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ABSTRACT OF THE DISSERTATION

The defocusing energy-critical nonlinear
Schrodinger equation in dimensions five and
higher

by

Monica Visan
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2006

Professor Terence Tao, Chair

We consider the initial value problem for the defocusing energy-critical nonlinear
Schrodinger equation in R x R™, n > 5,
: 4
iug + Au = |u|"—2u
(%)
u(0, ) = u(x),
where the initial data wug is chosen to belong to the energy-space H'(R"), and

u(t, z) is a complex-valued function in spacetime R; x R”.

We use the induction on energy technique introduced by J. Bourgain and
extend the frequency-localized interaction Morawetz inequality introduced by
J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao in dimension n = 3

to higher dimensions.

2(n+2)
The results obtained are global well-posedness, scattering, and global L, ;™

spacetime bounds for solutions to the initial value problem (x).



CHAPTER 1

Introduction

We study the initial value problem for the defocusing energy-critical nonlinear

Schrodinger equation in R x R™, n > 5,

iuy + Au = |u|ﬁu
(1.1)
u(0, ) = uo(x)

where u(t, x) is a complex-valued function in spacetime R; x R”.

This equation has Hamiltonian
(1.2) E(u(t)) = / %\Vu(t,x)lz + "2—;2|u(t,x)\%d:v.
Since (1.2) is preserved by the flow corresponding to (1.1), we shall refer to it as

the energy and often write E(u) for E(u(t)).

We are interested in this particular nonlinearity because it is critical with

respect to the energy norm. That is, the scaling u — u* where

-2

(1.3) Mt x) = AT (A A )

maps a solution of (1.1) to another solution of (1.1), and u and u* have the same

energy.

A second conserved quantity we will occasionally rely on is the mass |Ju(t)||7.

However, since the equation is L2-supercritical with respect to the scaling (1.3),



we do not have bounds on the mass that are uniform across frequencies. Indeed,

the low frequencies may simultaneously have small energy and large mass.

It is known that if the initial data u has finite energy, then (1.1) is locally

well-posed (see, for instance [6], [36]). That is, there exists a unique local-in-
. 2(n+2)
time solution that lies in CYH, N L, 7~ and the map from the initial data to

the solution is uniformly continuous in these norms. If in addition the energy
is small, it is known that the solution exists globally in time! and scattering
occurs (see [36]); that is, there exist solutions uy of the free Schrédinger equation
(10; + A)ux = 0 such that [[u(t) —us(t)||z1 — 0 ast — Foo. However, for initial
data with large energy, the local well-posedness arguments do not extend to give

global well-posedness.

Global well-posedness in H!(R3) for the energy-critical NLS in the case of
large (but finite) energy, radially-symmetric initial data was first obtained by
J. Bourgain ([2], [3]) and subsequently by M. Grillakis, [20]. T. Tao, [35], settled
the problem for arbitrary dimensions (with an improvement in the final bound
due to a simplification of the argument), but again only for radially symmetric
data. A major breakthrough in the field was made by J. Colliander, M. Keel,
G. Staffilani, H. Takaoka, and T. Tao in [15] where they obtained global well-
posedness and scattering for the energy-critical NLS in dimension n = 3 with
arbitrary initial data. Recently, E. Ryckman and M. Visgan, [29], obtained global
well-posedness and scattering for the energy-critical NLS in dimension n = 4;
the argument follows closely the one in [15], but the derivation of the frequency-
localized interaction Morawetz inequality is significantly simpler and yields an

improvement in the final bound.

1One should compare this result to the case of the focusing energy-critical NLS, where an
argument of Glassey [18] shows that certain Schwartz data will blow up in finite time; for
instance, this will occur whenever the potential energy exceeds the kinetic energy.



The main result of this thesis is to extend to dimensions n > 5 the global
well-posedness results for (1.1) in the energy-space:
Theorem 1.1. For any uy with finite energy (i.e., E(ug) < o0) there exists a

2(n+2)

unique global solution u € COH! N L, to (1.1) such that

(1.4) / / u(t, )5 dwdt < C(E(ug))

for some constant C(E(ug)) depending only on the energy.

2(n+2)
As is well known (see, for instance, [36]), the L, ;~* bound also gives scatter-

ing and asymptotic completeness:

Corollary 1.2. Let ug have finite energy and let u be the unique global solution
2(n+2)

mn C’O_Hl NL. 2 to (1.1). Then there exist finite energy solutions u to the free

Schrédinger equation (i0; + A)ug = 0 such that
Jus(t) —u(®)llgn — 0 as t — Foo.
Furthermore, the maps uy — u+(0) are homeomorphisms of HY(R™).

As we will see, treating dimensions n > 5 introduces several new difficulties
relative to [15] and [29]. For the most part, these stem from the small power of
the nonlinearity in (1.1). For example, |u|$u is not a smooth function of u,u
for any n > 5, which immediately implies the failure of persistence of regular-
ity. Moreover, as the power of the nonlinearity is no longer an even integer in
dimensions n > 5, the difference of two nonlinearities cannot be written as a poly-
nomial. Instead, we will make use of the following inequalities: Let F': C — C

be given by F(z) = |z|ﬁz. Then,

_4_ 4 2
(1.5) F.(z) = %5|z|7—= and Fi(z) = 25|z|7 FeL



where F,, F; are the usual complex derivatives

F,:

.:%<8F ,6’F>7 P 1<8F ,8F)'

ar oy T a\ar Ty

Note that in dimensions n > 6, the functions z — F,(z) and z — F3(z) are no

4

longer Lipschitz continuous; however, they are Holder continuous of order —.

Thus, writing
1
(1.6) F(u+v) — F(v) :/ [F. (v + 0u)u+ Fx(v+ u)ade,
0
we estimate

n+2
n—2

(1.7) |F(u+v) — F(v)| S Juljo]72 + |u

and

(18) |F(u+v) = F(u) = F(v)| < [ullof===,  Jul < ol

~Y

_4
olful==2, |o| < |ul.

Moreover, by the chain rule and the Lipschitz/Holder continuity of the derivatives

F, and F%, we get

(1.9)

V(F Gt o) — Fla) - Py < 4 Ve (Iufs +[0]$), n=5

Y

IVul[v|72 + |Vol|ul72, n> 6.

1.1 Outline of the proof of Theorem 1.1
Our argument follows the scheme of [15] and we summarize it below.
For an energy E > 0 we define the quantity M (E) by

M(FE) :=sup ||u|| 2m+2 ,
()= owp ul s



where I C R ranges over all compact time intervals and u ranges over all S!
solutions® to (1.1) on I x R™ with E(u) < E. For E < 0 we define M(E) = 0

since, of course, there are no negative energy solutions.

From the local well-posedness theory (see Lemma 3.1), we know that (1.1)
is locally wellposed in S*. Moreover, from the global well-posedness theory for
small initial data, we see that M (F) is finite for small energies E. Our task is to
show that M (E) < oo for all E > 0 as Theorem 1.1 follows from this claim by a

standard argument. More precisely, given initial data uy with energy E, we let
Q1 = {T: Ju € 5'([0,7] x R") solving (1.1) with ||u| g 0 7yxpm) < C1(E)}
and
Qy = {T: Ju € S*([0,T] x R") solving (1.1) with l[wll g1 (o.1yxrm) < 00}

Here C1(E) = C(E,M(E))E and C(E, M(E)) is the constant from Lemma 3.4.

Note that by definition and Fatou’s lemma, €2y is a closed set. By the local
well-posedness theory (see Lemma 3.3), if T € )y then there exists ¢ sufficiently
small such that [T, T +¢] C . In particular, as 0 lies in €, we get that a small
neighbourhood of 0, say [0, €], lies in 5. Hence, to obtain a global solution to
(1.1) it suffices to see that 2y C €2;. By the definition of M (FE), given T' € Q5 we
immediately get

||U|| 2(n+2) S M(E)

L, "% ([0,T]xR")

t,x

Combining this estimate with Lemma 3.4 we obtain 7" € €);.

