrained partition function where every site is outside its
respective polar cap. It is not hard to see that the maximal possible interactien is 1
A sir? k; we may estimate the measure of such configurations as full. Thus,

47 _ _Asir?
L. (Bl) < 2d _eﬁ’d(l cosn—Asi K). (510)
PLs Vn)

Note that, by (5.8), this is small wheh> 1.

The less interesting Ising violations are estimated as follows: The presence of such
violations implies the existence of a bond with nearly antialigned spins. We estimate
the interaction of this bond at c@). Now there arey bonds on any cube so when
we disseminate—using reflections through sites—we end up with at least one out of
everyaq bonds with this energy. The rest we may as well assume are fully “aligned™—
and have energy at least negative one—and we might as well throw in full measure, for
good measure. We thus arrive at

pLs(B2) < &g % exp{ﬁd (% cog2x)+1— % — cosn)} (5.11)
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as our estimate for each such contribution to the Ising badness. Here the prafactor
accounts for the choice of the “bad” bond. Sing@dl > 4/,, the constant multiply-
ing Ad in the exponent is less than the left-hand side of (5.8); henge(B2) <« 1
oncep > 1 as well. It follows that, giverd;, J» < 1, we can findsg sufficiently large

so thatp z(B) < pL,g(B1) + pL,p(B2) < 1oncef > fo. The statement of the
theorem is now implied by Proposition 3.9 and thesymmetry of the model. O

5.3. Large-entropy modelsdere we will state and prove order-disorder transitions in
models (2-3). As in the previous subsection, most of our analysis is classical. While
we note that much of the material of this section has appeared in some form before,
e.g., in [11, 16, 21, 22, 33, 44], here we must go a slightly harder route dictated by the
quantum versions of reflection positivity.

We start with the observation that model (2) wiliix) = P1(x?) — xP2(x?) is
unitarily equivalent, via a rotation of all spins about thaxis, to the same model
with P(x) = P1(x?) + xP2(x?). Hence, it suffices to consider only the case of the plus
sign. We thus focus our attention on models with classical Hamiltonians of the form

p
DD k(@ o), >0, (5.12)

H®@Q) = —
(r,r’y k=1
where(Q; ¢ Qy) denotes the variant of the usual dot prodﬂé’f)g(lx) - Q(ly)Q(ly) +

Q&Z)Q(lz) for model (3), and the “dot product among the first two components” for
model (2). We now state our assumptions which ensure that models (2) and (3) have
the large entropy property.

Let us regard the coefficients in (5.12) as an infinite (but summable) sequence,
generally thought of as terminating wh&n= p. (For the most part wevill require
that €, be a polynomial. However, some of our classical calculations apply even for
genuine power series.) The terms of this sequence may depepdomve will write

them asc(P = (cgp), cgp), ...); we assume that the'-norm of eachc(P) is one. Let
¢p: [—1, 1] R be defined by

Ep(x) = > e P'xk. (5.13)
k>1

Here is the precise form of the large-entropy property:

Definition 5.5. We say that the sequen¢gP)) has thelarge entropy propertif there
is a sequencéep) of positive numbers witky | 0 such that the functions

converge—uniformly on compact subsetfobo)—to a function s— A(s) with

lim A(s)=1 and Im A(s)=0 (5.15)
s—0+ S—00
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Remark 5.6Despite the abstract formulation, the above framework amalgamates all
known examples [21, 22] and provides plenty of additional generality. A prototyp-
ical example that satisfies Definition 5.5 is the sequence arising as the coefficients
of the polynomial@p(x) = (1*)P. A general class of sequence¥ is defined

from a probability density functiog: [0, 1]— [0, co) via c(p) 1ng(k/ p). In these
cases we can generically takg = 1/ and the limiting functlonA is then given

by A(s) = f&q&(i)e‘isdi. However, as the examplEp(x) = (3*)P shows, ex-
istence of such a density function is definitely not a requirement for the large-entropy

property to hold. What is required is that the “distribution funcu@I<< psC (p) is small
fors « 1.

Our analysis begins with the definition of good and bad events. First we will discuss
the situation on bonds: The bord, r’) is considered to benergetically goodf the at-
tractive energy is larger (in magnitude) than some strictly positive cons{@mumber
of order unity depending on gross details, where we recall that 1 is the optimal value),
ie., if

Theentropically goodbonds are simply the complementary events (so that every bond
is a good bond). Crucial to the analysis is the fact, ensured by our large entropy assump-
tion, that the crossover between the energetic and entropic phenotypes occurs when the
deviation between neighboring spins is of the orger,.

We define the good block eventg,q and Ggis on the 2x --- x 2-block Ag as
follows: Gorg is the set of spin configurations where every bond\gnis energetically
good whileGygis collects all spin configurations where every bond/ogiis entropically
good. The requisite bad event is defined3as (Gorg U Gdis)®.

Our fundamental result will be a proof that the density of energetically good blocks
is discontinuous:

Theorem 5.7 (Large-entropy models) Consider a family of finite sequence® =

(c,((p))ksp and suppose that , have the large entropy property in the sense of Defini-
tion 5.5. Consider the quantum spin systems with the Hamiltonian

HP — _ Z Qgp(g—Z(s o s(,)), (5.17)

(with both interpretations ofS ¢ S /) possible). Then there existsh(0, 1) for which
the associated energetic bonds have discontinuous density in theSajgantum sys-
tems. Specifically, for eveey> Othereis a p < oo so that for any p> pp and allS
sufficiently large, there is an inverse temperatyreat which there exist two distinct,
translation-invariant KMS state(s—)ord and(— )d's with the property

ngrd ord> 1 ¢ and dils yais > 1 — ¢ (5.18)

With a few small additional ingredients, we show that the above implies that the
energy density itself is discontinuous:
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Corollary 5.8. There exist constants b and, both strictly less thad/,, such that the
energy density(f)—defined via thg-derivative of the free energy—satisfies

<b, if B < B, (5.19)

for all p sufficiently large.
The bulk of the proof of this theorem again boils down to the estimape gf(53):

Proposition 5.9.There exist p € (0,1), A > 0, C < oo, and for each be (0, bg]
there exists § < oo such that

lim pL s(B) < Clep)® (5.20)
L—oo
hold for all p > poandall g > 0.

