Catalan Numbers Page
Content: Below is a list of articles on a diverse topics related to Catalan numbers and their generalizations.
I emphasized historically significant works, as well as some bijective, geometric and probabilistic results.
Warning: This list is vastly incomplete as I included only downloadable articles and books (sometimes, by subscription)
that I found useful at different times. I do plan to gradually expand it, but will try not to overwhelm the list, so many related
results can be obtained by forward and backward reference searches. Let me know if you find it useful.
Basics:
Larger values: at OEIS. Examples and Images:
Catalan numbers (MacTutor History of Math.)
Another meaning.
Encyclopedia, surveys and related articles:
- OEIS: A108
- English Wikipedia: Catalan number
- MathWorld: Catalan number
- Richard Stanley's Exercise 19, solutions,
and Catalan addendum (.pdf)
Bonus: the story behind the exercise (the original link)
- Igor Pak's blog post "Who computed Catalan numbers?" (Feb 20, 2013).
- Marc Renault's The Ballot Problem website; original articles and their English translations
- William G. Brown, Historical Note on a Recurrent Combinatorial Problem (1965); brief historical
timeline and refs.
- P. J. Larcombe and P.D.C. Wilson, On the trail of the Catalan sequence, Math. Today (1998); careful historical overview.
- Henry W. Gould, Research Bibliography of Catalan Numbers,
465 refs (1979, updated 2007)
- K. Humphreys, A
history and a survey of lattice path enumeration, J. Stat. Planning Inference (2010)
Introductory articles:
- D. Singmaster, An elementary evaluation of the Catalan numbers, Amer. Math. Monthly (1978)
- D.M. Campbell, The Computation of Catalan Numbers, Math. Mag. (1984)
- P. Hilton and J. Pedersen, Catalan numbers,
their generalization, and their uses, Math. Intelligencer (1991)
- D. Rubenstein, Catalan numbers revisited, JCTA (1994)
- R.P. Stanley, Hipparchus, Plutarch, Schröder, and Hough, Amer. Math. Monthly (1997)
- T. Koshy, The Ubiquitous Catalan Numbers, Math. Teacher (2006)
- J. McCammond, Noncrossing partitions in surprising locations, Amer. Math. Monthly (2006)
- M. Renault, Four Proofs
of the Ballot Theorem, Math. Mag. (2007)
Historical articles:
- Euler letter exchange with Goldbach:
- L. Euler, Letter to Goldbach
(German, 4 September, 1751); Euler introduces counting triangulation problem,
finds the first 8 Catalan numbers, suggests an explicit product formula, and finds an explicit form g.f.
- C. Goldbach,
Reply to Euler (German, 16 October, 1751);
by Goldbach makes a quick check of the first few terms of Euler's (correct) g.f.
- L. Euler, Followup letter (German, 4 December, 1751);
Euler shows that the product formula follows from the g.f. and the binomial theorem.
- St. Petersburg papers:
- J.A. Segner,
Enumeratio modorum quibus figurae planae rectilineae per diagonales dividuntur in triangula (Size: 13 Mb.),
Novi Commentarii Academiae Scientiarum Imperialis Petropolitanae,
vol. 7 (Latin, 1758/59, published in 1761);
proof of a quadratic recurrence relation for Catalan numbers; clearly references Euler's earlier formulation and calculation;
uses the formula to compute the first 18 Catalan numbers, the last 6 incorrectly.
- L. Euler, Unsigned summary of Segner's article on the number of triangulations, ibid.;
here Euler restates his product formula for Catalan numbers, fixes arithmetic mistakes in Segner's calculations,
and extends them to the number of triangulations of n-gon, n≤25.
See also my loose English translation.
- S. Kotelnikow, Demonstratio seriei..., Novi Commentarii,
vol. 10 (Latin, 1766); proves absolutely nothing.
- N. Fuss, Solutio quæstionis, quot modis polygonum n laterum in polyga m laterum,
per diagonales resolvi quæat (Size: 15 Mb.),
Nova Acta Academiæ Scientarium Petropolitanæ, vol. 9 (Latin, 1795); computing k-Catalan numbers,
thus answering Pfaff's question.
