
THE EXPECTED SHAPE OF RANDOM DOUBLY ALTERNATING

BAXTER PERMUTATIONS

THEODORE DOKOS? AND IGOR PAK?

Abstract. Guibert and Linusson introduced in [GL] the family of doubly alternating Baxter
permutations, i.e. Baxter permutations σ ∈ Sn, such that σ and σ−1 are alternating. They

proved that the number of such permutations in S2n and S2n+1 is the Catalan number Cn. In

this paper we compute the expected limit shape of such permutations, following the approach
by Miner and Pak [MP].

1. Introduction

A Catalan structure is a family of combinatorial objects whose number is the Catalan number

Cn =
1

n+ 1

(
2n

n

)
.

There is a staggering amount of literature on various Catalan structures, the list of which is
ever growing (see [Gou, Pak, Slo, S2, S3]). This multitude and diversity of Catalan structures
is in part a consequence of their different nature, and in part a misperception, as many such
structures are essentially equivalent, via a “nice bijection”. In the latter case, this can happen
despite the apparently different geometric representations of the Catalan objects (think polygon
triangulations vs. binary trees). Discerning different combinatorial structures can be difficult
and even harder to formalize (as in, how do you prove non-existence of a “nice bijection”?).

In this paper we study the asymptotic behavior of doubly alternating Baxter permutations
σ ∈ Sn. Following [MP], we compute the expected limit shape of Bn by viewing permutations
as 0-1 matrices, and averaging them. When scaled appropriately the resulting distribution
on [0, 1]2 converges to a limit surface Φ(x, y) with an explicit formula that seems new in the
literature, thus differentiating this Catalan structure from others (see Theorem 1.1 below).

Baxter permutations are defined to be σ ∈ Sn, such that there are no indices 1 ≤ i < j <
k ≤ n, which satisfy σ(j + 1) < σ(i) < σ(k) < σ(j) or σ(j) < σ(k) < σ(i) < σ(j + 1). They
were introduced and enumerated by Baxter in 1964 [Bax] (see also [CGHK,Vie]), and recently
became a popular subject (see §6.2).

The alternating permutations are defined to be σ ∈ Sn, such that σ(1) < σ(2) > σ(3) <
σ(4) > . . .. They were defined by André in 1879, and extensively studied over the years
(see [S1, S2]). Their number is known as the Euler–Bernoulli number with the exponential
generating function tan(x) + sec(x), and they have numerous connections to other fields.

A Baxter permutation σ ∈ Sn is called doubly alternating if both σ and σ−1 are alter-
nating. Guibert and Linusson showed in [GL] that the set Bn of such permutations is a Catalan
structure: ∣∣B2n∣∣ =

∣∣B2n+1

∣∣ = Cn .

Let P (m, i, j) denote the probability that a random σ ∈ B2m has σ(i) = j. Here is our main
result.

? Department of Mathematics, UCLA, Los Angeles, CA, 90095. Email: {tdokos,pak}@math.ucla.edu.

1



2 THEODORE DOKOS AND IGOR PAK

Theorem 1.1. Let 0 < α < β < 1− α. We have:

P (m, b2αmc, b2βmc) ∼ ϕ(α, β)

m
as m→∞ ,

where

ϕ(α, β) =
1

8π

∫ α

0

∫ α−y

0

dx dy

[(x+ y)(β − x)(1− β − y)]3/2
.

Figure 1. The graph of the limit surface Φ(x, y).

In other words, when the distribution P (m, i, j) is scaled appropriately, it converges to the
limit surface Φ(x, y) as shown in Figure 1. Here the surface Φ : (0, 1)2 → R is obtained from
ϕ : {0 < x < y < 1, x+ y < 1} → R by reflection across both diagonals.

There are a few things to note. First, the surface Φ(x, y) has the symmetry group of a
square. Curiously, most of symmetries do not appear in the actual numbers B(m, i, j). We
discuss this in further detail in Section 6. Second, most of the surface is “under water”, i.e.
we have Φ(x, y) < 1 everywhere except near the corners and at the center spike Φ( 1

2 ,
1
2 ) = 3

2 .

The reason is simple: the peaks in the corners actually diverge (see Theorem 5.1).1 Finally, the
limit shape for Bn is fundamentally different from those in [MP], where the limit surfaces are
degenerate. We give more details on these in Section 6.