We will prove that M (E) < oo by contradiction. Assume M (F) is not always
finite. From perturbation theory (see Lemma 3.1), we see that the set {F :

M(F) < oo} is open. Since it is also connected and contains zero, there exists a

2See Sections 1.2 and 2.1 for the notation and definitions appearing in the outline of the
proof.



critical energy, 0 < Eg.y < 00, such that M(E..;;) = oo but M(E) < oo for all

E < E..;;. From the definition of E..;; and Lemma 3.4, we get

Lemma 1.3 (Induction on energy hypothesis). Let tg € R and let v(ty) be an
H; function with E(v(ty)) < Eeie —n for some n > 0. Then there exists a global
S solution v to (1.1) on R x R™ with initial data v(te) at time to, such that
[v]] 212 < M(Eerie — ).
L, 27% (RxR")

Moreover, we have
||U||s1(Ran) < C(Eerit — 1, M(Eerit — 1))

We will need a few small parameters for the contradiction argument. Specif-

ically, we will need
I>n>m>mn>n>n>n >0

where each 7; is allowed to depend on the critical energy and any of the larger
n’s. We will choose n; small enough such that, in particular, it will be smaller

than any constant depending on the previous n’s used in the argument.

As M(E..;) is infinite, given any 75 > 0 there exist a compact interval I, C R

and an S* solution u to (1.1) on I, x R™ with F(u) < Eg but

(110) ||UH 2(n+2) > 1/775

Liz = (I.xRm)

Note that we may assume F(u) > %Ecm, since otherwise we would get

lull 2012 < M(
L, "7 (I.xR")

t,x

1
§Ec7"it) < o0

and we would be done.

This suggests we make the following definition:



Definition 1.4. A minimal energy blowup solution to (1.1) is an S* solution u

on a time interval I, C R with energy

(111) %Ecm't S E(U(t)) S Ecm't

2(n+2)
and huge L, ;=* -norm in the sense of (1.10).

Note that conservation of energy together with (1.11) and Sobolev embedding

imply

(1.12) ||| on <1
L LE 2 (I xR®)

and also

(1.13) Hu”LfOH}:(I*an) ~ 1,

where, following our standard convention, the constants are allowed to depend

on Ecm't .

In Chapter 2 we recall the standard linear Strichartz estimates that we will
use throughout the proof of Theorem 1.1. We also record the inhomogeneous
Strichartz estimates that will be useful in deriving the frequency-localized inter-
action Morawetz inequality. Finally, we refine the bilinear Strichartz estimates
of [15] using a lemma of M. Christ and A. Kiselev. The main application of the
bilinear Strichartz estimates is to control the interaction between high and low
frequencies when deriving the frequency localization result. In fact, because of
the small power of the nonlinearity in higher dimensions, we have to control in-
teractions between uy,; and fractional powers of wu, (and vice versa); this is dealt

with via interpolation and the refined bilinear Strichartz estimates.

In Chapter 3, we record perturbation results from [36] that we will use re-

peatedly in the proof of Theorem 1.1.



In Chapter 4 we prove various localization and concentration results. We ex-
pect that a minimal energy blowup solution should be localized in both physical
and frequency space. For if not, it could be decomposed into two essentially sepa-
rate solutions, each with strictly smaller energy than the original. By Lemma 1.3
we can then extend these smaller energy solutions to all of I,. As each of the
separate evolutions exactly solves (1.1), we expect their sum to solve (1.1) ap-
proximately. We could then use the perturbation theory results (specifically

2(n+2)
Lemma 1.3) to bound the L, ;™ -norm of v in terms of 1o, 11, 72,73, and 7y, thus

contradicting the fact that ns can be chosen arbitrarily small in (1.10).

The spatial concentration result follows in a similar manner, but is a bit more
technical. To derive it, we use an idea of Bourgain, [2], and restrict our analysis
to a subinterval Iy C I,. We need to use both the frequency localization result
and the fact that the potential energy of a minimal energy blowup solution is

bounded away from zero in order to prove spatial concentration.

In Chapter 5 we obtain the frequency-localized interaction Morawetz inequal-
ity (5.1), which will be used to derive a contradiction to the frequency localization

and spatial concentration results just described.

A typical example of a Morawetz inequality for (1.1) is the bound

2n
// 1, L)1 S sup [Ju(t )||12ﬁp/2(Rn)

for all time intervals I and all sufficiently regular solutions u : I x R" — C.

This estimate is not particularly useful for the energy-critical problem since
the H,/*-norm is supercritical with respect to the scaling (1.3). To get around

this problem, J. Bourgain and M. Grillakis introduced a spatial cutoff obtaining

// )| TGN qeat < ATV E(u)
|| <A|I|1/2 |95|

the variant



for all A > 1, where |I| denotes the length of the time interval I. While this
estimate is better suited for the energy-critical NLS (it involves the energy on the
right-hand side), it only prevents concentration of u at the spatial origin z = 0.
This is especially useful in the spherically-symmetric case u(t, x) = u(t, |x|), since
the spherical symmetry combined with the bounded energy assumption can be
used to show that w cannot concentrate at any location other than the spatial
origin. However, it does not provide much information about the solution away
from the origin. Following [15], we develop a frequency-localized interaction

Morawetz inequality which is better suited to handle nonradial solutions.

While the previously mentioned Morawetz inequalities were a prior: esti-
mates, the frequency-localized interaction Morawetz inequality we will develop
is not; it only applies to minimal energy blowup solutions. While our model in
obtaining this estimate is [15], there are two significant differences. We man-
age to avoid localizing in space (which adds significantly to the complexity of
[15]); however, the low power of the nonlinearity necessitates decomposing the
high-frequency portions of the minimal energy blowup solution into a ‘good’ part,
which is in S° N St and a ‘bad’ part which lives outside the Strichartz trapezoid.
While having slower decay in time than the ‘good’ part, the ‘bad’ part has better
spatial decay. This splitting of the high frequencies together with Holder-type
estimates (used as a substitute for the standard fractional chain rule) enable us to
control the error terms appearing in the frequency-localized interaction Morawetz
inequality. This machinery is employed to derive (5.1) in dimensions n > 6. In
dimension n = 5, the derivation of the frequency-localized interaction Morawetz
inequality is somewhat simpler (for details see Appendix C). One should mention
that the method used to obtain this inequality in dimension n = 5 also works in
dimensions 6, 7, and 8; in dimensions n > 9 the small power of the nonlinearity

causes the argument to fail.



_6n__
A corollary of (5.1) (in all dimensions n > 5) is good L?L3"* control over

the high-frequency part of a minimal energy blowup solution. One then has to
2(n+2)
use Sobolev embedding to bootstrap this to L, ;™ control. However, it is also

necessary to make sure that the solution is not shifting its energy from low to
2(n+2) 6n

high frequencies causing the L, * -norm to blow up while the L3L " -norm

stays bounded. This is done in Chapter 6, where we prove a frequency-localized

mass almost conservation law that prevents energy evacuation to high modes.

We put all these pieces together in Chapter 7 where the contradiction argu-

ment is concluded.

1.2 Notation

We will often use the notation X < Y whenever there exists some constant
C, possibly depending on the critical energy and the dimension n but not on
any other parameters, so that X < CY. Similarly we will write X ~ Y if
X SY S X, Wesay X < Y if X < ¢Y for some small constant ¢, again
possibly depending on the critical energy and the dimension n. We will use the
abbreviation O(X) to denote a quantity that resembles X, that is, a finite linear
combination of terms that look like X', but possibly with some factors replaced by
their complex conjugates. We also use the notation (x) := (1 + |z[?)'/2. We will
use the notation X+ := X + ¢, for some 0 < € < 1; similarly X — := X —¢e. The
derivative operator V refers to the space variable only. We will occasionally write
subscripts to denote spatial derivatives and will use the summation convention

over repeated indices.

We define the Fourier transform on R” to be

fle) = [ e slaydn

10



We will make frequent use of the fractional differentiation operators |V|* de-

fined by
VIFE) = 11 F(&).

These define the homogeneous Sobolev norms

/]

iz = NIV fllrz

Let €2 be the free Schrédinger propagator. In physical space this is given

by the formula
1

ity /R eV f (y)dy,

while in frequency space one can write this as

¢ f () =

—

(1.14) A f(€) = e TR £ (g).