Apart from a bound o z(B), we will also need to provide the estimates in con-
dition (2) of Proposition 3.10. Again we state these in their classical form:

Proposition 5.10.There exist constants;C< oo, p1 < co and A3 > 0 such that the
following is true for all p> ps: First, at § = 0 we have

im suppeo(Gora) < Ci(ep) ™. (5.21)

Second, iffg € (0, ) is large enough, specifically &9 > 652(1“1), then
lim suppr_ g, (Gais) < Ca(ep)™?. (5.22)
L—>oo

The proof of these propositions is somewhat technical; we refer the details to the
Appendix, where we will also prove the corollary.

Proof of Theorem 5.AVe begin by verifying the three properties listed at the end of
Sect. 5.1. As is immediate from the definitions, neighboring blocks of distinct type of
goodness must be separated by a bad block. Similarly, reflecjats onB only as
translations. To see that the same applies to the “complex” refleationge have to
check thatB is invariant under the “complex conjugation” mapFor that it suffices
to verify thato(Q) ¢ o(Q') = Q ¢ Q' for anyQ, Q' € .. This follows because both
interpretations of2 ¢ Q are quadratic in the components@fand because changes
the sign of they-component and leaves the other components intact.

Letb < by whereby is as in Proposition 5.9. Then (5.20) implies thatz (B) « 1

onceep < 1. Quantum chessboard estimates yi(s@iA)L,ﬂ < qi,p(A) which by

means of Theorem 3.1 implies that b(ﬁ@gdis)L,o and <Qg0rd>|_’ﬂo are close to one
oncelL > 1 and+/S is sufficiently large compared witfip (referring to Proposi-

tion 5.10). Theorem 3.7 then provides the remaining conditions required for application
of Proposition 3.10; we conclude that there exisg & [0, fo] and two translation-
invariant KMS state$—>2,lrd and(—)dﬁis such that (5.18) hold. o

Remarks 5.11Again, a few remarks are in order:
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(1) Note that the theorem may require largefor larger p, even though in many cases
the transition will occur uniformly inS > 1 oncep is sufficiently large. The
transition temperaturg; will generally depend omp andsS.

(2) There are several reasons why Theorem 5.7 has been stated only for polynomial
interactions. First, while the upper symbol is easily—and, more or less, unambi-
guously—defined for polynomials, its definition for general functions may require
some non-trivial limiting procedures that have not been addressed in the literature.
Second, the reduction to the classical model, cf Corollary 3.2, requires that the
classical interaction be Lipschitz, which is automatic for polynomials but less so
for general power series. In particular, Theorem 5.7 does not strictly apply to non-
smooth (or even discontinuous) potentials even though we believe that, with some
model-specific modifications of the proof of Theorem 3.1, we could include many
such cases as well.

5.4. Order-by-disorder transitions: Orbital-compass modéle begin by the easier of
the models (4-5), the 2D orbital compass model. We stick with the reflection-positive
version of the Hamiltonian which, dfi_, is given by

Ho=-82% > §95%, . (5.23)

reT a=X,z

with &, &, & denoting the unit vectors in (positive) coordinate directions. The num-
ber B will only be determined later, so we define the good events for gerieral
Givenx > 0 (with k <« 1), letGx be the event that all (classical) spins olBax B
block A g satisfy

|Q - &| > codk). (5.24)
Let G; be the corresponding event in thspin-direction. Then we have:

Theorem 5.12 (Orbital-compass model)Consider the model with the Hamiltonian
as in(1.4). For eache > O there existc > 0, fo > O and c > 0 and, for eachg
with o < B < ¢/S, thereis a positive integer B and two distinct, translation-invariant
KMS states{—)})f() and(—)éz) such that

Q) 21-e.  a=xz (5.25)

In particular, for all g with fp < g < ¢V/S,
(583 >8%1-0., a=xz (5.26)

The proof is an adaptation of the results from [5—7] for the classical versions of
order-by-disorder. LeB = (Gx U G,)°® denote the requisite bad event. By definiti¢h,
is invariant under reflections of (classical) spins throughxth@lane; i.e.o(B) = B.
Since the restrictions froif are uniform over the sites ing, we haved; (B) = i (5).
So, in light of our general claims from Sect. 5.1, to apply the machinery leading to
Proposition 3.9, it remains to show that z(B) is small if # > 1 and the scal® is
chosen appropriately. For that [ett> (Q2) denote the classical version of the Hamilto-
nian (5.23). By completing the nearest-neighbor terms to a square, we get

1
H@@ =3 > > @ - *+ > 1oV PP~ITL. (5.27)

reT a=X,z reT,
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HereQﬁ“) denotes the-th Cartesian component €F; .

Unforuntately, the evenB is too complex to allow a direct estimate pf s(5).
Thus, we will decompos# into two events/5g and Bsw depending on whether the
“badness” comes from bad energy or bad entropy.A_et 0 be a scale whose size will
be determined later. Explicitly, the eveft marks the situations that either

2] > c1A (5.28)
for some siteg € Apg, or
9 — Q) | 2 c2A /B, (5.29)
for some pair andr + &,, both in Ag. Herecs, ¢, are constants to be determined
momentarily. The evertfsyy is simply given by
Bsw = B\ BE. (5.30)

By the subadditity property af_ 3, we havep g(B) < pL g (Be) + pL.p(Bsw).
SinceBg implies the existence of an energetically “charged” site or bond with energy
about(4/g)? above its minimum, the value gf_5(Be) is estimated relatively easily:

pLs(Be) < cpBeFA%/BY, (5.31)

for some constants andé. (Herec B2 accounts for possible positions of the “excited”
bond/site angé comes from the lower bound on the classical partition function.)