The rest of the paper is structured as follows. In the next section we introduce the basic
notations. In Section 3, we present the main lemma (Lemma 3.1), giving an explicit triple
summation formula for P (m, i, j). Section 4 contains the proof of the main lemma. We then
use the main lemma to prove Theorem 1.1 in Section 5. We conclude with final remarks and
open problems in Section 6.

2. Basic definitions and notation

For a permutation σ ∈ Sn, its complement σc is defined pointwise by σc(i) = n + 1 − σ(i).
Given σ = a1 · · · an ∈ Sn and permutations τ1, . . . , τn, we define the inflation σ[τ1, . . . , τn] to be
the permutation obtained by replacing ai with a copy of τi, shifted to be in the same relative
position as ai.

We say that an ∼ bn, or an is asymptotically equivalent to bn if an/bn → 1 as n→∞. Recall
Stirling’s formula,

n! ∼
√

2πn
(n
e

)n
.

1Our graph in Figure 1 has been truncated.



SHAPE OF DOUBLY ALTERNATING BAXTER PERMUTATIONS 3

It gives the following asymptotic formula for the Catalan numbers:

(1) Cn ∼
1√
πn3/2

4n .

In Section 5, we will make heavy use of this approximation.

3. Main Lemma

As in the introduction, let Bn denote the set of doubly alternating Baxter permutations of
length n. Recall that |B2m| is equal to the m-th Catalan number Cm. It was proved in [GL]
that for σ ∈ Bn with n odd, we have σ = 12[1, τ c], for some τ ∈ Bn−1. Therefore, the limit
shape of B2m+1 is that of B2m. From this point on, we restrict our attention to sets B2m.

It was further proved [GL], that elements of B2m can be described by a standard recursive
Catalan structure. Specifically, if σ(1) = 2k + 1 (and σ(1) must always be odd), then we have
σ = 2341[1, τ c, 1, ω] with ω ∈ B2k and τ ∈ B2(m−k−1). Figure 2 illustrates this decomposition.

σ =

τ c

ω

Figure 2. A recursive description for σ ∈ B2m.

For r, s ≥ 1, let pr,s be the number of Dyck paths of length 2(r + s − 1), which first revisit
the horizontal axis by step 2s at the latest. Then pr,s is given by a partial Catalan convolution:

pr,s =

s∑
k=1

Cr+s−(k+1) · Ck−1 = Cr+s−2C0 + . . . + Cr−1Cs−1 .

Let B(m, i, j) be the number of permutations σ ∈ B2m such that σ(i) = j. We use the
recursive structure above to obtain the following summation formula for B(m, i, j), in terms of
the Catalan numbers.

Main Lemma 3.1. Let B(m, i, j) and pr,s be defined as above, and let a = di/2e, b = bj/2c.
Suppose further that i ≤ j ≤ 2m− i+ 1. Then we have:

(∗) B(m, i, j) =


CbCm−b−1 +

a−1∑
r=1

a−r∑
s=1

pr,s · Cb−r+1 · Cm−b−s−1 for j odd ,

a−1∑
r=1

a−r∑
s=1

pr,s · Cb−r · Cm−b−s for j even .

We prove the main lemma by induction in the next section, and use it in Section 5 to prove
Theorem 1.1.
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4. Proof of Main Lemma

4.1. The symmetries. We observe the following easy properties of B(m, i, j).

Proposition 4.1. We have

(i) B(m, i, j) = B(m, j, i) = B(m, 2m+ 1− j, 2m+ 1− i).
(ii) For i = 1, we have

B(m, 1, j) =

{
0 if j is even ,
Cb · Cm−b−1 if j = 2b+ 1 is odd .

(iii) Let i > 1 and j < 2m. Then

B(m, i, j) =

di/2e−1∑
k=1

Ck−1 ·B(m− k, i− 2k, j) +

m∑
k=m−bj/2c+1

Cm−k ·B(k − 1, i− 1, 2m− j).

Proof. The equalities in (i) correspond to reflection over the main diagonal and main antidiago-
nal, respectively. These reflections preserve both the Baxter and doubly alternating properties.

The equality in (ii) follows immediately from the recursive structure of B2m given in Figure 2.
As a special case, note that B(m, 1, 1) = Cm−1 .

The recurrence relation in (iii) follows from conditioning on σ(2k) = 2m, and checking the
resulting restrictions on σ(i) = j. Note that for the second sub-sum, we require 2(k−1) ≥ 2m−j
to satisfy the required constraints. �

The first part of this proposition shows that our Main Lemma is sufficient to calculate
B(m, i, j) for all i, j, by using reflections.