In particular, the propagator preserves the above Sobolev norms and obeys the

dispersive inequality

(1.15) €2 fllzze S 1817511 Flles
for all times t # 0. We also recall Duhamel’s formula

t
(1.16) u(t) = e 018y (1) — z/ 98 (ju, + Au)(s)ds.

to

We will also need some Littlewood-Paley theory. Specifically, let (&) be a
smooth bump supported in the ball || < 2 and equalling one on the ball |¢| < 1.

For each dyadic number N € 2% we define the Littlewood-Paley operators

Pon (€)= (¢/N)f(€),
Ponf () = (1= @(&/N))f(€),
Py f(€) = [p(€/N) — p(26/N)IF(€).

11



Similarly we can define Py, P>y, and Py<.<y := P<y — P<jr, whenever M and
N are dyadic numbers. We will frequently write f<y for P<yf and similarly for

the other operators.

The Littlewood-Paley operators commute with derivative operators, the free
propagator, and complex conjugation. They are self-adjoint and bounded on
every LP and Hi space for 1 < p < oo and s > 0. They also obey the following

Sobolev and Bernstein estimates that we will use repeatedly:
1Pnflly S NNV Pon fllze,
V" P<nfllzz S N[ P<n flrz,
IV P fllg ~ N*=*|| Pr fl 2
1P<n fllzg S N> 70 || Pan fll 12,

I1Pnfllzg S NP~ e || Py fllze,
whenever s > 0 and 1 < p <¢q < 0.

For instance, we can use the above Bernstein estimates and the kinetic energy

bound (1.13) to control the mass at high frequencies

1
(1.17) | Poarte|| 2mny S i for all M € 2%

For any dyadic frequency N € 2% the kernel of the operator P<y is not
positive. To resolve this problem, we introduce an operator P . More precisely,
if K<y is the kernel associated to P<y, we let Py be the operator associated
to N™"(K<y)?. Please note that since (&) is symmetric, K<y € R and thus

N~"(K<y)? > 0. Moreover, as

[INTM(E<n)’T() = N7"o(¢/N)  (§/N),

the kernel of P.y is bounded in L! independently of N. Therefore, the operator

P’SN is bounded on every LP for 1 < p < oco. Furthermore, for s > 0 and

12



1 <p < q< oo, we have

VP flle S NIP<y fllze,

| Pinfllg < N%_EHP/ngHLi'

13



CHAPTER 2

Strichartz numerology

In this chapter we recall the Strichartz estimates and develop bilinear Strichartz

estimates in R!*7.

We use L{L" to denote the spacetime norm

., a/r \1/q
ull Loy @xrey = |lullgr == (/R</ lu(t, x)| d:n) dt) ,

with the usual modifications when ¢ or 7 is infinity, or when the domain R x R"
is replaced by some smaller spacetime region. When ¢ = r we abbreviate L{L"

by L{,.

2.1 Linear Strichartz estimates

We say that a pair of exponents (g, r) is Schrédinger-admissible if % + % =% and
2<q,r <oo. If I x R"is a spacetime slab, we define the S'O(I x R™) Strichartz

norm by

1/2
(2.1) ol gogrczny = sup (D2 I Prullsy e
N

where the supremum is taken over all admissible pairs (¢, 7). For s > 0 we also

define the S*(I x R"™) Strichartz norm to be

|l Ss(IxR™) “— |||V|Su||SO(Ian)'

14



We observe the inequality

22 ()

for all 2 < ¢,r < oo and arbitrary functions fr, which one proves by interpolating

1/2
2
LILT (IxXR™) < (; HfNHLng(IX]RnJ

between the trivial cases (2,2), (2,00), (00,2), and (00, 00). In particular, (2.2)
holds for all admissible exponents (q,r). Combining this with the Littlewood-

Paley inequality, we find
1/2
2
lellze e S H(; [Pl ) ’L?L;(wa)

1/2
S (Z ||PNU||%§L;(Ian)>
N

N ||U||SO(1an)7

which in particular implies
(2.3) [Vull ooy rxmrny S llullgrrxrn)-

In fact, by (2.3) and Sobolev embedding, the S' norm controls the following

spacetime norms:

Lemma 2.1. For any S! function u on I x R™, we have

[Vt|lso2 + | Vulls _on + [Vl 2mr2) 20wtz + [Vl 2mre) 202 + || Vul|y 20
’3n—4 n—2 ' p214 n ’ n ‘n—2

Flulloo, 20, + Nl o + (U]l 20y 20im + [Jull 2wse) 2nesn + [lully, 2n,
‘n—2 13 10 n—=2 ' n—2 n ’ ‘n—4

n2—2n—4

S llullg
where all spacetime norms are on I x R™.

Next, we recall the Strichartz estimates:

15
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Figure 2.1: The Strichartz trapezoid (n > 10)

Lemma 2.2. Let I be a compact time interval, s > 0, and letu : [ x R — C be
a solution to the forced Schrodinger equation

M
iut—}—Au:ZFm

m=1
for some functions Fy, ..., Fy. Then,
M
m=1

for any time to € I and any admissible exponents (q1,71)
/

veoos (GmsTm). As usual,
p’ denotes the dual exponent to p, that is, 1/p+1/p' =1

16



Proof. To prove Lemma 2.2, let us first make the following reductions. We
note that it suffices to take M = 1, since the claim for general M follows from
Duhamel’s formula and the triangle inequality. We can also take s to be 0, since
the estimate for s > 0 follows by applying |V|* to both sides of the equation and
noting that |V|* commutes with i0; + A. As the Littlewood-Paley operators also

commute with 20; + A, we have
(z@t + A)PNU = PNFl
for all dyadic N’s. Applying the standard Strichartz estimates (see [25]), we get

(2.5) 1Pvull gy aweny S 1PNulto)llzz + 1PN EL ot g

for all admissible exponents (g,7) and (g1,71). Squaring (2.5), summing in N,
using the definition of the S%-norm and the Littlewood-Paley inequality, together
with the dual of (2.2), we get the claim. O

We recall next the inhomogeneous Strichartz estimates. We say that the pair

(q,r) is Schrédinger-acceptable if 1 < ¢,r < oo and % < n(% — b or (g,r) =

r

(00,2). We have the following result, which is a special case of Theorem 1.4 from

[16]:

Schrodinger-acceptable pairs satisfying the scaling condition %%—% = %( — % — %)
and either
1 1 n—2 r n 1 1 1 1
_+_~:]~7 - ) _S_a and :Sta
q q n r n—2 r q r o q
or
1 -2
—+-=-<1 and < 2 < "
q q n ro n—2
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Then,

SIFN

!~ .
LIL7(IxR™) LY LT (IxR™)

‘/ i(t— s)AF d ‘
s<t

In particular, let us record the following inhomogeneous Strichartz estimates

that we will use to derive the frequency-localized interaction Morawetz inequality:

(2.6) ‘ / i(t-9)A (g )ds‘ A T2

s<t L2L27 732 (IxRn) L2710 (TxRn)
and
(2.7) ‘ / i(t—s AF( )ds‘ 2n(n—2) < HFH 2n 2)(n+2)

s<t L2LE° 372 (IxRn) L7731 (IxRn)

We leave it to the reader to check that the hypotheses of Theorem 2.3 are satisfied

for (q,r) = (2, 5?_(7;;?2) and (q,7) = (2, —ni"i(g;fio) org=r7= —2(32__2;7(1122), as long

as n > 5.

2.2 Bilinear Strichartz estimates

In this section we develop bilinear Strichartz estimates that we will use later,
in particular, in deriving the frequency localization result. We will adapt the
bilinear Strichartz estimate obtained in [15], which is in turn a refinement of a
Strichartz estimate due to J. Bourgain (see [1]), to better suit our nonlinearity.
The reason for which we need to make this modification is that the power of
the nonlinearity gets smaller as the dimension increases and we have no hope of
placing it in L} H? for n > 6. In order to achieve our goal, we will use a lemma
due to M. Christ and A. Kiselev, [9]. The following version is from H. Smith and
C. Sogge, [30]:

Lemma 2.4. Let X,Y be Banach spaces and let k(t,s) be the kernel of an op-
erator T : LP([0,T]; X) — L9([0,T];Y). Define the lower triangular operator

18



T:LP([0,T]; X) — LY[0,T];Y) by

t
71 = [ Kt.o)f(s)ds
0
Then, the operator T is bounded from LP([0,T]; X) to LU([0,T];Y) and |T|| <

\T||, provided p < q.