As to Bsw, here we will decompose further into more elementary events: Given a
collection of vectorsiy, ..., Ws that are uniformly spaced on the first quadrant of the

main circle, 7" = {Q e #5: Q-8 =0,Q% >0,Q@ > 0}, we defineBéi\)N to be
the set of configurations iisw such that
1% WX+ 1Q@ W] > cogA), T e Ag. (5.32)

Since Bsyw is disjoint from Bg, on Bsw the y-component of every spin is less than
orderA and any neighboring pair of spins differ by angle at mdgtp to a reflection).
Hence, by choosing; andc, appropriately, any two spins ing will differ by less
than A from somew;, i.e.,

S
Bsw C | B&ws (5.33)
i—1
provided thasA exceeds the total length of;"*. To estimatep, 4 (B(Si\),v) we will have

to calculate the constrained partition function for the e\légﬁ,. The crucial steps of
this estimate are encapsulated into the following three propositions:

Proposition 5.13.Consider the classical orbital compass model with the Hamiltonian
H>(Q) asin(5.27)and suppose that « 1. Thenforalli=1,...,s,

pL,ﬁ(B(si\)/\/) < ZZBe_BZ(FL,A(Wi)—FL,A(él))’ (5.34)
where, for eachiv € .7+ = (U € #2: V- & =0,% > 0,9 > 0},

1 pEPNITL o
FL.A(W) =—-=lo dQ (—=— e /T I I Lo .
L,a (W) 2 g (T ( o ) {Qr W2>cogA)}

I'ETL
(5.35)
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Proposition 5.14.For eache > 0there exist® > 0 such that if
1
BAZ > 5 and JINEX) (5.36)

then for all L sufficiently large,Fi, a (W) — F (W)| < € holds for anyiv e .7 with F
given by

1 dk -
F(W) = 5 ——5 109 D (W). 5.37
W)= /[_M]Z 357109 B¥) (5.37)
Here Dy (W) = W21 — X2 + W2|1 — k2|2,

Proposition 5.15.The functiorW +— F (W) is minimized (only) by vector® = +é&y
andw = +&,.

The proofs of these propositions consist of technical steps which are deferred to the
Appendix. We now finish the formal proof of the theorem subject to these propositions:

Proof of Theorem 5.12 completefls already mentioned, the bad event is invariant
under both spatial reflectios and the “internal” reflectiow; henced;(B) = gt (B)

as desired. Second, if two distinct good events occur in neighboring blocks\ say
andAp + B&, then at least one of the bonds between these blocks must obey (5.29);
i.e., the boxAg + & is (energetically) bad. Third, we need to show thats(B) is
small. We will setA andB to the values

A=p" and B~logp. (5.38)

These choices maka  ;(Bg) small onceg is sufficiently large and, at the same time,
ensure that (5.36) holds for any givénSince we have (5.34), Propositions 5.14-5.15
and the fact thaBg\)N, being a subset d8, is empty whenW; is within, say,</» of +&
or +&, tell us that

pLp(Bsw) < se™2%° (5.39)
once B is sufficiently large. Buts is proportional tol/, and so this is small fop
sufficiently large. We conclude that #s— oo, we havep z(B) — 0 for the above
choice ofB andA.

Having verified all required conditions, thez-symmetry of the model puts us in a

position to apply Proposition 3.9. Hence, for all sufficiently lagjethere exist two

infinite-volume, translation-invariant KMS states)g() and <—)§;Z) such that (5.25)

holds. To derive (5.26), we note that, for any veatoe .#% and any single-spin coher-
ent statgQ)

S WIQ) = S(W - Q)|Q) + O(VS). (5.40)

Hence,(S - &)2Qg, = S2Qg, + O(S%?), where all error terms indicate bounds in
norm. Invoking (5.25), the bound (5.26) followsto

Remark 5.16The 3D orbital-compass model is expected to undergo a similar kind of
symmetry breaking, with three distinct states “aligned” along one of the three lattice di-
rections. However, the actual proof—for the classical model, a version of this statement
has been established in [7]—is considerably more involved because of the existence
of (a large number of) inhomogeneous ground states that are not distinguished at the
leading order of spin-wave free-energy calculations. We also note that an independent
analysis of the classical version of the 2D orbital-compass model, using an approach
similar to Refs. [6, 7] and [41], has been performed in [40].



34 M. Biskup, L. Chayes and S. Starr

5.5. Order-by-disorder transitions: 120-degree mod€he statements (and proofs) for
the 120-degree model are analogous, though more notationally involved. Consider six
vectorsvy, . . ., Vg defined by

&  L=3a+%e, =-la -  (541)
=8, Us=-la-Le, U5=ia-Le, (5.42)

As is easy to check, these are the six sixth complex roots of unity. The reflection-positive
version of the Hamiltonian offf_ then has the form

H==822 > (S 1) (S, -T2, (5.43)

reT a=1,2,3

where&;, &, &; is yet another labeling of the usual triplet of coordinate vectot&3in
To define good block events, let> 0 satisfyx <« 1 and letG, ..., Gg be theB-block
events that all spin€;,r € Ag, are such that

Q -V, > codk), a=1...,6, (5.44)
respectively. Then we have:

Theorem 5.17 (120-degree modelConsider the 120-degree model with the Hamilto-
nian (5.43) For eache > O there existc > 0, fp > 0 and c > 0 and, for eachp
with fo < B < ¢S, there is a number B and six distinct, translation-invariant
states(—)}“), a=1,...,6,such that

(Qa )y’ z1-e,  a=1...6 (5.45)

In particular, for all g with fp < g < ¢V/S,
(S -va);“) >S1l-¢), a=1,...,6 (5.46)

Fix x > 0 (withx <« 1) and letB and A be as in (5.38). LeB = (G1 U --- U Gg)©
be the relevant bad event. It is easy to check tha invariant with respect te and,
consequentlyf;(B) = Bforallr € T, /g as required. Introducing the projections

QY =0 0, a=1,...,86 (5.47)

and noting that, for any vectev € .7,

2 (W'Va)z =

a=1,2,3

[1- (- 8&y)?]. (5.48)

NI w

the classical Hamiltoniai *° (Q) can be written in the form
1 2 3 R 3
H®@) = 3 DD @ - P+ 2 . > @ -8y)? - SITLl  (5.49)
reT, a=1,2,3 reT,

As for the orbital-compass model, we will estimate s (8) by further decomposing
into more elementary bad events.
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Let Bg denote the event that the blogdkg contains an energetically “charged” site
or bond. Explicitly,Bg is the event that either for some=s Ag we have

R A
Q&1 > e, (5.50)

or, for some nearest-neighbor p&i;r + &,) in Ag, we have
N N A
|Qr Vou — Q4 - V2a| > CzE. (5.51)

Herec; andc; are constants that will be specified later. The complementary p#it of
will be denoted byBsyw, i.e.,
Bsw = B\ Be. (5.52)

By the fact thatBsyw C BE, on Bsw the energetics of the entire block is good—i.e.,
the configuration is near one of the ground states. Clearly, all constant configurations
with zeroy-component are ground states. However, unlike for the 2D orbital-compass
model, there are other, inhomogeneous ground states which make the treatment of this
model somewhat more complicated. Fortunately, we will be able to plug in the results
of [6] more or less directly.

As for the orbital-compass model, to derive a good bounpl.op(Bsw) we will fur-
ther partition3sy into more elementary events. We begin with the events corresponding
to the homogeneous ground states: Given a collection of veéfois= 1, ..., s, that
are uniformly spaced on the circl#y C .7 in the xzplane, we definésg) to be the
subset of3sy on which

Q - W > coqA), r e Ag. (5.53)

To describe the remaining “parts @fsw,” we will not try to keep track of the en-

tire “near ground-state” configuration. Instead, we will note that each inhomogeneous
ground state contains a pair of neighboring planea inwhere the homogenous con-
figuration gets “flipped” through one of the vectars, . .., V. (We refer the reader

to [6], particularly page 259.) Explicitly, given a lattice direction= 1, 2, 3 and a vec-

torw e .71, letWw;" denote the reflection o¥; throughtz,_1. Foreach = 1,..., B—1,

we then defineBS,)j to be the set of spin configurationsffig\y such that for alt € Ap,

Qr W|

>coqA)  if o r-& =],
Q - W >

c
) R , (5.54)
cogA) if r-é&=j+1.

(Note thatr - & = j means that the-th coordinate of is j. Hence, onBS)j, the

spins are neaf; on thej-th plane orthogonal té, and neaf; on thej + 1-st plane
in Ag.) The conditions under which these events form a partitiofi @ the subject of
the following claim:

Proposition 5.18.Givenx > 0, there exist ¢, ¢, > 0 such that ifBg and Bsy are
defined as in (5.50-5.52) andAf and B are suchthat B « x « 1and sA > 4r,

then
s _ B-1
Bsw C U(Bg)u U U B;'}j) (5.55)
i=1

a=1,2,3 j=1
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Next we will attend to the estimates pf » for the various events constitutirigy
As for the orbital-compass model, the evéatis dismissed easily:

pLp(Be) < cpB3eFAY/B?, (5.56)
wherec and¢€ are positive constants. As to the eveBgQ, here we get:

Proposition 5.19.For eachx > 0there exist® > 0 such that if3 and A obey
21 3
BAS > 5 and BA° <4, (5.57)
then for all L sufficiently large,

pLpBY)y <e B =1 s (5.58)
Herepi(x) > Oforall x <« 1.

For the “inhomogeneous” events the decay rate is slower, but still sufficient for our
needs.

Proposition 5.20.For eachx > Othere exist® > 0such thatifs, A andd obey(5.57),
thenforall j=1,...,B—1alla =1, 2,3and all L sufficiently large,

pLpBY)) <€ B =1 s (5.59)
Herepo(x) > Oforall k « 1.

Again, the proofs of these propositions are deferred to the Appendix.

Proof of Theorem 5.17 completedie proceed very much like for the orbital com-
pass model. The core of the proof again boils down to showingptha{(3) is small,
provided B is chosen appropriately. LeA and B be related tog as in (5.38). By
(5.56), this choice makes_ ;(Bg) small and, at the same time, makes (5.57) eventu-
ally satisfied for any fixed > 0. Invoking Propositions 5.19-5.20, and the subadditivity
of A pL p(A), we have

pLp(Bsw) < s(e”B71) 4 3Be B /2() (5.60)

which by the fact thas = O(A~1) impliesp_ s(Bsw) < 1 oncep is sufficiently
large. Using thap z(B) < pL,s(Be) + pL,s(Bsw), the desired boung s(B) « 1
follows.

