Title |
Co-authors |
Status |
Download |
The nonlinear Schrodinger equation with sprinkled nonlinearity | B.
Harrop-Griffiths R. Killip |
Submitted | math.AP/2405.01246 |
The modified Korteweg-de Vries limit of the Ablowitz-Ladik system | R. Killip Z. Ouyang L. Wu |
To appear in Discrete Contin. Dyn. Syst. | math.AP/2404.02366 |
Dispersive decay for the mass-critical nonlinear Schrodinger equation | C.
Fan R. Killip Z. Zhao |
Submitted. | math.AP/2403.09989 |
Determination of Schrodinger nonlinearities from the scattering map | R. Killip J. Murphy |
Submitted. | math.AP/2402.03218 |
Invariant measures for mKdV and KdV in infinite volume |
J. Forlano R. Killip |
Submitted. | math.AP/2401.04292 |
Scaling-critical well-posedness for continuum Calogero-Moser models |
R. Killip T. Laurens |
Submitted. | math.AP/2311.12334 |
Deconvolutional determination of the nonlinearity in a semilinear wave equation |
N. Hu R. Killip |
Submitted. | math.AP/2307.00829 |
Remarks on countable subadditivity | L. Grafakos | To appear in Proc. A Royal Society of Edinburgh. | math.AP/2304.07831 |
Sharp well-posedness for the Benjamin-Ono equation |
R. Killip T. Laurens |
Inventiones Mathematicae 236 (2024), no. 3, 999-1054. | math.AP/2304.00124 |
Bounded solutions of KdV: uniqueness and the loss of almost periodicity | A. Chapouto R. Killip |
Duke Math. J. 173 (2024), no. 7, 1227-1267. | math.AP/2209.07501 |
The scattering map determines the nonlinearity | R. Killip J. Murphy |
Proc. Amer. Math. Soc. 151 (2023), no. 6, 2543-2557. | math.AP/2207.02414 |
Nonlinear waves and dispersive equations | H. Koch P. Raphael D. Tataru |
Oberwolfach Rep. 19 (2022), no. 2, 1661-1730. | MR4575393 |
Continuum limit for the Ablowitz-Ladik system | R. Killip Z. Ouyang L. Wu |
Nonlinearity 36 (2023), no. 7, 3751-3775. | math.AP/2206.02720 |
Global well-posedness for the derivative nonlinear Schrodinger equation in L2(R) | B.
Harrop-Griffiths R. Killip M. Ntekoume |
To appear in J. Eur. Math. Soc. | math.AP/2204.12548 |
Large-data equicontinuity for the derivative NLS | B.
Harrop-Griffiths R. Killip |
Int. Math. Res. Not. IMRN 2023, no. 6, 4601-4642. | math.AP/2106.13333 |
On the well-posedness problem for the derivative nonlinear Schrodinger equation | R. Killip M. Ntekoume |
Anal. PDE 16 (2023), no. 5, 1245-1270. | math.AP/2101.12274 |
Microscopic conservation laws for integrable lattice models | B.
Harrop-Griffiths R. Killip |
Monatshefte fur Mathematik 196 (2021), no. 3, 477-504. | math.AP/2012.04782 |
Orbital stability of KdV multisolitons in H-1 | R. Killip |
Comm. Math. Phys. 389 (2022), no. 3, 1445-1473. | math.AP/2009.06746 |
Scattering for the cubic-quintic NLS: crossing the virial threshold | R. Killip J. Murphy |
SIAM J. Math. Anal. 53 (2021), no. 5, 5803-5812. | math.AP/2007.07406 |
Sharp well-posedness for the cubic NLS and mKdV in Hs(R) | B.