We are now ready to state and prove the following

Lemma 2.5. Fix n > 2. For any spacetime slab I x R™, any ty € I, and any

0 > 0, we have

_1 .
28) luvllzz,renry < CO) (ulto)lgoass + V152000 + Al gy )

n1_g,.
< (o, mg s 1117700, + A)oll gy )
for any Schridinger-admissible pairs (q,r) and (q,T) satisfying q,q > 2.

Proof. Throughout the proof all spacetime norms will be on the slab I x R™. We
define
[wlligr = lw(to)ll g + V17 (@0 + A)w]l g

and

Frgr = {w: [[w[lqr <00},

With this notation our goal is to show
[uv|l2e < 0(5)||U||—%+5,q,r||v||”T*La,q,m
for any (q,r) and (G, 7) Schrodinger admissible pairs satisfying ¢, § > 2.

The bilinear Strichartz estimate derived in [15] (see their Lemma 3.4) reads

(2.9) luvllzs < CO)ull_sgooallvlozs _sm0
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which proves the case ¢ = ¢ = co. We will combine this result with Lemma 2.4

to obtain the full set of exponents. A particular case of (2.9) is

(210) [T %ulto)e™ %0 ko) ll22 < CO)[ulto)ll —gus V()] nzr s

T T

Now fix (¢, r) a Schrédinger admissible pair with ¢ > 2 and fix v € F EET I
Consider the operator u — wuw; we claim that this operator is bounded from

F . to L7,. Indeed, using Duhamel’s formula for u we estimate

5+6,q,r

t
luvlas < ||ei<t—to>Au(t0)v||2,2+H( / ei(t_s)A(i&g+A)u(s)ds>vH .
to 2,2

Using Duhamel’s formula for v and (2.10), we get

[/t R 0 (t0)v|gn < (|12 u(te)e TRy (1) 2.2

t
ei(t_tO)Au(to)/ IR0, + A dsH

to

= C(d)Hu(tO)HH*%MHU(tO)HHnT—l,[;
S CONtt], e [ 160+ A)o(5)]or s
xT R =
< COMultoll - grsllvlaz 50

< CO)ull-g15q, 10l ng1 5002

In order to conclude our claim, it suffices to see that

t
e | / 210, + Au(s)ds)v|| | < COull_yaarllvlss sos

to

By Lemma 2.4, for ¢ > 2, (2.11) is implied by

H(/ 2(i0, + A)u(s )ds)v

But now, using again a Duhamel expansion for v and proceeding as before, we

1o S COMull gsgllollazs e

20



get

itA —isA
e (/Re (z@t+A)u(s)ds>v ’s

< H/ e 2 (i0; + A)u(s)ds
R

H7%+5HU

x

ngl _570072.

By the standard linear Strichartz estimates,

—is . _1 .
| [ e 0+ Ayutas] s ST+ Ayl S ol

T

and (2.11) follows.

To conclude the proof of Lemma 2.5, we run the same argument for v €

FnT—l_&qi with uw € F_ 1 fixed.

54’6,(],’!"
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CHAPTER 3

Perturbation Theory

In this chapter we review the local theory for (1.1). As mentioned in the introduc-
tion, the Cauchy problem for (1.1) is locally well-posed in H'(R"). A large part
of the local theory for the energy-critical NLS is due to Cazenave and Weissler,
[5], [6], who showed the existence of local solutions for large energy data and
that of global solutions for small energy data. As is to be expected for a criti-
cal equation, the time of existence of the local solutions depends on the profile
of the initial data and not only on its energy. They also proved uniqueness of
these solutions in certain Strichartz spaces in which the solution was shown to
depend continuously' on the initial data in the energy space H'(R™). A later
argument of Cazenave, [7], also demonstrates that the uniqueness is in fact un-
conditional in the category of strong solutions (see also [24], [17], [15] for some

related arguments).

These preliminary results are not completely satisfactory as the arguments
that establish continuous dependence on the data do not establish uniformly
continuous dependence on the data in energy-critical spaces. In [15] and [29], it
was shown that the dependence on the data is Lipschitz in dimensions n = 3,
respectively n = 4, results which extend nicely to treat dimensions n = 5, 6; see

[36]. However, in dimensions n > 6, the low power of the nonlinearity causes the

'For the defocusing energy-critical NLS the continuity was established in LgH; for any
g < o0. See [7] for details.
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same argument to fail; in this case, the dependence on the data was shown to be

Hoélder continuous (rather than Lipschitz) in [36].

Closely related to the continuous dependence on the data and an essential tool
for induction on energy type arguments is the stability theory for the equation

(1.1). More precisely, given an approzimate solution

. _ L4
ity + Au = |a|"—2u+e

(3.1) .
u(ty,x) = ug(xr) € H'(R")

to (1.1), with e small in a suitable space and iy and 1 close in H 1 is it possible to
show that the solution u to (1.1) stays very close to @? Note that the question of
continuous dependence on the data corresponds to the case e = 0. In dimensions
n = 3,4, an analysis based on Strichartz estimates yields a satisfactory theory;
see [15], [29]. In the general case, particularly n > 6, a more careful analysis is
needed; the relevant results were obtained by T. Tao and M. Visan, [36], and we

record them below.

Lemma 3.1 (Long-time perturbations). Let I be a compact time interval and let
@ be an approzimate solution to (1.1) on I x R™ in the sense that

(i0, + A)ii = |72 i+ e

for some function e. Assume that

(32) ||1~L|| 2(n+2) S M

Lt’:’Q (IxR™)

(3-3) ||ﬂ||L;>°H;(1an) <E

for some constants M, E > 0. Let to € I and let u(ty) close to u(ty) in the sense

that

(3.4) lu(to) — a(to)ll < E'

23



for some E' > 0. Assume also the smallness conditions

, ~ 1/2
(3.5) (Z | PNV e 0% (u(ty) — to)) I? snyay 2ntnse ) <e
N

L, 2 Lyt (IxRn)

(3.6) R <e

L2LDT2 (IxRm) —

for some 0 < € < &1, where e1 = e1(E, E', M) is a small constant. Then there
exists a solution u to (1.1) on I x R™ with the specified initial data u(ty) at time

t =ty satisfying

7
(3.7) IV(u—0)|| snizy 200nt2) < C(E,E',M)(s +e@27)
L, "2 L™t (IxRn)
7
(38) ”U — ﬂ”sl(IXR”) S C(E, El, M) (El + e+ €<”*2)2)
(39) HuHS‘l(IXR") < C<E7 E/7M>‘

Here, C(E,E', M) > 0 is a non-decreasing function of E, E', M, and the dimen-

sion n.

Remark 3.2. By Strichartz estimates and Plancherel’s theorem, we have

. ~ 1/2
(D IRV % (ulte) = lto) 12 4z mgns )
N

L, "% L™t (IxRn)

S (Z |PnvV (u(ty) — ﬁ(to))||goz> 1/2

< IV (ulto) — @(to)) oo,
SE

on the slab I x R™; hence, the hypothesis (3.5) is redundant if E' = O(e).

We end this chapter with a few related results. The first asserts that if a
2(n+2)
solution cannot be continued strongly beyond a time 7, then the L, ;™ -norm

must blow up at that time.
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Lemma 3.3 (Standard blowup criterion, [5], [6], [36]). Let ug € H! and let u be
a strong S solution to (1.1) on the slab [ty, Ty] X R™ such that

(3.10) ”UH 2(n+2) < 0Q.
L, "% ([to,To] xR™)

t,x
Then there exists § = 6(ug) > 0 such that the solution u extends to a strong S*
solution to (1.1) on the slab [to, Tp + 6] x R™.
The last result we mention here was used in the proof of Lemma 3.1 above

2(n+2)
and shows that once we have L, ;= control of a finite-energy solution, we control

all Strichartz norms as well. Details can be found in [36].