- French and German papers:
- G. Lamé, Extract from the letter to J. Liouville on the number of triangulations,
Jour. de Math. (French, 1838); a complete elementary combinatorial proof of the recurrence relation and product formula;
Liouville notes in a editorial footnote that the main formula (3) "est due sans doute à Euler" (is probably due to Euler);
English translation by D. Pengelley.
- E. Catalan, Note sur une Équation aux différences finies,
Jour. de Math. (French, 1838); discussion of Segner-Lamé recurrence relation and combinatorics of parentheses.
- O. Rodrigues, Sur le nombre de manières de décomposer
un Polygone en triangles au moyen de diagonales, Jour. de Math. (French, 1838); an direct inductive proof of the product formula
- M.J. Binet,
Réflexions sur le Problème de déterminer le nombre
de manières dont une figure rectiligne peut être partagée en triangles au moyen de ses diagonales, Jour. de Math. (French, 1839);
a modern style g.f. proof.
- E. Catalan,
Solution nouvelle de cette question:
Un polygone étant donné, de combien de manières peut-on le partager en triangles au moyen de diagonales?,
Jour. de Math. (French, 1839); a new recurrence relation.
- J.A. Grunert,
Ueber die Bestimmung der Anzahl der verschiedenen Arten...,
Archive der Mathematik und Physik (1841); product formula for Fuss-Catalan numbers, g.f. approach.
- J. Liouville,
Remarques sur un Mémoire de N. Fuss,
Jour. de Math. (French, 1843); a product formula for Fuss-Catalan numbers using Fuss's recurrence and Lagrange inversion.
- E. Catalan, Sur les nombres de Segner,
Rendiconti del Circolo Matematico di Palermo (French, 1887); divisibility properties of Catalan numbers.
- English papers:
- T.P. Kirkman, On the K-Partitions of the R-Gon and R-Ace,
Philosophical Transactions of the Royal Society (1857); introduction of Kirkman-Cayley numbers.
- A. Cayley, On the analytical forms called trees, II, Philosophical Magazine (1859);
plane trees, bijection to parenthetical expressions, g.f. solution.
- H.M. Taylor and R.C. Rowe, Note on a
Geometrical Theorem, Proc. London Math. Soc. (1881); solution of Kirkman's problem.
- A. Cayley, On the partition of a polygon,
Proc. London Math. Soc. (1890); an overview and alternative proof of results by Kirkman and Taylor-Rowe.
- French papers on the ballot problem: (translated by M. Renault)
- J. Bertrand,
Solution d’un problème,
C. R. Acad. Sci. (French, 1887); English translation;
ballot problem solved by induction.
- É. Barbier,
Généralisation du problème résolu par M. Bertrand,
ibid.; English translation; generalized ballot problem.
- D. André, Solution directed du problème résolu par M. Bertrand,
ibid.; English translation; a different solution, variation on cycle lemma
and reflection principle.
- D. Mirimanoff, A
propos de l’interprétation géométrique du problème du scrutin,
ibid. (1923); English translation; the reflection principle.
- Monographs:
- E. Netto, Lehrbuch der Combinatorik (German, 1901);
an early monograph which (mis-)named "Catalan numbers" (see Chapter 9)
- W. Feller, An Introduction to Probability Theory and its Applications (see §3.1); this 1950 monograph
(mis-)attributed the "reflection principle" to André.
Trees and other combinatorial interpretations:
- I.M.H. Etherington, Some problems of nonassociative combinations (I), Edinb. Math. Notes (1940)
- N.G. de Bruijn and B.J.M. Morselt, A Note on Plane Trees, J. Comb. Theory (1967)
- D.A. Klarner, Correspondences
between plane trees and binary sequences, J. Comb. Theory (1970)
- M.R.T. Dale and J.W. Moon, The
permuted analogues of three Catalan sets, J. Stat. Planning Inference (1993)
- I. Pak, Reduced decompositions of permutations
in terms of star transpositions, generalized Catalan numbers and k-ary trees, Discrete Math. (1999)
- D. Knuth, Three Catalan Bijections, preprints (2005)
- X.G. Viennot, Canopy of binary trees, Catalan tableaux and the asymmetric exclusion process, in Proc. FPSAC 2007.
