TWENTY

Catalan Numbers

If an infinite sequence of positive integers is simple enough, such as the
doubling series (1,2,4,8,16, . . . )orthesquares(1,4,9,16,25, . . . ),itis
easily recognized. And few mathematicians would fail to recognize the Fi-
bonaccinumbers (1,1,2,3,5,8, . . . )orthe triangular numbers (1, 3, 6, 10,
15,21, . . . ). If the sequence is unfamiliar, however, an enormous amount
of time can be wasted searching for a recursive or nonrecursive procedure that
generates the sequence. (A procedure is recursive if calculating a next term
calls for knowledge of the preceding terms; a nonrecursive formula gives the
nth term without such knowledge.)

It is hard to believe, but it was not until 1973 that A Handbook of Integer
Sequences (Academic Press, 1973) was published. This invaluable tool, com-
piled by N. J. A. Sloane of Bell Laboratories, lists more than 2300 integer
sequences in numerical order. A mathematician who encounters a puzzling
sequence no longer needs to spend hours trying to find its generating formula.
He simply looks for the sequence in Sloane’s book. The chances are excellent
that it is there, followed by a list of references where the reader can check on
the nature of the beast.

Our topic here is the Handbook’s sequence 577: 1, 2, 5, 14, 42, 132, 429,
1430, 4862, 16796, . . . . The components of this sequence are called Cata-
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lan numbers. They are not as well known as Fibonacci numbers, but they have
the same delightful propensity for popping up unexpectedly, particularly in
combinatorial problems. In 1971 Henry W. Gould, a mathematician at West
Virginia University, privately issued a bibliography of 243 references on
Catalan numbers; in many cases the authors were not even aware they were
dealing with a sequence known for more than two centuries. In 1976 Gould
increased the number of references to 450. Indeed, the Catalan sequence is
probably the most frequently encountered sequence that is still obscure
enough to cause mathematicians, lacking access to Sloane’s Handbook, to
expend inordinate amounts of energy rediscovering formulas that were
worked out long ago.

It was Leonhard Euler who first discovered the Catalan numbers after
asking himself: In how many ways can a fixed convex polygon be divided into
triangles by drawing diagonals that do not intersect? An example can be
provided with triangles, quadrilaterals, pentagons, and hexagons (see Figure
125). Note that in every case, regardless of how the n-gon is triangulated, the
number of diagonals is always n — 3 and the number of trianglesisn — 2. It is
easy to prove that this relation holds in general. The number of possible
triangulations for each of these four polygons are the first four terms of the
Catalan sequence.

Applying an induction process that he described as ““quite laborious,” Euler
obtained the following recursive formula:

2X6X10X - - - (4n — 10)
(n— 1)

Numbers above the line have the form (4n — 10), where n is a positive
integer greater than 2. The exclamation mark is of course the factorial sign. It
stands for the product of all positive integers from 1 through the preceding
expression. For example, if n =6 (the sides of a hexagon), the formula
becomes

2X6X10X14 _
5!

14

Unusually simple recursive formulas are obtained by putting another 1 in
front of the series: 1, 1,2, 5, 14, . . . . Let k be the last number of a partial
sequence and #n the position of the next number. The next number is then
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Figure 125 Leonhard Euler’s polygon-triangulation problem

k(4n — 6)

n

Johann Andreas von Segner, Euler’s eighteenth-century contemporary,
found a whimsical recursive procedure for the same form of the Catalan
sequence. Write the partial sequence forward, then put below it the same
numbers in backward order. Multiply each top number by the one below itand
add all the products; the result is the next number of the sequence. For
example,



256 * CHAPTER TWENTY

1 1 2 5 14
X14 5 2 1 1
14+5+4+5+14=42

Euler’s polygon triangulation is isomorphic with many seemingly unre-
lated problems. It was Eugene Charles Catalan, the Belgian mathematician for
whom the sequence is named, who in 1838 solved the following problem. We
have a chain of n letters in a fixed order. We want to add n — 1 pairs of
parentheses so that inside each pair of left and right parentheses there are two
“terms.” These paired terms can be any two adjacent letters, ora letter and an
adjacent parenthetical grouping, or adjacent groupings. In how many ways
can the chain be parenthesized?

For two letters, ab, there is only one way: (ab). For three letters there are two
ways: ((ab)c) and (a(bc)). For four letters there are five ways: ((ab)(cd)),
(((ab)c)d), (a(b(cd))), (a((bc)d)), and ((a(bc))d). The numbers of these ways, 1, 2,
and 5, are the first three Catalans, and the Catalan sequence enumerates the
ways of parenthesizing all longer chains.