4

—, I a compact time

Lemma 3.4 (Persistence of regularity). Let 0 < s < 1+

interval, and u a finite-energy solution to (1.1) obeying

||u|| 2(n+2) S M.
Lt;_z (IxR™)

Then, if ty € I and u(ty) € H?, we have
(3.11) [l g (rxmmy < C(M, E(u))|[u(to)l] g

Proof. We first consider the case 0 < s < 1. We subdivide the interval I into

(n+2)
N ~ (1+ %)an; subintervals I; = [t;,t;11] such that on each slab I; x R" we

have

lul 2me2) <,

L, 7% (I;xRn)

t,x

where 7 is a small positive constant to be chosen momentarily. By Strichartz and

the fractional chain rule (see for instance [8, 23]), on each slab I; x R"™ we obtain

lul i+ IV (jul720) | oo

S5 (I; xR™) S [lu(ty)] ; -
t,x jX "
4
S )y + NVPull 200 [
Ly, (IxR" Ly 272 (I;xR")

4
S lu@) gs + 172 [[ull s, xrn-
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Choosing 7 sufficiently small, we obtain

[llgo (g, xmmy S )] g -
For the range of s under discussion, i.e., 0 < s < 1, the conclusion (3.11) follows
by adding these estimates over all subintervals ;.

We now consider the case 1 < s < 1+ %. As the solution u has finite energy,

from the previous case with s = 1, we deduce that

IVull siz) 20z S ullsirapny < C(M, E(u))|[u(to)ll -
L,"72 L™t (IxRn)

We subdivide the interval I into N ~ (1 + M)Q(ﬁr;) subintervals [; =

z j
[t;,tj41] such that on each slab I; x R™ we have
HVUH 2(nt2) 2nint+2) <,

L,"72 L, (I;xRn)
where 7 is a small positive constant to be chosen later. By Sobolev embedding,
we also have

ull 20s2) S
n=2 (I;xRn)

t,x

By Strichartz, on each slab I; x R™ we obtain

[ i+ VI (el 72 0) | 2ns)
“ntd

Lt,z (IJXRn)

(3.12) S u) s + NIV (VuF.(u) + VaF:(u))]| 2w :
® Lm0 (I;xR™)

t,x

S5 (I;xR™) S lu(ty)]
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By the fractional product rule (see [8, 23]) and Sobolev embedding, we estimate

H |V‘s_1 (Vqu(u)) ” 2(n+2)

L, " (I;xRn)

t,x

S NVFull 2oz [Fz(u)]| ng2
I; xR

L,." jXR™ Lt,a% (I;xR™)
—'I_ VU n(n+2) V S_lF n n(n+2)
e
_4
< “u Ss(I;xRn) ||u||n2(n+2)
L T2 (IixR™)
VIl 2me VI E(@)] s | s
tx I; xR™ Lt L2”+("+2)<5 ) (I XR”)
_4 —
Szl 55(I;xR™) + [Ju| SS(IJ'><IR’””)|||V|S IFZ(U)H nt2 n(nt2)

L;T L§n+(”+2>(5*1) (I] XR”)

Similarly,

VI (VaFs(w)]| 2ms2

Ly 274 (IjxR™)

_4 _
S n2lu SS(IJ'><IR")|||V|S 1F2(“>H n+2 n(n+2) )

§s(I;xrn) T |l
J L:TLIZn+(n+2>(571) (IJXRH’)

0 (3.12) becomes

_4
B-13)  Nullgs (g xmmy S Nty + 1772 |ullgo (1) xmm)
.5 n Vs_lF nn
il TP EO i
+ [[ul SS(Iijn)|||V|S_1F2(U)|| n+2 n(n+2)

Lj LI2"7'+(”+2)(5*1) (IJ XR”)

In order to estimate

(11 e O TEee

Lt L2n+(n+2)(9 1) (I XR")

and

VI E@) L. nose ,

LtTLfn-k(n-!—Q)(s—l) (Ij XR")
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we will exploit the Holder continuity of the functions z — F,(z) and z — F3(2).

Using Proposition A.1 with a := %, c:=s—1,s:=r,and p =

n(n+2)
2n+(n+2)(s—1)’

and applying Sobolev embedding, we get

4 s—1 _
s—1 < n—2_ T
14 Fz<u>uLW%NHuHL;%Z, vl ;
_4 _ s—1
n—2 r
51 HUH (-4 _s—1 “qu n(s—1)po
La/ﬁ2 LﬂT-‘-(l r)(s—1)p2
n(s—1)p2 _ 2n(n+2)

Choosing ps such that and applying Holder’s inequality

nr+(1—-r)(s—1)p2 =  n?+4

with respect to time, on the slab I; x R" we get

IVF R e oo S el i 190, snt2) 2n(nt2)

Lt 2 LG+("+2)(5*1) L ’nfﬁ LTTL n2+4

Similarly,

_4
VI F@)] | nn S 072

Lt L2n+(n+2)(s 1)

and hence, returning to our previous computation, i.e., (3.13), we obtain

|l $5(I; xR) ~ S u) s +m7- 2||u| $5(I; xRn)*

Choosing 7 sufficiently small, we get

() s

The claim (3.11) follows by adding these bounds over all time intervals /;. [
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CHAPTER 4

Frequency Localization and Space

Concentration

Recall from the introduction that we expect a minimal energy blowup solution
to be localized in both frequency and space. In this chapter we will prove that
this is indeed the case (we will not actually prove that the solution is localized

in space, just that it concentrates; see the discussion after the proof of Corollary

4.4).

4.1 Frequency localization

Proposition 4.1 (Frequency delocalization = spacetime bound). Let n > 0 and
suppose there exist a dyadic frequency Ni, > 0 and a time ty € I, such that we

have the energy separation conditions

(4.1) [Py, u(to)ll gy = n
and
(4.2) 1Pk ()i, t(t0) |z = -

If K(n) is sufficiently large depending on n, we have

(4.3) [ul] 20042 < C(n).

Lt,:_Q (I, xRm)
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Proof. Let 0 < e = £(n) < 1 be a small number to be chosen later. If K (n) is suffi-
ciently large depending on ¢, then one can find e 72 disjoint intervals [e*N;, e 2N,]
contained in [N, K(n)Nj,]. By (1.13) and the pigeonhole principle, we may find
an N; such that the localization of u(fg) to the interval [e?N;, e 2N;] has very

little energy:
(4.4) HPEQNjg-gs-QNj“(tO)HH; Se

As both the statement and conclusion of the proposition are invariant under the

scaling (1.3), we normalize N; = 1.

Define w,(to) := P<:u(to) and up(ty) = Ps.—1u(ty). We claim that wy; and

U, have smaller energy than wu.

Lemma 4.2. If € is sufficiently small depending on n, we have
E(uio(to)), E(uni(to)) < Eerir — en®.

Proof. We will prove this for w,; the proof for wuy; is similar. Define upy(tg) :=

P..u(ty) so that u(ty) = w,(to) + uns(to) and consider the quantity

(4.5) |E(u(to)) — E(uo(to)) — E(uni(t))]-

By the definition of energy, we can bound (4.5) by

(40) [(Funalto): Vet + | [ (uto) 75 — foa0) 5 — (1) 1) k]
We deal with the potential energy term first. We have the pointwise estimate

n+2
o o P Jnar||so| "2, [unir| < [l
Hu‘n—Q —_ |ulo|n—2 —_ ‘uhi/‘n—Q‘ <

~

nt2
|Ulo||uhz'/|z*27 [wio| < |unir|-

Take the case |upy(to)| < |wo(to)| and use Holder to estimate

nt2 2
[[unir (o) |wio(to) "2 || 1 < [[unir (o) 22 Juto (1) 117 2ne)
Lo™
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An application of Bernstein and Sobolev embedding yields

io(to)|| 2z S 7% ugoto)l| 2n, S 772 ||ugo(to) | 1 S €77
LG72 Lr x

T

Similarly, by Bernstein and (4.4),

lunie (t0) 122 S Y 1Pvulto)llcz S Y N7 I Pau(to)|

N>¢e N>¢

< Z N+ Z Nle<e? e
N>eg—2 e<N<eg—2

<1

Thus, for |up(to)] < |we(to)],

n+2
[unir (to) [uo(to)| =2 [ 1 < €.