- S. Heubach, N.Y. Li and T. Mansour, A garden of k-Catalan structures, preprint.
- A.N. Fan, T. Mansour and S.X.M. Pang, Elements of the sets enumerated by super-Catalan numbers, preprint.
Polygon dissections and noncrossing partitions:
- N. Dershowitz and S. Zaks,
Ordered trees and non-crossing partitions,
Discrete Math. (1986)
- R.P. Stanley, Polygon dissections and standard Young tableaux (.ps file), JCTA (1996)
- R.P. Stanley, Parking functions and noncrossing partitions, Electron. J. Comb. (1997)
- J. Przytycki and A. Sikora, Polygon dissections and
Euler, Fuss, Kirkman, and Cayley numbers, JCTA (2000)
- R. Simion, Noncrossing partitions, Discrete Math. (2000)
Motzkin, Riordan and Baxter numbers:
- R. Donaghey and L.W. Shapiro, Motzkin Numbers,
JCTA (1977)
- R. Cori, S. Dulucq and G. Viennot, Shuffle
of parenthesis systems and Baxter permutations, JCTA (1986)
- M. Aigner, Motzkin Numbers,
European J. Comb. (1998)
- A. Kuznetzov, I. Pak and A. Postnikov, Trees Associated with the Motzkin Numbers,
JCTA (1996)
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers,
Discrete Math. (1999)
- O. Guibert and S. Linusson, Doubly alternating Baxter permutations are Catalan (.ps.gz file),
Discrete Math. (2000)
Fine and Schröder numbers:
Lattice walks and generalized ballot numbers:
- P. Franklin and C.F. Gummer,
Solutions of Problems: 2681, Amer. Math. Monthly (1919)
- A. Dvoretzky and
Th. Motzkin,
A problem of arrangements, Duke Math. J. (1947)
- T.V. Narayana, Sur les treilles formés par les partitions d'un entier et leurs applications à la théorie des probabilités,
C. R. Acad. Sci. (French, 1955)
- Ph. Flajolet, Combinatorial aspects of continued fractions,
Discrete Math. (1980)
- D. Zeilberger, André’s
reflection proof generalized to the many-candidate ballot problem, Discrete Math. (1983)
- M.P. Delest and G. Viennot, Algebraic
languages and polyominoes enumeration, Theor. Comp. Sci. (1984)
- M. Desainte-Catherine and G. Viennot,
Enumeration of certain Young tableaux with bounded height,
in Lecture Note in Math. 1234 (1986).
- I.M. Gessel, A
probabilistic method for lattice path enumeration
(also free version),
J. Stat. Planning Inference (1986)
- N. Dershowitz and S. Zaks,
The cycle lemma and some applications, European J. Comb. (1990)
- I.M. Gessel and D. Zeilberger,
Random walk
in a Weyl chamber, Proc. AMS (1992)
- M. Bousquet-Mélou and G. Schaeffer, Walks
on the slit plane, PTRF (2002)
- I.P. Goulden and L.G. Serrano, Maintaining the Spirit
of the Reflection Principle when the Boundary has Arbitrary Integer Slope, JCTA (2003)
Pattern avoidance:
- P.A. MacMahon, Combinatory Analysis
(Chapter 5, §97,98), Cambridge University Press, London, 1915.
- J. West, Generating
Trees and the Catalan and Schröder Numbers (.ps.gz file), Discrete Math. (1995)
- S. Elizalde and I. Pak, Bijections for refined restricted permutations, JCTA (2004)
- A. Claesson and S. Kitaev, Classification of bijections between 321-and 132-avoiding permutations,
Sém. Lothar. Comb. (2008)
- S. Kitaev, Patterns in Permutations and Words,
e-book (by subscription), Springer, Berlin, 2011.
