`www.math.ucla.edu/~totaro/131bh.1.17w/`

In this class you will be required to write precise mathematical statements in a clear logical order, and present pictures or examples as necessary to illustrate your work. Acquiring these skills is impossible without steady practice: it is essential that you do the homework problems carefully and promptly.

You may discuss homework problems with other students, the TA, or me, before they are turned in. I do expect, though, that: (i) you should make a serious effort to do the exercise yourself before discussing it with anyone, and (ii) you should write up the solution yourself after understanding it thoroughly, without following someone else's written version. Otherwise, homework will not help you to prepare for the exams. Identical solutions to a source will get zero credit.

Homework 1. Due Tuesday, January 17.

Homework 2. Due Tuesday, January 24.

Homework 3. Due Tuesday, February 7.

Homework 4. Due Tuesday, February 14.

Homework 5. Due Tuesday, February 21.

Homework 6. Due Tuesday, March 7.

Homework 7. Due Tuesday, March 14.

Sample Midterm 2.

- Every exam will include at least one problem taken from the homework, possibly with minor variations.
- It is your responsibility to know how to do the problems. Practicing that is an essential part of studying for the exams.
- A grade of 'F' will be assigned to any student who misses the final. Incompletes are reserved for those who have completed all of the work for the class, including both midterms, but who, for a legitimate, documented reason, miss the final.
- Exams (or copies) will be returned, but I will keep copies (or originals) of the exams, as required by the math department.

10% homework + 25% first midterm + 25% second midterm + 40% final

10% homework + 35% (best of two midterms) + 55% final

- 1/16 -
**Martin Luther King Day holiday.**No class. - 1/30 -
**First midterm exam**. - 2/20 -
**Presidents' Day holiday.**No class. - 2/27 -
**Second midterm exam**. - 3/20 -
**Final exam**. The final will be from 11:30 AM to 2:30 PM on Monday, Mar. 20.

- If you wish to request an accommodation due to a disability, please contact the Office for Students with Disabilities as soon as possible at A255 Murphy Hall, (310) 825-1501, (310) 206-6083 (telephone device for the deaf). Web site: www.osd.ucla.edu.

Tentative schedule of lectures, in terms of the book:

1/9: Ch. 6. The Riemann and Riemann-Stieltjes integrals. 1/11: Integrability of continuous functions. 1/13: Properties of the integral.

1/16: Martin Luther King holiday. 1/18: Integration and differentiation. 1/20: Integration of vector-valued functions.

1/23: Ch. 7. Uniform convergence. 1/25: Uniform convergence and continuity. 1/27: Uniform convergence and integration.

1/30: Midterm 1. 2/1: Uniform convergence and differentiation. 2/3: Equicontinuous families of functions.

2/6: The Stone-Weierstrass theorem. 2/8: Ch. 8. Power series. 2/10: The exponential and logarithmic functions.

2/13: Trigonometric functions. 2/15: Fourier series. 2/17: Convergence of Fourier series.

2/20: Presidents' Day holiday. 2/22: The fundamental theorem of algebra. Introduction to the gamma function. 2/24: Ch. 9. Linear transformations.

2/27: Midterm 2. 3/1: Differentiation in several variables. 3/3: The contraction principle.

3/6: Inverse function theorem. 3/8: Implicit function theorem. 3/10: Local maxima and mixed partial derivatives.

3/13: Determinants. 3/15: Differentiation of integrals. 3/17: Review.