Now take the case |u,(to)| < |uni(to)] and use Holder and the previous esti-
mates on ||upi(to)||r2 to get

n+2 4 %
|to (o) [unir (t0) |72 || xS Iutso (o) |72 [upir (t0) [l 22 S Nuaso(B0) 1752 [[eenr (0) 172

_4
S llwo(to)l £

Another application of Bernstein plus Sobolev embedding yields

n—2 n—2 n—2
luio(to)llzse S €72 Nlwno(to)ll 2y S €72 lltnolto)ll gy S &7

x

Hence, if [u(to)| < |uns(to)], we have [Jug(to)uns ()72 ||2 < 2. Combining

the two cases, we get control over the potential energy term in (4.6):

2n_ 2n_ 2n_
[ (072 = 0] 7 = funo )| 725} | 5 .
Next, we deal with the kinetic energy part of (4.6). We estimate

[(Vuo(to), Vuni (o)) < HV PscPecults), Vu(to))|

S VP Pecu(to) || 2| Vu(to) | 2
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IVu(to)llrz S 1

and

IV P Peculto)llzz = [[(VPsePecu(to)) ||

= [|lep(€/e) (1 — p(€/2))ulto)(€)]|2

S elluns (to)llr2 S,
we obtain control over the kinetic energy term in (4.6),

(Vo (to), Vuni (to))| < €.

Therefore (4.5) Se. As
E(U) S Ecrit

and, by hypothesis,

E(uni(to)) 2 ||th"(750)”§;; 2,

the triangle inequality implies E(u,(to)) < Eq — en®, provided we choose e

sufficiently small.

Similarly, one proves E(upi(ty)) < Eui — cn®. O

Now, as E(u,(t)), E(uni(te)) < Eit — cn® < Eeny, we can apply Lemma 1.3
to deduce that there exist S* solutions uy, and uy; on the slab I, x R™ with initial

data w,(to) and up(tg) such that

(4.7) HuloHSl(l*an) < C(n)
and
(4.8) [wnill g1 (1, xmmy < Cn).
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From Lemma 3.4, we also have

(4.9) ol g1 (1, wmmy S CDllwio(to)ll gars < Cln)e®, V0 <s <55
and
(4.10) unillso(r, xrny S C)lluni(to)llz < C(n)e.

Define @ := uj, + up;. We claim that @ is a near-solution to (1.1).

Lemma 4.3. We have

4

ity + A = |u|"2a—e
where the error e obeys the bound

(4.11) Vel 2 < C(n)em D |

L2LPF2 (I.xRm) ™
Proof. In order to estimate one derivative of the error term

4

I 4 4
e = |0|"2U — |up| 2o — [Uni| "2 un; = F (o 4+ uni) — Fugo) — F(ung),
we use (1.9) to obtain

4
< =
HveHLfL;‘f?(I*an) S| Vugo|ups | ™ QHLgLﬁ?(IMR")

in dimension n > 6 and

1
Vel S HVUZOWMHUIO!?’HL% 10

10
L2L," (I, xR®) Ly (L xRm)

1
+ |yvuhi|u10’|uhi|3HLQLITO(I XR™)
ta W

4 4
+ ||Vu10]um~|3 H ) -+ HVUMUZOP ||

10 10
L2L, (I.xRn L2L,7 (I, xR™)

in dimension n = 5.
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Thus, proving (4.11) amounts to showing

(4.12) Vol =2, S COD=TT, -z

(@13) Vbl 7 S C)ETIET, 0z
1

(4.14) Ak ||L2Lj(1 Rn),ﬁ(](n)su, n=>5

4.1 < i -5

(4.15) rsiE: ||L2L70(I XRn)NC(n)EH, n=>5

To prove (4.12), we make use of Holder, interpolation, (4.7), (4.8), (4.9), and
(4.10):

| Vuttolunil 72 g, 20 S [llenl 72| 2= [[Vtgol| 2nn-2)
—4n

4

< Nanil1 o 1V 1 72000, 2
ks s 1+-2

S Nanallsez lunill 3 Zan IV 72 w0l 3007, <)
% 2

S Nunill o XRn)HuhiH; L xR") o]l o 2, s (LxE")

<C< )gn z,

where all spacetime norms are on [, X R". We turn now towards (4.13); on

I, x R", we estimate

4 n Anitl) Ty e
| Vupi [ugo| =2 HZ’% < H\Vumwolulol?”! (n=2)(n+1) ||2((72L:2r)1(>n+1) 1||Vuh,||2 2(n DEFT)
n

Using (4.8), we get

Ve i )((,+ﬂ; oS lwnillgngy jﬂgjﬁn < C(n).
t T *

Fixing ¢t € I, we use Holder to estimate

/n ‘Vuhi(t)ulo(tﬂuloygn(t) |pd;p

< ). | Vn (8) Py o (1) Py tio(t) - -+ Py, o (t) | dt

N1 < <Napt1 R

N Z HVUm(t)PNluzo(t)Hii 1Py tino(O) 7+ -+ 1| Pay g o ()|

N1<--<Napt1
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where we denoted p := (n_Q)”w = s

Integrating with respect to time, on the slab I, x R™ we get

||V unitwo] ol SR | 20-2)0001)
[

t T

(4.16) S Z ”VUhiPNluloHigﬁ |’PN2u10|‘II)@°Lg o HPN2n+lu10H€foLg
N1<-<Nont1 ,

By Bernstein,

3n+4
HPNulo”LfoLg SN i HPNUloHLgOLg-

Thus, in view of (4.7) and (4.9), we obtain

n—4 n

(4.17) | Pl ez S C(n) min(N =5, N~ ~%¢?)
fora110<s<%.

To bound || Vup; P, || L2, (I.xrr) We use the bilinear Strichartz estimates we

have developed in Lemma 2.5. On [, x R" we estimate

IV uni Pz, < CO) (IFuni(to) | v2es + 119175420, + A) Vupa]) 212 )
s x L. 4

t,x

n—1 .
(4.18) X <||PN1UlO<tO)HHF6 + || ’V|776(Zat + A)PNluloHLtz(n%%)).
Interpolating between |lux;(to)||z2 < € and ||Vug(to)|[z2 S 1, we get

1
—1/246 5 g2 5.

(4.19) [V uni (to)] -

Using (4.8) and (4.10), we estimate

. _4_
1(20: + A)ups|| 22 = [[|uni| " uni| 2m12)
L, 2% (I.xRn) L, "™ (I.xR")

=

S Junill 242 il " 50n e
L™ (L«xR™) L, 272 (I.xRm)

t,x

4
S ||th‘||50(1*xmn)||uhi| gl_(i*xw)

< eCn)
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and

_4
HV(Zat + A)UMH 2(n+2) = HV(‘U}n‘ n—2 uhi) H 2(n+2)
2 (LoxRm) L, 2% (I.xR™)
S I Vup|| 2wtz [l rgfnm
Li,™  (LixR™) L, 772 (I.xR")
n+2
~ ||U}”’ 51([ XRn) < 0(77)
Interpolating between the two estimate above, we obtain
V]~ z+5(zat+A)wm|y 2nt2) S Cn)er.
Ly 274 (LoxRm)
Hence, combining this with (4.19) gives
(4.20) HVuhz(to)HH 1/246 + HlV’ 2+6(Z(9 + A)Vuth 2(n+2) < 0(77)5%75
(I« xR™)

We turn now to the factor in (4.18) containing Py, u, and use Bernstein, (4.7),

and (4.9) to estimate

. n8_§ 3 55
| P taio(to) | oy S Cn)min(N, 77, N7 7 7e),

x

for every 0 < s < —%-. Similarly, by Bernstein and (4.7),

v~ (’latJFA)PNluon 2ni2)

L

< N7 ||V, +A>PN1ulo|| i)

(I« xR™)

(I« xR™)

n=3_gs 4

SN ||Vulo|| 2(n+2) ||Ul0||n2(n+2)
L,,"  (L.xR") L7 (L.xR")

n=3_gs n+2 -

S Nl ’ ||u10| g;(QI*XRn)
n—3

SCmNT

while by Bernstein, (4.9), and the same arguments as in the proof of Lemma 3.4,
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for any 0 < s < -2 we have
n—2

|||V|n; - (Zat+A)PN1ulo|| 2ni)

P (ILxR7)
S N H|V|1+s(28t + A)UloH 2Ant2)
P (LxR7)
SNVl 2 () o]l g1+5 (1. xm)
L, L, (L.xRn)
n=8_§_s
<CmN,? e
Hence, for any 0 < s < ﬁ we obtain
1Py, io(to) | a1 s + [[[V]72 2 (i0; + A)PNﬂton 2ns)
He I (LoxRm)
n=3_5 n=3_5_ g
(4.21) S C(n) mm(N 2 N, %).
Thus, putting together (4.18), (4.20), and (4.21), we get
1 n=3_s n=3_5—s
(4.22) IV uni Py ol 12 (1. xmmy S C(n)e o min(N, 7 N, e).