4.2. Preliminary calculations. Throughout the rest of this section, we assume that i ≤ j ≤
2m − i. Let us further refine the recurrence in equation in (iii). We need to ensure that all
terms B(n, p, q) in the above satisfy the inequalities p ≤ q ≤ 2n − p. The first sum requires
no modification. The second sum must be split however, and a symmetry applied to one
group of terms. Since we need i − 1 ≤ 2m − j ≤ 2k − i − 1, it follows that the terms with
k ≥ m+ 1

2 (i+1−j) are already of the desired form. For summands preceding this cut-off point,
we will apply an antidiagonal reflection to the terms B(∗, ∗, ∗). For notational convenience, let
h =

⌊
1
2 (j − i− 1)

⌋
and let a, b be as in the Main Lemma. Then our triple sum becomes

B(m, i, j) =
a−1∑
k=1

Ck−1 ·B(m− k, i− 2k, j)

+

m−h−1∑
k=m−b+1

Cm−k ·B(k − 1, j − 1− 2(m− k), 2k − i)

+

m∑
k=m−h

Cm−k ·B(k − 1, i− 1, 2m− j).

We reindex the second two sums of the above, by letting k ← m− b+ `:

B(m, i, j) =

a−1∑
k=1

Ck−1 ·B(m− k, i− 2k, j)

+

b−h−1∑
`=1

Cb−` ·B(m− b+ `− 1, j − 1− 2(b− `), 2(m− b+ `)− i)(2)

+

b∑
`=b−h

Cb−` ·B(m− b+ `− 1, i− 1, 2m− j).

We also state a simple lemma:
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Lemma 4.2. Let r, s ≥ 1. Then

pr,s = Cr+s−2 +

s−1∑
k=1

Ck−1 · pr,s−k .

Proof. This follows from expanding each pr,s−k term and changing the order of summation.
Specifically, we use the substitution m← j + k + 2. �

4.3. Proof of Main Lemma. Suppose our formula (∗) holds for all B(n, p, q) satisfying n < m,
and p, q ∈ {1, . . . , 2n} with p ≤ q ≤ 2n − p. To show that the result holds for B(m, i, j), we
prove it separately for each of the four choices on the parity of i and j. Let i = 2a and j = 2b.
In this case, we have

a =

⌈
i

2

⌉
, b =

⌊
j

2

⌋
, and h =

⌊
(j − i− 1)

2

⌋
= b− a− 1 .

Thus, the triple sum in equation (2) becomes

B(m, 2a, 2b) =

a−1∑
k=1

Ck−1 ·B
(
m− k, 2(a− k), 2b

)
+

a∑
`=1

Cb−` ·B
(
m− b+ `− 1, 2(`− 1) + 1, 2(m− b− a+ `)

)
+

b∑
`=a+1

Cb−` ·B
(
m− b+ `− 1, 2a− 1, 2(m− b)

)
.

By induction, this gives

(3)

B(m, 2a, 2b) =

a−1∑
k=1

Ck−1 ·
a−k−1∑
c=1

a−k−c∑
d=1

pc,d · Cb−c · Cm−k−b−d

+

a∑
`=1

Cb−` ·
`−1∑
c=1

`−c∑
d=1

pc,d · Cm−b−a+`−c · Ca−1−d

+

b∑
`=a+1

Cb−` ·
a−1∑
c=1

a−c∑
d=1

pc,d · Cm−b−c · C`−1−d .

For a fixed r and s, let c1, c2, c3 be the coefficients on Cb−r ·Cm−b−s in the first, second and
third sums in the above equation. Looking at the first sum we see that c1 is only nonzero when
r ≤ a− s. In such a case, by considering c = r and k+ d = s we see that the coefficient is given
by

c1 =

s−1∑
k=1

pr,s−k · Ck−1 = pr,s − Cr+s−2 ,

with equality following from Lemma 4.2.
For the second sum, we consider ` = r and a + c − r = s. Since c ≥ 1, the second sum

contributes nothing for the cases when r + s ≤ a. Thus for r + s ≤ a we have c2 = 0, and for
r + s > a we instead get

c2 =

a−s∑
j=1

pr+s−a,j · Ca−j−1 .