q-Catalan numbers:
q,t-Catalan numbers:
Hyperplane arrangements:
Generalization to Coxeter groups:
- V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. (1997)
- C.A. Athanasiadis, On noncrossing and nonnesting partitions for classical reflection groups, Electron. J. Comb. (1998)
- D. Armstrong, Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups, Memoirs of the AMS (2009)
- A. Fink and B. Iriarte Giraldo, A bijection between noncrossing and nonnesting partitions for classical reflection groups, in Proc. FPSAC 2009
- D. Armstrong, C. Stump and H. Thomas, A uniform bijection between nonnesting and noncrossing partitions, Trans. AMS (2013)
Catalan matroid:
Graph of triangulations:
- J.M. Lucas, The
rotation graph of binary trees is Hamiltonian, J. Algorithms (1987)
- D.D. Sleator, R.E. Tarjan and W.P. Thurston, Rotation
distance, triangulations, and hyperbolic geometry, JAMS (1988)
- J.A. De Loera, J. Rambau and F. Santos,
Triangulations:
Structures for Algorithms and Applications, Section 3 (e-book,
WorldCat), Springer, 2010.
- J.-J. Liu, W.C.-K. Yen and Y.-J. Chen, An
Optimal Algorithm for Untangling. Binary Trees via Rotations, Computer J. (2011)
Associahedron:
- M.M. Kapranov, The
permutoassociahedron ..., J. Pure Applied Algebra (1993)
- A. Tonks, Relating the associahedron and the permutohedron (.ps.gz file), in Operads, AMS, 1997.
- R. Simion, Convex Polytopes and Enumeration, Advances Applied Math. (1997)
- J.L. Loday, Parking functions and triangulation of the associahedron, in Contemporary Mathematics, 2007.
- C. Hohlweg and C. Lange, Realizations of the Associahedron and Cyclohedron, Discrete Comp. Geom. (2007)
- A. Postnikov, Permutohedra, associahedra, and beyond, IMRN (2009)
- C. Ceballos, F. Santos and G.M. Ziegler, Many non-equivalent realizations of the associahedron, preprint (2011)
- C. Ceballos and G.M. Ziegler, Realizing the Associahedron: Mysteries and Questions, in Progress in Mathematics, 2012.
Asymptotic and probabilistic results:
- P. Flajolet and A.Odlyzko, The
average height of binary trees and other simple trees, J. Comp. Sys. Sci. (1982)
- L. Devroye, Branching
processes in the analysis of the heights of trees, Acta Informatica (1987)
- L. Takács, A Bernoulli excursion and its various applications,
Advances Applied Probability (1990)
- D. Aldous, Triangulating the circle, at random,
Amer. Math. Monthly (1994)
- D. Aldous, Recursive
Self-Similarity for Random Trees, Random Triangulations and Brownian Excursion, Annals of Probability (1994)
- M. Drmota and B. Gittenberger, On the profile of random trees,
Random Structures Algorithms (1997)
- R. Speicher, Free probability
theory and non-crossing partitions, Sém. Lothar. Combin (1997)
- L. Devroye, P. Flajolet, F. Hurtado, M. Noy and W. Steiger,
Properties
of Random Triangulations and Trees, Discrete Comp. Geom. (1999)
- Z. Gao and N.C. Wormald, The
Distribution of the Maximum Vertex Degree in Random Planar Maps, JCTA (2000)
- L. Addario-Berry and B.A. Reed, Ballot theorems, old and new,
in Bolyai Soc. Math. Stud., 2008.
- Ph. Flajolet and R. Sedgewick, Analytic
Combinatorics, Cambridge University Press, 2009.
- M. Drmota, Random Trees (e-book, link), Springer, 2009.
- N. Bernasconi, K. Panagiotou and A. Steger, On
properties of random dissections and triangulations, Combinatorica (2010)
- J. Ortmann, Large deviations for non-crossing partitions, Electron. J. Probab. (2012)
- N. Curien, Dissecting the circle, at random, preprint.
Random walks:
Acknowledgments: The images of road signs and binary trees used above are taken from Wikpedia.
The animated gifs of Dyck paths are takes from tex.stackexchange.com
Click here
to return to Igor Pak Home Page.
To e-mail me, click
here and delete .zzz
Last updated: 3/7/2013