It is easy to check, the bad evdfis preserved by “complex conjugatioa’as well
as reflections and so th&’s act on it as mere translations. Moreover, orceg 1,
if two distinct types of goodness occur in neighboring blocks, all edges between the
blocks are of high-energy—any block containing these edges is thus bad. Finally, the
model on torus is invariant under rotation of all spins by Bthex z-plane. This means
that all conditions of Proposition 3.9 are satisfied and sogfos 1 andS > 2, the
quantum model features six distinct states obeying (5.45). From here we get (546).
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6. Appendix

This section is devoted to the proofs of various technical statements from Sects. 5.3, 5.4
and 5.5. Some of the proofs in the latter two subsections are based on the corresponding
claims from [6, 7]. In such cases we will indicate only the necessary changes.

6.1. Technical claims: Large-entropy modelSonsider a sequenc¢e P)) satisfying the
large-entropy property and assume, without loss of generality, 8| = 1 for

all p > 1. Our goal here is to provide the boundsing (8) and the asymptotic state-
ments concerning the dominance of the two types of goodness which were claimed in
Propositions 5.9 and 5.10. We begin with a lower estimate on the full partition function.

Lemma6.1.Lett > O be fixed. Then there existy p< oo and constantsGc, €
(0, o) such that for all p> py and all5 > 0,

liminf (z)Y" > max{ciep €794 ). (6.1)
L—oo

Proof. We will derive two separate bounds on the partition function per site. Focussing
on the cases whef; ¢ Q. involves all three components of the spins, let us restrict
attention to configurations when every spin is within argl&, of the vector(0, 0, 1),
wherec is a constant to be determined momentarily. QeaindQ’ be two vectors with

this property. Then the (diamond) angle betwe€eandQ' is less than €, /e, and so

Qo Q' > cog2c,/ep) > 1— 2¢%p,. (6.2)

Choosing 2% = t, we thus hav& o Q' > 1 — tep. This means that the energy of any
bond in the configuration obeying these constraint is at l&gét); while each spin has
at least - cos(c, /€p) & 3C% surface area at its disposal. This implies )Y L
is bounded by the first term in the maximum with ~ %CZ. The other interpretation
of Qr ¢ Q, is handled analogously.

In order to derive the second bound, we will restrict all spins to a sector of angular
aperture?/,, e.g., the one described g2 = (Q1, Q2, Q%) e .2: Q! > 1/4/2}. This
has area which is a fixed positive number. Moreover, the constraint ensures that the
interaction between any two spins is non-positive; the partition function per site then
boils down to the entropy of such configurations. To evaluate this entropy, we fix the
configuration on the even sublattice. Every spin on the even sublattice is then presented
with 2d “spots” on this sector which it must avoid. The area of each such spot is a
constant timeg p. It follows that(z )V > a — O(ep) which is positive oncep is
sufficiently large. O

Our next bound concerns the constrained partition funcHfW (£) obtained by
disseminating a particular pattehof ordered and disordered bonds (i.e. energetically
and entropically good bonds) over the torus, wieis a genuine mixture of the two.
That is, we assume that contains bonds of both phenotypes. We remark that this dis-
semination is carried out by means of reflectionglanes of sitegwhich is permissible
by the nearest-neighbor nature of the interaction). Recalbthat d29—1 is the number
of bonds entirely contained in thex2- - - x 2 block A .
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Lemma 6.2.Lett > 0 be such that

1-QA-b)ag
O o
and 1 1 1 b
def .
e R ] o9

Then there exists a constarg & oo such that for anys > 0 and any pattern’ of
ordered and disordered bonds (i.e. energetically and entropically good bonda)on
containing at least one bond of each phenotype,

limsup 2™ (L)Y < czmax{ciep 8970, o) (ep)?. (6.5)
L—>oo

Proof. Fix a patternC as specified above. As usual, we call a bond disordered if it
is entropically good. Leff, denote the fraction of disordered bonds in pattérr_et
us call a vertex an “entropic site” if all bonds connected to it are disordered. (Note
that this has two different, but logically consistent, connotations depending on whether
we are speaking of a vertex ifig or in T|.) Let fs denote the fraction of entropic
sites in£. Upon dissemination (by reflections through planes of sites), these numbers
fp and fs will represent the actual fractions of disordered bonds and entropic sites
in T, respectively. Now each disordered bond has an energetic atbhastile we
may estimate the energy of each ordered bond by 1. For each entropic site we will
throw in full measure so we just need to estimate the entropy of the non-entropic sites.
Here we note that each ordered bond disseminates into a “line” of ordered bonds, upon
reflections. If we disregard exactly one bond on this “line of sites”, then we see that
there is a total measure proportional@cﬁeg—l). Since this entropy is shared by the
vertices on this line, the entropy density of each vertex on this lin@ (i) in the
L — oo limit. This is an upper bound for the entropy density for each non-entropic site.
The bounds on energy show that the Boltzmann factor is no larger than

efd(—fo)+pdbly _ ofd[1—(1-b) fs] (6.6)
We thus conclude that, for some constént

limsup Z(£)YL" < &3(ep) L fsefdll-A-b) ol (6.7)

L—>oo

Now, we may write the right-hand side as

1-(1-b) fy
cg(epe/fdAp(t)) Ap®) (Gp)A(ﬁ) (6.8)
where 1—(1—b)f
—(1-D)p
A =1-fg— ——— .
(©) W (6.9)

Since L contains at least one entropic bond, we knfyw > 1/a4. Our choice oft
guarantees thatd(1-b) fy < 1-(1—-b)/ag < Ap(t) and so the complicated exponent
in (6.8) is bounded by 1. We may use the famous idenity 1=* < max(X, Y), true
wheneverX,Y > 0and 0< A < 1, to bound the term with the complicated power
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in (6.8) by the maximum in (6.5). (We s&t = ciep €/9%® andY = c,, absorbing
extra order-1 constants into our eventog) It remains to show thaa (£) exceedsA
in (6.4) whenevel contains both phenotypes of bonds.