Harrop-Griffiths R. Killip |
Forum Math. Pi 12 (2024), Paper No. e6, 86 pp. | math.AP/2003.05011 |
Global well-posedness for the fifth-order KdV equation in H-1(R) | B. Bringmann R. Killip |
Annals of PDE. 7 (2021), no. 2, Paper No. 21. | math.AP/1912.01536 |
Invariance of white noise for KdV on the line | R. Killip J. Murphy |
Inventiones Mathematicae 222 (2020), no. 1, 203-282. | math.AP/1904.11910 |
Sonin's argument, the shape of solitons, and the most stably singular matrix | R. Killip | RIMS Kokyuroku Bessatsu B74: Harmonic Analysis and Nonlinear Partial Differential Equations, 2019. | math.AP/1811.01836 |
Invariant measures for integrable spin chains and integrable discrete NLS | Y. Angelopoulos R. Killip |
SIAM J. Math. Anal. 52 (2020), no. 1, 135-163. | math.AP/1807.08801 |
The radial mass-subcritical NLS in negative order Sobolev spaces | R. Killip S. Masaki J. Murphy |
Discrete Contin. Dyn. Syst. 39 (2019), no. 1, 553-583. | math.AP/1804.06753 |
KdV is wellposed in H-1 | R. Killip | Annals of Math. 190 (2019), no. 1, 249-305. | math.AP/1802.04851 |
Low regularity conservation laws for integrable PDE | R. Killip X. Zhang |
Geom. Funct. Anal. 28 (2018), no. 4, 1062-1090. | math.AP/1708.05362 |
Almost sure scattering for the energy-critical NLS with radial data below H1(R4) | R. Killip J. Murphy |
Comm. PDE. 44 (2019), no. 1, 51-71. | math.AP/1707.09051 |
The initial-value problem for the cubic-quintic NLS with non-vanishing boundary conditions | R. Killip J. Murphy |
SIAM J. Math. Anal. 50 (2018), no. 3, 2681-2739. | math.AP/1702.04413 |
Symplectic non-squeezing for the cubic NLS on the line | R. Killip X. Zhang |
Int. Math. Res. Not. (2019), no. 5, 1312-1332. | math.AP/1606.09467 |
Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schrodinger equation on R2 | R. Killip X. Zhang |
Amer. J. Math. 143 (2021), no. 2, 613-680. | math.AP/1606.07738 |
Large data mass-subcritical NLS: critical weighted bounds imply scattering | R. Killip S. Masaki J. Murphy |
Nonlinear Differential Equations Appl. 24 (2017), no. 4, Art. 38, 33 pp. | math.AP/1606.01512 |
The focusing cubic NLS with inverse-square potential in three space dimensions | R. Killip J. Murphy J. Zheng |
Differential and Integral Equations 30 (2017), no. 3-4, 161-206. | math.AP/1603.08912 |
The energy-critical NLS with inverse-square potential | R. Killip C. Miao J. Zhang J. Zheng |
Discrete Contin. Dyn. Syst. 37 (2017), no. 7, 3831-3866. | math.AP/1509.05822 |
Mass-critical inverse Strichartz theorems for 1D Schrodinger operators | C. Jao R. Killip |
Rev. Mat. Iberoam. 35 (2019), no. 3, 703-730. | math.AP/1509.03592 |
The final-state problem for the cubic-quintic NLS with non-vanishing boundary conditions | R. Killip J. Murphy |
Analysis and PDE 9 (2016), no. 7, 1523-1574. | math.AP/1506.06151 |
Sobolev spaces adapted to the Schrodinger operator with inverse-square potential | R. Killip C. Miao J. Zhang J. Zheng |
Math. Z. 288 (2018), no. 3-4, 1273-1298. | math.AP/1503.02716 |
The focusing cubic NLS in exterior domains in three dimensions | R. Killip X. Zhang | Appl. Math. Res. Express. AMRX (2016), no. 1, 146-180. | math.AP/1501.05062 |
Solitons and scattering for the cubic-quintic nonlinear Schrodinger equation on R3 | R. Killip T. Oh O. Pocovnicu |
Arch. Ration. Mech. Anal. 225 (2017), no. 1, 469-548. | math.AP/1409.6734 |
Scale invariant Strichartz estimates on tori and applications | R. Killip | Math. Res. Lett. 23 (2016), no. 2, 445-472. | math.AP/1409.3603 |
Quintic NLS in the exterior of a strictly convex obstacle | R. Killip X. Zhang |
Amer. J. Math. 138 (2016), no. 5, 1193-1346. | math.AP/1208.4904 |
Riesz transforms outside a convex obstacle | R. Killip X. Zhang |
Int. Math. Res. Not. (2016), no. 19, 5875-5921. | math.AP/1205.5784 |
Blowup behaviour for the nonlinear Klein-Gordon equation | R. Killip B. Stovall |
Math. Ann. 358 (2014), no. 1-2, 289-350. | math.AP/1203.4886 |
Dispersive equations and nonlinear waves | H. Koch D. Tataru |