Returning to our earlier computation, (4.16), and using (4.17) and (4.22), we

conclude

n—4 %
[ Vunito|wol = | 72| ns2
L, 2 LL(I.xR™)

n=3_ n=3_5_g
SO S min(N, 2 N T )]
N1<--<Nant1

n—4 n—4

[mm(Nm:aNmff 858)]p-

In order to estimate the sum, we split it into three parts as follows:

2n
)R DR D DD D D
N1<--<Nant1 N1<-<Nap41<e j=2  N1<.-<N;<e e<N1<---<Napi1

e<N;+1<-<Napt1

=I+11+1I1.
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We have

p("52—8) \—pt —pnt
I's E Ny Ny = Ny, o1
N1<~--<N2n+1<€

Z Np(" 5)N—p

Ni<e

2n
(2535 pit —pit
sy ) NPUT NP LN
Jj=2 N1<--Nj<e
eXN;j11<<Nant1

—4
—p( 4 +5) sp —p("4—+5) sp
XN ™ Ny, e

2n
§Z€Sp(2"+l_j) Z Np(" —8)—p=2(j— 1)N p(%2 45)(2n+1—5)

J+1
NlSSSN]+l
< (5-0)p
Y 6

n—-3__ —s — n—4 S — S
I[IS Z Nf( 5> =0 )Espsz( 4n+)€sp . N. p( 4n+) 5P

2n+1
e<N1<--<Napt1

p(2n+1) Z NP(L—d s) (n 4y +5)2n

e<Np
1 _6—(2n+1)s]
< gop(ntD) Z Np[
5§N1
1
1
55(2 )p7

where the last inequality follows as soon as we choose 0 < s < ﬁ such that

3 —0—(2n+1)s < 0; in particular, it holds for s = m
Putting everything together, we obtain
| Vunidu| 72| 2 < C(m)et > watms

L2LP V2 (IxRm) ™

and (4.13) follows by choosing § sufficiently small.
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We examine next (4.14). Using Holder, interpolation, (4.7), (4.8), (4.9), and

(4.10) we estimate
1 1
Vo unil o] 3 [|o,10 S [[Viollg, 10 [ tnilloc sl ol 5 5
1 5 s 1
S ol g llwnill o 2llunill & 1o V12 w0l %2

1
£6

=

S Cln)e
< Clnem.
Finally, we consider (4.15). By Holder and conservation of energy, we estimate
1 1
IV unsluollunil® lla,0 S IVunillZ, 1ol Vinilwiollla,g S 11V unluwol ]2,z

By interpolation,
1 1 1

IVuniluolllo,z S I Vunill} 1ol Vuniluol* 5 10 S C)IVtnilwo]*]]3 1o

)3 2,3 2,5 2,5

Using Hoélder, Bernstein, (4.7), (4.8), (4.9), (4.10), and (4.22), we estimate

IV uniluol*[l2,20 < > IVt Pov, o |2,2]| Prvy tiol oo, 5

N1<N2
_1
< Y Ot P min(NF0 NEOE) N, IV Pt o2
N1<N2
1 _1_
,SC(?])&?%*‘S Z min(N; %, N} 727%*) min(N, 2, N, > "&%).

N1<Nj
Decomposing the sum into three sums, i.e., D < n,» 2w, <e<ny A0 Doy vy <o

and taking s > %, we get
Vsl S Clne.

(4.15) follows by taking ¢ sufficiently small. ]

Next, we derive estimates on u from those on @ via perturbation theory. More

precisely, we know from (4.4) that

[u(to) — ulto)l| gy S €
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and hence, by Remark 3.2,

) ~ 1/2
(3 Uy T (ulto) = alto)) Iy mgen ) S
N

L,"2 L, (I.xR%)

By Strichartz, we also have that

||a||L§°H;(I*an) S HﬂHS‘l(I*xR") S ”ulOHS‘l(I*xIR") + ||uhiHS‘1(I*><R") < Cn)

and hence,

il sosn S Nl < C).
L n

t,x (I* XR”)

So in view of (4.11), if ¢ is sufficiently small depending on 7, we can apply
Lemma 3.1 to deduce the bound (4.3). This concludes the proof of Proposition
4.1. O

Comparing (4.3) with (1.10) gives the desired contradiction if u satisfies the
hypotheses of Proposition 4.1. We therefore expect u to be localized in frequency

for each t. Indeed we have:

Corollary 4.4 (Frequency localization of energy at each time). Let u be a min-
imal energy blowup solution of (1.1). Then, for each time t € I, there exists a
dyadic frequency N(t) € 2% such that for every ny < n < ny we have small energy
at frequencies < N(t)

(4.23) [ P<cyniyu(®)l g < m,

small energy at frequencies > N (t)

(4.24) [ Pscmnmu®)]l g < n,

and large energy at frequencies ~ N (t)

(4.25) 1Pemv < <copnou®llg ~ 1,

where the values of 0 < ¢(n) < 1 < C(n) < oo depend on 1.

40



Proof. For t € I, define
N(t) :=sup{N € 2% : || P<yu(t)|| gz < no},

which is clearly positive. As [Jul| 1 ~ 1, N() is also finite. From the definition
of N(t) we have that

[ P<anyu(®)] g1 > mo-

Let ny < n < my. If C(n) > 1 then we must have (4.24), since otherwise
Proposition 4.1 would imply ||u| 2m+2) < C(n), which would contradict u
L2

t,x (I*XR")
being a minimal energy blowup solution.

Also, as by the definition of N(¢), [|P<y@yu(®)llg < no, [|ull ey ~ 1 and
(4.24) imply that

(4.26) | Prty<-<cmoynvmu(®)] g ~ 1

and therefore,
[ Penty<-<comn @) gz ~ 1

for all py < n < mo. Thus, if c(n) < 1 then [|[P<cpynpu(®)|[m < n for all
ny < n < no, since otherwise (4.26) and Proposition 4.1 would again imply

[ul| 2z S Cn). O
=2 (I,xR")

4.2 Space concentration

Having shown that a minimal energy blowup solution must be localized in fre-
quency, we turn our attention to space. In physical space, we will not need the full
strength of a localization result. We will settle instead for a weaker property con-
cerning the spatial concentration of a minimal energy blowup solution. Roughly,

concentration will mean large at some point, while we reserve localization to mean
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simultaneously concentrated and small at points far from the concentration point.
To obtain the concentration result, we use an idea of Bourgain (see [2]). We di-
vide the interval I, into three consecutive subintervals I, = I_ U Iy U I, each

2(n+2)
containing a third of the L, ;™ mass of u:

n 1 n
/ / |u(t,x)|22f5’dxdt:§ / / u(t, )| 55 dedt for I=1_, 1, I,
I n I, n

It is on the middle interval Iy that we will show space concentration. The first

step is:

Proposition 4.5 (Potential energy bounded from below). For any minimal en-
ergy blowup solution to (1.1) and all t € Iy we have

(4.27) lu()I] 2z, 2 m1.

x

Proof. 1f the linear evolution of the solution does not concentrate at some point

in spacetime, then we can use the small data theory and iterate. So say the linear
2n

evolution concentrates at some point (¢, ;). If the solution is small in L; 2 at
time t = ty, we show that ¢ty must be far from ¢;. We then remove the energy

concentrating at (¢1, 1) and use induction on energy.