We will derive a relation betweeffis and f,, that holds whenevef contains both
phenotypes of bonds. We may give the argument in either picture—where we restrict
to the small blockA g or where we consider the full tor(®_ after disseminating—
which are entirely equivalent since the fractions of entropic bonds and sites are the
same. We will give the argument in the smalk2 - - x 2 block Ag. Since£ contains
bonds of both phenotypes there are at least two verticesgireach of which “em-
anates” bonds of both phenotypes. We mark these sites, and for each of them we mark
one of the incident entropically good (disordered) bonds. We now consider the bonds
of Ap to be split into half-bonds each of which is associated to the closest incident
vertex (disregarding the midpoints). We label each half-bond as entropic or energetic,
according to whether itis half of a full bond which is entropically or energetically good.

Let H be the total number of entropic half-bonds. Now note that for each entropic
vertex, alld of the half-bonds emanating from it (and contained\ig) are “entropic
half-bonds”. We also have at least two additional entropic half-bonds associated to the
two marked sites. Therefore the number of entropic half bonds satisfies the Hound
d29 fs + 2. (Note that there are?Zs entropic sites.) Since there arag2= d2¢ total
half-bonds inAg, the proportion of entropic half bonds is at ledst+ 1/a4. At this
point let us observe that the proportion of entropic half-bonds is exactly the same as the
proportion of entropic full-bondsfy,. Therefore

1
fo > fo+ — . 6.10
st o (6.10)

Plugging this into the formula foA (£) we thus get

1—(1—-b)f
Apt)

Allowing fp, to take arbitrary values in [@], the right-hand side is minimized by one
of the values in the maximum in (6.4). Henae(£) > A whereby (6.5) follows. O

1
AL)Y>1+4+ — — fp— 6.11
(L) g (6.11)

Proof of Proposition 5.9As usual, we consider events disseminated by reflections in
planes of lattice sites. Ldip < ﬁ. If b < bg, then, as a calculation shows, the
bound (6.4) holds as well as (6.3) fosuch thatAp(t) > 1 — b. Such a can in turn

be chosen by the assumption that the model obeys the large-entropy condition. (This is
where we need that is sufficiently large.) Hence, the bound in Lemma 6.2 is at our
disposal. Now the maximum on the right-hand side of (6.5) is a lower bound on the
full partition function per site; the lemma thus gives us boundgp of the events
enforcing the various patterns @vs. Since3 can be decomposed into a finite union of
such pattern-events, the desired inequality (5.20) follovs.

Proof of Proposition 5.10Again we work with events disseminated using reflections

in planes of sites. In order to prove (5.21), we note #g{Q; o ©;/) > b—which

is what every bondr, r’) in Ag satisfies provided2 € Gorg—implies Q; ¢ Q,/ >
1—cep. The neighboring spins are thus constrained to be within a@g|ge,,) of each

other. Disregarding an appropriate subset of these constraints (reusing the “line of sites”
argument from the first part of the proof of Lemma 6.2) the desired bound follows.
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To prove (5.22), we note that the disseminated egggtforces all bonds to have en-
ergy less thaib. Lemma 6.1 implies that the correspondingz-functional is bounded
above byCy (ep) ~1edlb~Ar®] Assuming thab < 1 andt is chosen so thahp(t) —

b > 15, we see that if8 is large enough to satisfy

fd > 200, (6.12)

then thep, 4 bound is less tha@(ep)®t. O

Given the existing results on the discontinuity of energetic bonds, it is almost in-
conceivable that the energy density itself could be continuous. To mathematically rule
out this possibility, we will show that, in actuality very few of the energetic bonds have
value in the vicinity ofb. So while the previous argument only considered two types of
bonds, we will henceforth have the following three types of bonds:

(1) strongly orderedf €p(Qr © Q) > 1 -1,
(2) weakly orderedf 1 — b’ > €p(Qr © Q) > b,
(3) disorderedf €, (€r ¢ Q) < b.

Here 0 < b/, b < 15, are constants which we will choose later, although we already
know that we have the restrictidn < 1/(1 + ag) as was necessary in the proof of
Proposition 5.9. A rather similar line of argument to that previously used for mixed
patterns of ordered and disordered bonds handles the situation for mixed patterns of
weak and strong order. For each pattérof weakly and strongly ordered bonds on

A, let ZE“’(E) denote the partition function obtained by disseminatingll over the

torus. Then we have:

Lemma 6.3.Lett > 0 be a number such that
A defy 1—DbY/ag
Ap(t)

There exists a constanj 6< oo such that for any? > 0 and any patternC of weakly
and strongly ordered bonds on tBex - - - x 2 block Ag containing at least one weakly
ordered bond,

) (6.13)

lim sup 200 VL < ¢ max{ciep €990 o) (ep)?. (6.14)
L—>oo

Proof. Consider an ordered pattethwith fraction f,, of weakly ordered bonds. After
dissemination all oveF| , there is a fractiorf,, of bonds oril'_ that are weakly ordered

and a fraction fraction & f,, that are strongly ordered. Putting energy b’ for each
weakly ordered bond and 1 for each strongly ordered bond, the Boltzmann weight of
any spin configuration contributing tZ)Erd(E) is at most

PdA-b) fu+pd(1-1,) _ fd(1-b'f,) (6.15)
To calculate the entropy, we again use the “line of sites” argument from the first part of
the proof of Lemma 6.2, which gives an entropy per site on the ord€(ef) in the
L — oo limit. This implies that the limsup oZErd(E)l/Ld is bounded by a constant
timesepe/d1—fu) Since 1- b’ f,, < 1 — b'/ag we get

1-b'/ay4
lim sup Z0(0) V" < 64(epeﬂdAp“>) RO (et (6.16)

L—oo
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for some constardy < co. By (6.13), the exponent of the terepe?d4r® is less than 1
and so the famous identity*Y1=* < max{X, Y}, may be used again (as in the proof
of Lemma 6.2) which readily yields the bound (6.14)z

Proof of Corollary 5.8.The proof is based on thermodynamical arguments. First, stan-
dard calculations using coherent states show that

Ep(STAS 0 §))I1Q) = Ep(Qr © Q)IQ) + O(1/V'S) (6.17)

where the error term depends implicitly gnHence, for a giverp ands > 0, we can
find S so large that for any,r’ € Ag

(Q|Ep(S74S ©5))Q4|Q) [z 1-b -0, if A=Gor, (6.18)

(Q|Q.4]Q) <b+g, if A = Gais.