H. G. Forder, writing on Catalan numbers in 1961, showed a simple way to
establish one-to-one correspondence between the triangulated polygons and
the parenthesized expressions. An example is a triangulated heptagon (see
Figure 126). Label its sides (excluding the base) a through f. Every diagonal
spanning adjacent sides is labeled with the letters of those sides in parentheses.
Each remaining diagonal is then lettered in similar fashion by combining the
labels on the other two sides of the triangle. The base is lettered last. The

(((ab)(c(de)))f)

Figure 126 Parenthesized triangulation of a heptagon
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expression for the base is uniquely determined by the dissection. If you apply
this technique to the polygons portrayed in Figure 125, you will obtain the
parenthesized expressions shown at the right in Figure 127.

The British mathematician Arthur Cayley proved that Catalan numbers
count the number of trees that are planar, trivalent, and planted. A “tree” isa
connected graph (points joined by edges) that has no circuits. “Planar” means
that it can be drawn on the plane without intersections. ‘“Planted” means that
it has one “trunk,” the end of which is called the “root.” The graph can thus
be drawn to simulate a tree growing up from the ground. ‘“Trivalent” means
that at each point (except at the root and at the ends of branches), the tree forks
to create a spot where three edges meet.

The illustration of this structure (Figure 127) is almost self-explanatory.
The gray lines show how each triangulation corresponds to a planted trivalent
tree. Next to the polygons, corresponding trees are drawn in conventional
form. It is easy to see how the grouping of a tree’s branches corresponds to its
parenthesized expression. Below each expression, we convert it to a binary
number by replacing every left-hand parenthesis with 1 and every letter with
zero, ignoring all right-hand parentheses. These binary numbers are conve-
nient shorthand ways of designating the polygon dissections and their trees.
Right-hand parentheses are not needed because, given the left-hand ones and
the method of grouping letters, the right-hand parentheses can always be
added in a unique manner.

The Polish mathematician Jan Lukasiewicz found a pleasant way to obtain
each tree’s binary number (see Figure 128). Picture a tree with four top ends.
They are labeled 0 and the trivalent points are labeled 1. Imagine a worm
crawling up the trunk and around the entire tree along the broken path in the
illustration. At each point, the worm calls out the label. Once a point is called,
it is not called again. In this example the worm calls out 1101000, which
proves to be the very binary number we obtained from the tree’s parenthesized
expression.

In 1964 it was discovered that normal planted trees are also counted by
Catalan numbers. They are planted trees of # points, including the ends but
not the root. They can also be described as planted trees of n edges. A point in
such a tree can have any valence.

Many ways have been found for showing a one-to-one correspondence
between trees of this kind and the planted trivalent trees. The simplest one was
pointed out by Frank Bernhart (see Figure 129). The trivalent trees are drawn
so that at each point of valence 3 the edges go up, down, and to the right.
Imagine that each horizontal edge shrinks to a point and disappears. If there is
a trivalent point at the right end of the edge, it is carried to the left to merge
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Figure 127 Triangulation and planted trivalent trees

(ab)
100

((ab)e)
11000

(a(bc))
10100

((ab)(cd))
1100100

(((ab)c)d)
1110000

(a(b(cd)))
1010100

(a((bc)d))
1011000

((a(bc))d)
1101000
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1101000

Figure 128 A worm generating a tree’s binary number

with the point at the left. All the vertical edges remain distinct. This simple
transformation changes all planted trivalent trees of n ends into all planted
trees of n edges.

A worm crawling up and around any tree in this new set (the trees at the
right in the illustration) will call out the same binary number as the tree’s
partner if it alters its procedure as follows. The worm starts at the bottom point
rather than at the root. Each time it crawls up an edge, it calls 1, and each time
it crawls down an edge, it calls 0.

Consider chessboards of sides 2, 3,4, . . . . All squares north and west of a
main diagonal are shaded (see Figure 130). We are to move the rook from the
lower left corner to the upper right corner. It cannot enter a shaded cell, and its
only allowed movements are north or east. For a board of side #, how many
different paths can the rook take?

Once more the Catalans give the answer. Below each board of side n write -
the binary number for the planted trivalent tree of # ends. Taking the binary
digits from left to right, move the rook one square to the right for each 1 and
one square up for each 0. (The final digit is ignored.) This pattern generates a
path, and in this way all the rook paths are obtained.

Here are seven more recreational problems solved by the Catalans. For the
first five, I shall indicate how the corresponding binary numbers (ignoring
final digits) solve the problem.
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Figure 129 Transformation of planted trivalent trees to planted normal trees

1. Two men, 4 and B, are running for office. Each man gets n votes. In
how many ways can the 2n votes be counted so that at no time is A behind B?
(1 = vote for A, 0 = vote for B.)