Oberwolfach Seminars 45, Birkhauser/Springer, Basel, 2014. | MR3618884 |
Global well-posedness of the Gross-Pitaevskii and cubic-quintic nonlinear Schrodinger equations with non-vanishing boundary conditions | R. Killip T. Oh O. Pocovnicu |
Math. Res. Lett. 19 (2012), 969-986. | math.AP/1112.1354 |
Smooth solutions to the nonlinear wave equation can blow up on Cantor sets | R. Killip | math.AP/1103.5257 | |
Global well-posedness and scattering for the defocusing quintic NLS in three dimensions | R. Killip | Analysis and PDE 5 (2012), 855-885. | math.AP/1102.1192 |
Global well-posedness and scattering for the defocusing cubic NLS in four dimensions | Int. Math. Res. Not. (2011), doi: 10.1093/imrn/rnr051. | math.AP/1011.1526 | |
Scattering for the cubic Klein-Gordon equation in two space dimensions | R. Killip B. Stovall |
Trans. Amer. Math. Soc. 364 (2012), 1571-1631. | math.AP/1008.2712 |
The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions | R. Killip | Proc. Amer. Math. Soc. 139 (2011), 1805-1817. | math.AP/1002.1756 |
The defocusing energy-supercritical nonlinear wave equation in three space dimensions | R. Killip | Trans. Amer. Math. Soc. 363 (2011), 3893-3934. | math.AP/1001.1761 |
On the mass-critical generalized KdV equation | R. Killip S. Kwon S. Shao |
DCDS-A 32 (2012), 191-221. | math.AP/0907.5412 |
Energy-supercritical NLS: critical Hs-bounds imply scattering | R. Killip | Comm. PDE. 35 (2010), 945-987. | math.AP/0812.2084 |
The characterization of minimal-mass blowup solutions to the focusing mass-critical NLS | R.
Killip D. Li X. Zhang |
SIAM J. Math. Anal. 41 (2009), 219-236. | math.AP/0804.1124 |
The focusing energy-critical nonlinear Schrodinger equation in dimensions five and higher | R. Killip | Amer. J. Math. 132 (2010), 361-424. | math.AP/0804.1018 |
The mass-critical nonlinear Schrodinger equation with radial data in dimensions three and higher | R. Killip X. Zhang |
Analysis and PDE 1 (2008), 229-266. | math.AP/0708.0849 |
The cubic nonlinear Schrodinger equation in two dimensions with radial data | R. Killip T. Tao |
J. Eur. Math. Soc. 11 (2009), 1203-1258. | math.AP/0707.3188 |
Global existence and scattering for rough solutions to generalized nonlinear Schrodinger equations on R | J. Colliander J. Holmer X. Zhang |
CPAA 7 (2008), 467-489. | math.AP/0612452 |
Energy-critical NLS with quadratic potentials | R. Killip X. Zhang | Comm. PDE. 34 (2009), 1531-1565. | math.AP/0611394 |
Global well-posedness and scattering for the mass-critical nonlinear Schrodinger equation for radial data in high dimensions | T. Tao X. Zhang |
Duke Math. J. 140 (2007), 165-202. | math.AP/0609692 |
Minimal-mass blowup solutions of the mass-critical NLS | T. Tao X. Zhang |
Forum Math. 20 (2008), 881-919. | math.AP/0609690 |
On the blowup for the $L^2$-critical focusing nonlinear Schrodinger equation in higher dimensions below the energy class | X. Zhang | SIAM J. Math. Anal. 39 (2007), 34-56. | math.AP/0606737 |
Global well-posedness and scattering for a class of nonlinear Schrodinger equations below the energy space | X. Zhang | Differential and Integral Equations 22 (2009), 99-124. | math.AP/0606611 |
The defocusing energy-critical nonlinear Schrodinger equation in dimensions five and higher | Ph.D. Thesis. | pdf file | |
The Schrodinger equation with combined power-type nonlinearities |
T. Tao X. Zhang |
Comm. PDE 32 (2007), 1281-1343. |
math.AP/0511070 |
The defocusing energy-critical nonlinear Schrodinger equation in higher dimensions | Duke Math. J. 138 (2007), 281-374. | math.AP/0508298 | |
A counterexample to dispersive estimates for Schrodinger operators in higher dimensions | M. Goldberg | Comm. Math. Phys. 266 (2006), 211-238. | math.AP/0508206 |
Stability of energy-critical nonlinear Schrodinger equations in high dimensions | T. Tao | Electron. J. Diff. Eqns. 2005 (2005), 1-28 | math.AP/0507005 |
Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrodinger equation in R^{1+4} | E. Ryckman | Amer. J. Math. 129 (2007), 1-60. | math.AP/0501462 |