(At the classical level the second case is by definition, whereas the first case follows
from Lemma 6.3.) Sincg — e(f) is increasing, we conclude that (5.19) holds. As

a technical point, we note that in the statement of the corollary we did not include the
small corrections correspondingdao> 0. This was primarily for aesthetic reasons: we
wanted to state the simplest possible result. We can clearly accomplish this byliaking
andb’ to be a little smaller than is otherwise needed.

6.2. Technical claims: Orbital-compass modélere we will prove Propositions 5.13-
5.15 concerning the orbital-compass model. The proofs follow the strategy developed
in the context of the 120-degree model [6].

Proof of Proposition 5.13The proof goes by one more partitioningl@g\),v. Consider a
spin configuratior = (Qr )reT, € Bg\)/v SinceBgeN C BswandA <« 1,itis easy to
check the following facts:

(1) they-components of all spins ing are small.

(2) thex-components of the spins along each “line of sites”Aig) in the x-direction
are either all near the-component of vectof; or its negative.

(3) same is true for the-components of the spins on “lines of sites” in théattice
direction.

Thus, at the cost of reflecting thecomponents of spins along each “line of sites” in
the x-direction, and similarly for thg-components, we may assume that all spins are
aligned withw; in the sense that

Qr - W > coqA), r e Ag. (6.19)

Let Bg\’,s) denote the set of configurations satisfying (6.19). The above reflection pre-
serves both the priori measure and the Hamiltonian (5.27); the eng@\, is thus

partitioned into 28 “versions” of evenﬁ’:’g\’,? all of which have the same value pf 3-
functional. Invoking the Subadditivity Lemma, (5.34) is proved once we show that

PL,/}(Bg\’,?/)) < e—BZ(FL,A(‘/AVi)—FL,A(él)). (6.20)
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This follows by noting that €8” FL.a() is, to within a convenient multiplier, the inte-
gral of the Boltzmann weight@ "~ (@ on the evenssl;? while e~ B2FL®) provides
a lower bound on the partition function (again, to within the same multiplier which thus

cancels from the ratio). O

Proof of Proposition 5.14The principal idea is to derive upper and lower bounds on
FL, A (W) which converge, in the limiL — oo, to the same Gaussian integral. Let
us parametrizev e 5’1++ as(cosb,, 0, sind,) and, given a spin configuratian that
satisfiedd, -Ww > cogA) forallr € T, let us introduce the deviation variablek , ;)

by the formula

Q = (,/1 — £2c080, + ), Cr o /1 — 2 SiNO, + O )). (6.21)

Noting that bothy, and¢; are orderA, we derive thatH *°(Q) + |T| is, to within a
quantity of ordeiL2A3, equal to the quadratic form

1 R N
A0 =5 AW O = V4o )? + 05 (O = U 1)’} + D P (6:22)

reT, reT,

The Jacobian of the transformatioy — (9, ¢;) is unity.
Next we will derive upper and lower bounds on the integral of-&.w against the
product of indicators in (5.35). For the upper bound we invoke the inequality

TT Lio iscoxay < €244 exp{—% D 19,2}, (6.23)

TETL TETL

valid for eachA > 0. The¢;’s are then unrestricted and their integrals can be per-
formed yielding a factok/2z /§ per integral. The integral ovet;'s involves passing

to the Fourier components, which diagonalizes the covariance matrix. The result is best
expressed il — oo limit:

lim inf F_a (W) > O(BA3) + %Mmz + F(4, W), (6.24)
—00
where
F(i, W) = 1/ Ak 1 [/ + Dk (W)] (6.25)
2 [-7,x]? (2r)? 9 “ .

By the Monotone Convergence Theore(,/, W) converges td- (W) as/ | 0. Since
S A3 is less tham, which is up to us to choose, takirgl, 0 on both sides of (6.24) we
deduce thafF| A (W) > F(W) — € for L sufficiently large.

It remains to derive the corresponding lower bound. Here we will still work with the
parametetl above but, unlike for the upper bound, we will not be able to take0 at
the end. Consider the Gaussian meastrevhich assigns any Borel st ¢ (R x R)Tt
the probability

P,(A) = %(i)/fx(g)m exp{—ﬁfL,w(ﬂ, o) — % > 19,2} [T dvrdz.
I’ETL I'ETL
(6.26)
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Let E; denote the corresponding expectation. Fypin> 0 we get

/(y)andQ CRaC Ay ( [T te -W>cos(A)}) > Z(4) Ei( I te -\iv>cos(A)})-
2

reTL reT
(6.27)
The free-energy corresponding to the normalization congamt) is exactlyF (1, W)

above. Thus, givem > 0, we can findl > 0 such thatZ, (1) > e~ IF@W)+e/2]

oncelL > 1. It remains to show that the expectation is at leadfe? provideds in
(5.36) is sufficiently small.
Here we first decrease the product by noting that

Lior wzcosa)) = Ly, <85 L6 1<) (6.28)

This decouples thg s from the),’s and allows us to use the independence of these
fields underP;. Since the;;’s are themselves independent, the integral gyeboils
down to

2
Ei( I1 1{|Cr|SA/2}) = ] Pillcl < 22) = (1—e #8745 (6.29)

reT, reT,

where we used the standard tail bound for normal distribution. Note that, for any fixed

) > 0, the term 1 e~*#4%/4 can be made as close to one as desired by increAgiRg
appropriately.