Our third sum requires some manipulation. We rewrite the third sum in (3) as

a−1∑
c=1

a−c∑
d=1

pc,d · Cm−b−c ·

(
b∑

`=a+1

Cb−` · C`−1−d

)
,
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and here the inner sum can be re-expressed as a subtraction, through the standard Catalan
convolution:

a−1∑
c=1

a−c∑
d=1

pc,d · Cm−b−c · (Cb−d − Cb−d−1C0 − . . .− Cb−aCa−d−1) .

If we consider those summands where c = s, then for r+s ≤ a we have c3 = Cr+s−2 (by Lemma
4.2), and otherwise

c3 = −

a−s∑
j=1

ps,j · Cr−j−1

 .

Combining these terms, we see that

c1 + c2 + c3 =


pr,s for r + s ≤ a,

a−s∑
j=1

(pr+s−a,j · Ca−j−1 − ps,j · Cr−j−1) for r + s > a.

Expand and rearrange each p∗,∗ term in this latter sum, and observe that it is equal to 0. This
completes the proof for the case when i and j are both even. The other three cases are similar
and their proof is omitted.2 �

5. Asymptotic estimates

5.1. Preliminaries. Let P (m, i, j) be the probability that σ ∈ B2m satisfies σ(i) = j. Then
P (m, i, j) = B(m, i, j)/Cm.

Throughout the section, it will be convenient to pretend that 2αm, 2βm are integers. Further,
we assume that 2αm, 2βm are even, in order to restrict to one version of the formulas in the
equation (∗). Therefore, we write:

(∗∗) P (m, 2αm, 2βm) =

αm−1∑
r=1

αm−r∑
s=1

pr,s · Cβm−r · Cm−βm−s
Cm

.

Theorem 5.1. We have the following corner probabilities:

P (m, 1, 1), P (m, 1, 2m− 1), P (m, 2, 2m− 1) → 1

4
,

P (m, 1, 2) = P (m, 1, 2m) = P (m, 2, 2) = 0 ,

and the remaining corner cases are given by symmetries.

Proof. It follows at once from the formulas in the Main Lemma that the probabilities in these
cases are either 0, or Cm−1/Cm → 1/4. �

Before proving Theorem 1.1, we will need to take a closer look at the partial Catalan convo-
lutions pr,s. Note that Cr+s−2 ≤ pr,s ≤ Cr+s−1. In fact, the following stronger result holds.

Lemma 5.2. Fix ρ ∈ (2/3, 1). Suppose that k satisfies

nρ < k < n− nρ .
Then, for every ε > 0,

(1− ε)Cn−1 ≤ 2 · pn−k,k ≤ (1 + ε)Cn−1 ,

for all n large enough.

Letting k = s, r = n− k − 1 gives this above inequality. The proof converts the summation
pn−k,k into an integral, using the asymptotic (1). We omit the details.

2Full proofs of these cases will appear in the first author’s Ph.D. thesis [Dok].
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5.2. Partitioning the summation. Observe that the double sum in equation (∗∗) is over a
triangular set of points T, with (r, s) ∈ T satisfying

1 ≤ r ≤ αm− 1 and 1 ≤ s ≤ αm− r .

We partition T into the four sets A,B,C and D as follows (see Figure 3).

A = {(r, s) : (r + s) ≤ αmδ}
B = T \ (A ∪ C ∪D)

C = {(r, s) : s ≤ (r + s)ρ}
D = {(r, s) : s ≥ r + s− (r + s)ρ}

We show that the sum of terms in (∗∗) corresponding to each of the sets A,C and D are
dominated by the those from set B. This will allow us to apply Lemma 5.2 and approximation
in (1) to terms whose indices lie in set B.

r

s

αm− 1

αm− 1

αmδ

αmδ

A

B

C

D

T

1
1

Figure 3. The summation points, partitioned into four sets.

We reduce the problem of summation over T to an integral over the right triangle ∆, given
by x, y ≥ 0 and x + y < α. For that we similarly define the regions A,B,C and D to be all
(x, y) in ∆ so that (dmxe, dmye) is a point in A,B,C or D, respectively.

5.3. Estimates for set A. Each of the three sets A,C and D contains a relatively small
number of terms. We will show that the sum of terms in (∗∗) corresponding to these sets grows
slowly, so that their contribution is dwarfed by that of set B.

Lemma 5.3. Let δ < 1/4. Then the sum of terms in (∗∗) corresponding to A is o
(

1
m

)
.

Proof. The largest individual term in (∗∗) is obtained when r = s = 1. We get:

2Cβm−1Cm−βm−1
Cm

∼ 1

β(1− β)8
√
π
· 1

m3/2
.