2. Placeapenny, anickel, and adime in arow. On the penny putastack of
n face-up playing cards with values in consecutive order from bottom to top.
The cards are moved one at a time from the penny to the nickel or from the
nickel to the dime. (No other moves are allowed.) By mixing these two types
of moves, you will end, after 2n moves, with all the cards on the dime. Given n
cards, how many different permutations can you achieve on the dime? (1 =
move from penny to nickel, 0 = move from nickel to dime.)

3. Aninebriated man leaves the door of a bar and staggers straight ahead.
His steps are equal, but before each step, he has a random choice of going
forward or backward. How many ways can he take 21 steps that will return
him to the door? (1 = step forward, 0 = step back.)
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This random walk can be given other forms. A king starts on the first row of
achessboard and moves one square forward or back along the file to end on the
starting square after 21 moves. Draw a space-time diagram of the moves, with
time measured along the horizontal base line. The zigzag path can be viewed
as the profile of a mountain with peaks an integral number of miles high anda
base length of 2# miles. The paths depict all mountain ranges of this type.

4. Aneven number (2#) of soldiers, no two the same height, line up in two
equal rows, 4 and B. How many ways can they do it so that from left to right in
each row the heights are in ascending order and each soldier in row B is taller
than his counterpart in row A? (Number the soldiers 1,2, 3, . . . according
to increasing height, and number the digits of the binary numbers from left to
right. The 1 digits give the numbers for row A, and the 0 digits give the
numbers for row B. The problem is easily modeled with playing cards.)

5. Tickets are 50 cents, and 2n customers stand in a queue at the ticket
window. Half of them have $1 each and the others have 50 cents each. The
cashier starts with no money. How many arrangements of the queue are
possible with the proviso that the cashier always be able to make change?
(1 =50 cents, 0 = $1.)

/- Y
) {""I
3 , [
1100100 1110000 1010100 1011000 1101000

Figure 130 How Catalan numbers count a rook’s paths
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6. Hexaflexagons are curious toys made by folding straight or crooked
strips of paper into a hexagonal structure that alters its “faces” when it is
flexed. (They are described in the first chapter of my Scientific American Book of
Mathematical Puzzles & Diversions. Simon & Schuster, 1959.) A regular hexa-
flexagon of a specified type passes through different states as it is flexed. The
total number of states, for all varieties of regular hexaflexagons of n faces, is a
Catalan number. For example, a hexahexaflexagon (six faces) can be made in
three ways. The total number of states is the Catalan number 42.

If we ignore the states and ask in how many essentially different ways a
regular hexaflexagon of n faces can be made, the answer is provided by a
sequence that counts the triangulations of convex polygons when rotations
and reflections are excluded. This remarkable sequence (No. 942 in Sloane’s
Handbook) is 1, 3, 4, 12, 27, 82, 228, 733, 2282, 7528, . . . .

In unpublished papers, Bernhart and other flexagation addicts describe
ways of mapping the changes of states, as a flexagon of n faces is flexed, by
tracing paths around the lines of a triangulated polygon of n + 1 sides.

7. An even number of people are seated around a circular table. Each
extends one arm and they clasp hands in pairs, but in such a way that no pair of
joined arms crosses another. Given the number of pairs, in how many ways can
this be done? More precisely, place 2# spots in fixed positions on the circum-
ference of a circle and then find all the ways they can be paired by drawing
nonintersecting chords.

Can you find a simple geometric way to establish a one-to-one correspon-
dence between this problem and any of the above problems?

A nonrecursive formula for the nth Catalan has different forms depending
on how the positions of the Catalans are numbered. The formula is simplest if

the sequence begins 1, 2, 5,. . . . In this numbering, the nth Catalan is
(2n)!
nl(n + 1)!
If the series begins 1, 1,2, 5, . . . , it turns out that odd Catalan numbers

greater than 1 appear at all positions, and only at those positions, that are
powers of two. Thus the fourth, eighth, sixteenth, and so on Catalans are odd.
This is only one of many unusual properties of the sequence that have been
discovered.

A word of caution: When one works on combinatorial problems, it is easy to
confuse the Catalan sequence with a closely related one: 1, 2, 5, 15, 52, 203,
877, . . . . As Gould points out in notes on his bibliography (which also
includes a separate listing of references on the above series), when structures
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are complicated, it is easy to miss a fifteenth structure (when # = 4) and to be
tricked into supposing you have encountered a Catalan sequence. The numbers
are called Bell numbers after Eric Temple Bell, who published a lot about
them. They count the partitions of 7 elements. For example, the number of
rhyme schemes for a stanza of # lines is a Bell number. A quatrain has fifteen
possible thyme schemes. A 14-line sonnet, if convention is thrown to the
winds, can have 190,899,322 (the fourteenth Bell) distinct thyme schemes. But,
you may object, who would write a sonnet with a rhyme scheme such as
aaaaaaaa aaaaaa? Allowing a word to thyme with itself, James Branch Cabell
conceals just such a sonnet (each line ending with “love”) in Chapter 14 of
Jurgen (Grosset and Dunlap, 1919). I would guess it no accident that Cabell’s
14-line poem starts as the fourteenth paragraph of Chapter 14.