Thed,'s are not independent, but reflection positivity through bonds shows that the
corresponding indicators are positively correlated, i.e.,

Eﬂ( H 1{|ﬁr|sA/2}) = H Pi(19r| < 2%2). (6.30)
reTL reT,
The probability on the right-hand side is estimated using a variance bound:

212 4 1 1 4
A —
Pa(ldr] > #72) < (A) Varir) = 2 kZeT* Bl + D (W)] = JBAZ (6.31)
L

be made as close to one as desired ghaé is sufficiently large. We conclude that,
givene > 0, we can choosé such thatF A (W) < F(W) 4+ € onceL > 1. This
finishes the proof. o

where T} denotes the reciprocal torus. Again, for any fixgdP; (|9, | < A/) can

Proof of Proposition 5.155inceW? + W2 = 1, this is a simple consequence of Jensen’s
inequality and the strict concavity of the logarithmz

6.3. Technical claims: 120-degree modélere we will provide the proofs of technical
Propositions 5.18-5.20. The core of all proofs is the fact that any spin configu(&ion
can be naturally deformed, by rotating along the main circle orthogonal toztpé&ane,

to have zerg/-component. An explicit form of this transformation is as follows: Let us
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write eachQ; e ., using two variableg, € [—1, 1] andd; € [0, 2x) interpreted as
the cylindrical coordinates,

Q =(,/1—(r2 costr, ¢r, J1—¢2 sin@r). (6.32)

ThenQ; is the vector in which we sgt =0, i.e.,
Q; = (cosb, 0, sinb,). (6.33)

(We have already used this transformation in the proof of Proposition 5.14.) An ad-
ditional useful feature of this parametrization is that the surface (Haar) meaQure d
on ., then decomposes into the product of the Lebesgue meaQjrer.#; and the
Lebesgue measuredon [—1, 1].
Proof of Proposition 5.18We will use the fact that, for configurations axg with
vanishingcomponent in the-direction, this was already proved as Theorem 6.4 in [6].
Let (©r) € Bswand defingQ; ) be as above. Sind€ - &y| < ciA/Bforallr € Ag,
we have

(@ — Q)-8 <c1A/B (6.34)

while
Q — Q)-8 =0(A%/B?, a=x1z (6.35)

In particular, the configuratiofQ;) is contained in the version of eveligw from [6],
providedc; is a sufficiently small numerical constant. Thus, under the condBian«

x < 1—which translates to the conditid®w/T <« x <« 1 of [6, Theorem 6.4]-+Q)

is contained in one of the events on the right-hand side of (5.55). But, at the cost of a
slight adjustment ofA, the corresponding event will then contain a{§p). O

To prove the bounds in the remaining two propositions, we will more or less directly
plug in the results of [6]. This is possible because yheomponent of the spins con-
tributes only an additive factor to the overall spin-wave free energy. The crucial estimate
is derived as follows:

Lemma 6.4.There exists a constant 0 such that the following is true: LeA « 1
and letQ = (Q) be a configuration oL such that|Q; - &| < A2 and |Q§2"’) -
Qﬁ%ﬁ‘éa| < A, foralla = 1,2, 3. DefineQ’ = (Q;) as above. Then

H®(Q) — H®(Q) — g > (Qy-8y)? < cA3LE (6.36)
reT,
Proof. By the fact that, - & = O(A) we have
Q -, = Q) -, + O(A?). (6.37)
But then the assumptia‘®” — szfga = O(A) yields
(@ = Qi) 2] = [( @ — Q) - 02" +0(A%).  (6.38)

Using (5.49), this proves the claimo
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Proof of Proposition 5.19The quantityp L,ﬁ(Bg)) is the ratio of the partition functionin
which all spins are constrained to make angle at ndostith W;, and the full partition

function. The restrictiort’j‘g) C Bsw can, for the most part, be ignored except for
the W;'s that are close to one of the six preferred directions. In such cases the fact

that A <« « tells us thatBS) is empty whenever the angle betweknand the closest
of V1, ..., Vg is less than, say/». In particular, we may restrict attention to tie's that
are farther than/, from any of these vectors.

Viewing the collection of angle®, ) as a configuration 0®(2)-spins, Lemma 6.4
tells us that the Hamiltonian @2, ) is, to within corrections of orddr®A3, the sum of
% > (,2 and the Hamiltonian of the classic&)(2)-spin 120-degree model evaluated at
configuration(d; ). Since the measurelj equals the producti@ddd, on the respective
domain, we may ignore the restriction gf to values less tha®(A) and integrate

the¢;’s. We conclude tham,/;(Bg)) is bounded by the same quantity as for D€2)-

spin 120-degree model timeSé4%. Sinceg A3 is controlled via (5.57), the desired
bound follows from [6, Lemma 6.9]. O

Proof of Proposition 5.20The proof is very much like that of the previous proposition.
Let fo")j denote the event that the top line in (5.54) holds for atl Ag for whichr -&,

is odd and the bottom line for all suchfor whichr - &, is even. Chessboard estimates

then yield

2/B

pLs(BY) < pLs(BY) (6.39)

On the disseminated evefﬂteTL/B 6.(B" ) the assumptions of Lemma 6.4 are satis-

fied. Hence, we may again integrate oht thés to reduce the calculation to that for
0O(2)-spins. The latter calculation was performed in detall in [6]; the desired bound is
then proved exactly as Lemma 6.10 of [6] (explicitly, applying inequality (6.24) of [6]
and the paragraph thereafter)o
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