We bound each of the summands from A by this, so that their total is at most

|A| · 2Cβm−1Cm−βm−1
Cm

= (αmδ)2 · Cβm−1Cm−βm−1
Cm

∼ 1

8
√
πβ(1− β)

· (αmδ)2

m3/2
=

α2

8
√
πβ(1− β)

· 1

m3/2−2δ = o

(
1

m

)
,

where the last equality follows from δ < 1/4. �
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5.4. Estimates for sets C and D.

Lemma 5.4. Let ρ ∈ (2/3, 1). Then the sum of terms in (∗∗) corresponding to set C is o
(

1
m

)
.

The same also holds for the set D.

Proof. Choose a constant M large enough so that

Cn ≤ M · 4n

(n+ 1)3/2
, for all n ≥ 0 .

Denote by PC the sum of terms in (∗∗) corresponding to C, i.e.

PC =
∑

(r,s)∈C

pr,s · Cβm−r · Cm−βm−s
Cm

≤
∑

(r,s)∈C

Cr+s−1 · Cβm−r · Cm−βm−s
Cm

,

where the last inequality follows from pr,s ≤ Cr+s−1. We use formula (1) as well as our choice
of M to obtain

4PC√
πM3

≤
∑

(r,s)∈C

m3/2

[(r + s)(βm− r + 1)((1− β)m− s+ 1)]3/2
.

And as m→∞ this last sum is asymptotically equivalent to

1

m

∫∫
C

dx dy

[(x+ y)(β − x)(1− β − y)]3/2
.

Now observe that the above integral converges, and that Area(C) → 0 as m → ∞. Thus,
PC = o

(
1
m

)
, as desired. The proof for D follows verbatim from the above argument and the

bound pr,s ≤ Cr+s−1. �

Remark 5.5. At the beginning of this section, we assumed that 2αm, 2βm are even integers.
For the other choices of parity, the sum (∗∗) differs in the range of indices (r, s), and, depending
on the chosen parity of 2αm, the addition of a O(m−3/2) term, coming from the first term in
the summation (∗) from the main lemma. The above arguments and the following proof of
Theorem 1.1 can be adapted with little difficulty to handle these differences.

5.5. Proof of Theorem 1.1. Denote by PB the sum of terms from (∗∗) corresponding to set B,
i.e.

PB =
∑

(r,s)∈B

pr,s · Cβm−r · Cm−βm−s
Cm

.

We need to prove that PB ∼ 1
mϕ(α, β). This follows from the construction of B. First, note

that for (r, s) ∈ B, the indices r + s, βm − r and (1 − β)m − s → ∞ as m → ∞. Thus, by
Lemma 5.2 we have

PB ∼
1

2

∑
(r,s)∈B

Cr+s−1 · Cβm−r · Cm−βm−s
Cm

.

From formula (1) we obtain

PB ∼
1

8π

∑
(r,s)∈B

m3/2

[(r + s)(βm− r)((1− β)m− s)]3/2

∼ 1

8πm

∫∫
B

dx dy

[(x+ y)(β − x)(1− β − y)]3/2
.

As m→∞, the region B expands to fill the entire triangle ∆, so we obtain

PB ∼
1

8πm

∫ α

0

∫ α−y

0

dx dy

[(x+ y)(β − x)(1− β − y)]3/2
=

ϕ(α, β)

m
.

Finally, by Lemmas 5.3 and 5.4, the probability P (m, 2αm, 2βm) ∼ PB. This completes the
proof. �
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6. Final remarks and open problems

6.1. There is a large literature on the asymptotic behavior of Catalan structures, too large for
us to summarize. We refer to [FS, Odl, PW] for a comprehensive introduction to asymptotic
methods, and to [Pit] for strongly related discrete probability results.

6.2. The choice of doubly alternating Baxter permutations is a part of a general program of
study of pattern-avoiding permutations. Baxter permutations are defined to avoid two (gener-
alized) patterns, and widely studied in the literature (see e.g. [AGP,BBF,DG1,FFNO], in part
due to their connection to plane bipolar orientations, tilings [Korn], and other combinatorial
objects (see [Kit, §2.2] for the introduction and references). As mentioned in the introduction,
the alternating permutations are classical in the own right; we refer to [S1] for a comprehensive
survey on their role in Enumerative Combinatorics, to [DW] for a recent detailed probabilistic
study, and to [Kit, §6.1] for connections to other pattern-avoiding permutations.