Figure 131 shows how Bell numbers count the rhyme schemes for stanzas
of one line through four lines. Lines that rhyme are joined by curves. Note that
not until we get to quatrains does a pattern (No. 8) require an intersection.
Joanne Growney, who worked this arrangement out in 1970 for her doctoral
thesis, calls the schemes that do not force an intersection of curves “planar
rhyme schemes.” Bell numbers count all thyme schemes. Catalan numbers are
a sub-sequence that counts planar rhyme schemes.

The Bell sequence is No. 585 in Sloane’s Handbook. But the Bells chime
another story that we must postpone for a future book.

1 a
1
2 aa ab
1 2
~~ ~ N\ ~
5 aaa aab aba abb abc
1 2 3 4 5
~ ~ ~N\ A ~
15 aaaa aaab aaba abaa abbb
1 2 3 4 5
A~ N\ 7N ~ N\
aabb abba abab aabc abac
6 7 8 9 10
N\ ~ I ~
abca abbc abch abcc abed
11 12 13 14 15

Figure 131 How Bell numbers count thyme schemes
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ANSWERS

The problem was to show that if 2n spots on a circle are joined in pairs by
nonintersecting chords, the number of ways of doing so are counted by the
Catalan numbers. Figure 132 shows how Frank Bernhart establishes a one-to-
one correspondence of the chord patterns with planted normal trees of n + 1
edges. It also gives their binary numbers. Since these trees are counted by
Catalan numbers, as I explained, the same sequence counts the chord patterns.
To make the diagrams easier to interpret, the small chords are shown curved.

Imagine that the circles and chords are elastic strings. Break each circle at
the top and bend it into a straight line. The chord problem then becomes: 21
points on the line are paired in all possible ways by joining them with curves
above the line that do not intersect. This is equivalent to finding all “planar
rhyme schemes” for 2# lines that consist of # couplets, allowing coupled lines
to be separated by other lines.

——A—
100
2
r i A i N
11000 10100
S
A
1110000 1011000 1100100 1010100 1101000

Figure 132 Correspondence between nonintersecting chords and planted trees
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If the line is now closed by bringing its ends together below, we get an
inside-out version of the original problem. It could represent a lake with 2n
houses on the perimeter, paired in all possible ways by nonintersecting paths.
(All paths joining a given pair of houses are assumed to be the same; think of
each pair as being joined by an elastic string that can be lifted up, stretched or
shrunk and replaced anywhere on the plane outside the lake.)

To obtain the binary numbers, imagine a worm at the bottom of each circle,
inside the circle and facing west. As the worm crawls clockwise around the
circle, it calls out 1 when it encounters a chord for the first time and 0 when it
encounters a chord a second time. The procedure works in reverse. Given the
binary number, the worm labels the spots 1 and 0. There will be only one way
to join each 1 to a 0 without an intersection of chords.

ADDENDUM

My column on Catalan numbers produced so many letters telling me about
other applications of the numbers, and other properties, that I can mention
only a few of special interest.

Vern Hoggatt, Jr., who edited The Fibonacci Quarterly, explained how easily
the Catalans can be found in Pascal’s famous number triangle. Merely go
down the center column (1, 2, 6, 20, 70, . . . ) and from each number
subtract the adjacent number (numbers on left and right of the central number
are, of course, the same). Result: the Catalan sequence!

Paul Stockmeyer called my attention to Jack Levine’s “Note on the Num-
ber of Pairs of Non-Intersecting Routes” (Scripta Mathematica 24, Winter
1959, pp. 335-338). Stockmeyer’s colorful interpretation of Levine’s result is
to imagine two people at the same intersection of a square grid. Each simulta-
neously goes one step, randomly choosing to go either north or east. When
their paths intersect they outline a polyomino. The Catalans count the num-
ber of distinct polyominoes that can be formed after each person has taken n
unit steps. The theorem underlies many later papers, such as “A Catalan
Triangle,” by Louis Shapiro (Discrete Mathematics 14, 1976, pp. 83-90.)

Shapiro also sent me his paper, “A Short Proof of an Identity of Touchard’s
Concerning Catalan Numbers” (The Journal of Combinatorial Theory, 20, May
1976, pp. 375-376.) Here is Shapiro’s interpretation of the identity. Put n
points on a circle. Each point is either painted red, or green, or joined by a line
to another point. The lines must not cross. Catalan numbers count the number
of different patterns for each n.

My column on the related sequence of Bell numbers ran in Scientific Ameri-
can (May 1978) and will be included in a later book collection.
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