6.3. The study of random pattern avoiding permutations by means of the limit shape was
recently introduced by Miner and the second author [MP]. The authors obtained highly detailed
information for 123 and 213 patterns, each a classical Catalan structure. In both cases the limit
surface is degenerate as most permutation matrix entries concentrate around the anti-diagonal,
and the interesting behavior occurs in the micro-scale near the anti-diagonal with various phase
transitions. We refer to [AM,ML] for strongly related results, and some interesting extensions
for larger patterns.

6.4. Following the ideas in [ML] and [MP], one can ask whether for a given (generalized)
pattern there is always a limit surface, and whether it is degenerate. Since the set of bistochastic
matrices is a compact (in fact, the Birkhoff polytope), the answer to the former is likely yes.
But the latter question seems difficult and currently out of reach.

6.5. The fact that the limit surface Φ(x, y) is highly symmetric and piecewise smooth came as
a surprise, as in the initial experiments for averages of all σ ∈ Bn, the graphs exhibited fewer
symmetries and numerous small spikes, see Figure 4. Of course, these spiked are due to the the
parity differences in formula (∗) in the Main Lemma, and as n grows, they gradually disappear.
Curiously, the asymmetry across the main diagonal persisted until very large n, suggesting a
rather slow convergence in Theorem 1.1.

(a) (b)

Figure 4. Averages of all σ ∈ Bn, where n = 200 and 800.

To illustrate this phenomenon, note that the limit shape has an extra degree of symmetry,
which the actual numbers B(m, i, j) do not have. The following two graphs are for α = 3/40,
and the horizontal axis is β. The red line is ϕ(α, β), the blue line is m · P (m, 2αm, 2βm), for
m = 500 on the left and m = 2000 on the right. For the emphasis, recall that in the notation
above, we have n = 2m.
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(a) (b)

Figure 5. Horizontal slices of the limit surface.

6.6. Let us note that for the case of size 3 patterns mentioned in §6.3, the random restricted
permutations do in fact resemble their limit shapes, due to exponentially small decay of proba-
bilities away from the anti-diagonal. However, in the the case of random σ ∈ Bn, permutations
tend to exhibit a high degree or structure, and do not resemble the limit surface Φ(x, y). This
suggests that computing square-to-square correlations would an interesting problem. While we
expect this to be doable, this goes outside the scope of our project.

(a) σ ∈ B2000 (b) σ ∈ B4000

Figure 6. Randomly sampled permutations σ ∈ B2000 and B4000.

6.7. It would be interesting to compute the limit shape of random Baxter permutations. While
they can be sampled exactly uniformly (see e.g. [FFNO,Vie]), the underlying bijection does not
seem to give any useful formulas. In fact, a special effort is required to sample beyond n = 20.
Still, the apparent connection to Φ(x, y) is undeniable (see Figure 7).

A possible explanation lies in the “flat structure” of alternating permutations. As evident
from Figure 7 for n = 500, there seem to be a limit surface of alternating permutations,
with no spikes except at the boundary. In fact, the boundary is given by the asymptotics of
Entringer numbers given in [DW].3 This suggests that all spikes in Φ(·, ·) come from the “Baxter
condition”.

6.8. It is known that the number of (singly) alternating Baxter permutations in S2n and S2n+1,
is C2

n and CnCn+1, respectively [DG1]. It would be interesting to compute the expected limit
shape of such permutations. Note the similarity of the shape in Figure 8 with the shape of the
other Baxter families.

3We plan to return to this problem in [Dok].
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(a) (b)

Figure 7. Averages of Baxter permutations (n = 20) and alternating permu-
tations (n = 500).

Figure 8. Averages of alternating Baxter permutations (n = 200).

Acknowledgments: The authors are grateful to Mireille Bousquet-Mélou, Stephen DeSalvo,
Philippe Di Francesco, Scott Garrabrant, Christian Krattenthaler, Svante Linusson, Neal Madras,
Sam Miner, and Robin Pemantle for useful remarks and help with the references. The second
author was partially supported by the NSF.

References

[AGP] E. Ackerman, G. Barequet and R. Pinter, A bijection between permutations and floorplans, and its
applications, Discrete Appl. Math. 154 (2006), 1674–1684.

[AM] M. Atapour and N. Madras, Large deviations and ratio limit theorems for pattern-avoiding permu-
tations, to appear in Combin. Probab. Comput.

[Bax] G. Baxter, On fixed points of the composite of commuting functions, Proc. AMS 14 (1964), 851–855.
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