More formally, we will argue by contradiction. Suppose there exists some time

to € Iy such that

(4.28) Hu(to)HL% <11

x

Using (1.3) we scale N(ty) = 1. If the linear evolution e'!=*)2y(t;) had small
2(n+2)
L, ;= -norm then, by perturbation theory (see Lemma 3.1), the nonlinear solu-
2(n+2)
tion would have small L, ;= -norm as well. Hence, we may assume

1% ulto)|| 2tnrm 2 L
L,""? (RxR™)

t,x
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On the other hand, Corollary 4.4 implies that

[ Pioulto)ll s + [[Prau(to)l gy < 7o

where P, = P, and Pj; = Psc(y,). Strichartz estimates yield

||6i(t_tO)AB (tg)” 2(n+2) —+ ||€i(t_t0)APhiu<t0)|| 2(n+2) 5 To-
Lz~ (RxRm™) Lz~ (RxRm)
Thus,
|t tOA P qu(to)| 2(n+2) ~ 1

L, (RxRm)
where P,,.q = 1 — B, — P,;. However, Pmedu(to) has bounded energy (by (1.13))
and Fourier support in ¢(ny) < |€] < C(no); an application of Strichartz and

(1.17) yields

||6i(t_t°)APmedU(to)l|L% S [[Pmeau(to)l|zz S C(no)-

t,x

Combining these estimates with Holder we get

e 2 Poequ(to) 2, Z ¢(mo)-

In particular, there exist a time t; € R and a point x; € R” so that
(4.29) | TR (Pequlto)) (21)] 2 elno).

We may perturb ¢; so that t; # ty and, by time reversal symmetry, we may take
t1 < to. Let d,, be the Dirac mass at z1. Define f(t1) := Peqds, and for t > ¢,
define f(t) := ¢!*=1A f(¢;). One should think of f(¢,) as basically u at (t1, ).
The point is then to compare u(tg) to the linear evolution of f(t1) at time t,. We

will show that f(t) is fast decaying in any LP-norm for 1 < p < oc.

Lemma 4.6. For anyt € R and any 1 < p < oo we have

1F (D)2 S Clno)(t — )7~ %
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Proof. We may translate so that ¢t; = x; = 0. By Bernstein and the unitarity of

e? | we get

1f )l S Cno)llf @)z = C(no)l| Preade [ 2 S C(100)-

By (1.15) we also have

_n
2

N lee S Predba |1 S 0(770)|t|_%.

Combining these two estimates, we obtain

1F )l < Clmo)(t)™%.

This proves the lemma in the case p = oo.

For other p’s we use (1.14) to write

flta) = [ emeemieniy, )it

where @p,eq is the Fourier multiplier corresponding to P.q. For |z| > 1 + |t],
repeated integration by parts shows |f(¢,z)| < |z|Y for any N < 0. On |z| <

1+ |t|, one integrates using the above L2°-bound. O

From (4.28) and Holder we have

[(ulto), FEE S IF () 2, o)l 2, S mC o) {ts = to).

T

On the other hand, by (4.29) we get

[(ulto), f(to))] = [(e"* ™2 Prcqulto), 6:,)| Z c(mo)-

So (ty —to) 2 c(no)/m, i.e., ty is far from to. In particular, the time of concen-
2n
tration must be far from where the L; >-norm is small.
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2(n+2) 2n(n+2)
Also, from Lemma 4.6 we see that f has small L,"* L,"*** -norm to the

future of to (recall t; < tp):

_n—2

LA 2tniny 2ngueny S Co)l[(- =) 7| 2wz
L, "2 L,"* ([t,00)xR™) L, "% ([t0,00))
n—2 _n—2
(4.30) S Cno)lty — to] 200 < Clno)ns 2.

Now we use the induction hypothesis. Split u(ty) = v(ty) + w(ty) where
w(ty) = e’ A1 f(ty) for some small 6 = 6(19) > 0 and phase 6 to be chosen
later.!  One should think of w(ty) as the contribution coming from the point
(t1,21) where the solution concentrates. We will show that for an appropriate
choice of § and 6, v(ty) has slightly smaller energy than w. By the definition of f

and an integration by parts we have

1 1
- |Vv(t0)|2d:c = - |Vu(ty) — Vw(to)\zdx
2 Jan 2 Jun

= %/n |Vu(ty)|*dx — 5Re/n e VAT f(to) - Vul(to)da
+O@A7 F(t)lIE,)
< Eeit + 0Re e (u(ty), f(to)) + O(5°C(n)).
Choosing ¢ and 6 appropriately we get
- [ IVulta) e < B = clm)

Also, by Lemma 4.6 we have

n
T x

lw(to)ll 2z, S Clmo)llf (to)ll 2o, S Clim){tr = t0) ™" < Climo)rm-

So, by (4.28) and the triangle inequality we obtain

2n

2n_ —
v(to)[*dz S Cno)ny .
R’n

IThe presence of A~! in the definition of w(tg) is due to the fact that inner products are
taken in H.
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Combining the above two energy estimates and taking n; sufficiently small de-

pending on 79, we obtain

E(v(to)) < Eerir — ¢(no)-

Lemma 1.3 implies that there exists a global solution v to (1.1) with initial data

v(tg) at time t, satisfying

||U||sl (RxR?) ~S < C(mo)-
In particular,
H’UHLgoH;([to,oo)an) < C(no)

and

N

C(mo)-

[0 ez

L ([to,00)xR™)

tac

Moreover, by Bernstein,
lw(to)ll < SIVAT f(to)llzz S Clmo)-
By (4.30) and frequency localization, we estimate

Z ||PNv6i(t_tO)Aw(t0) ||2 2(n+2) 2n(n+2)
N

L, "2 Ly * ([to,00)xR")

S Y 1PVt u ()|, 2n(n+2)

N<C(no) L, "% L, "% ([tg,00)xR™)
i(t—to)A 2
+ Z ||PNvel(t o) w(tU)H 2(n42) 2n(n+2)
C(n0)<N Lt " an + ([to,oo)XR")
Z Nzc 7]0>||f|| 2(n+2) 2n<n+2)
N<C(no) n=2 " ([t,00) X R™)
—2 2
+ Z HfH 2(n+2) 2n(n+2)
C(no)<N Ly "% Ly ™ ([to,00) xR™)
n—2
0(770)771“2
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and hence
1 n—2
2

(S IPY e 2 t) |2 ) e )" < Clompni™.
N

L, "2 Lyt ([tg,00)xR™)
So, if 7, is sufficiently small depending on 7y, we can apply Lemma 3.1 with
@ =wv and e = 0 to conclude that u extends to all of [y, 00) and obeys

ul] 2msz < Cno,m)-
7% ([to,00) xR™)

t,x

As [tg, 00) contains I, the above estimate contradicts (1.10) if 75 is chosen suf-

ficiently small. This concludes the proof of Proposition 4.5. m

Using (4.27) we can deduce the desired concentration result:

Proposition 4.7 (Spatial concentration of energy at each time). For any min-

imal energy blowup solution to (1.1) and for each t € Iy, there exists x(t) € R

such that
(4.31) / Vult,2)2dr 2 c(m)
|z—x(t)|<C(n1)/N(t)
and
(1.32) / fu(t, @) Pz > cp)N(£) 2P
|z—x(t)|<C(n1)/N(t)

for all 1 < p < 0o, where the implicit constants depend on p.

Proof. Fix t and normalize N(t) = 1. By Corollary 4.4 we have

[ Pee(myu(®)l iz + 1Pscmyu®)lm < m®.

Sobolev embedding implies

1Pecimyull 2, + [ Pscmu®l 2o, $m™
L L
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and so, by (4.27),

(4.33) 1Prnecau(®)]] 2y 2 m,

x

where Preq = Pep)<.<cm)- On the other hand, by (1.17) we have

(4.34) [ Preatt(t)l[ 2 S C(m)-

Thus, by Hélder, (4.33), and (4.34), we get

[ Pear(t)|[Lee Z c(m)-

In particular, there exists a point x(¢) € R™ so that

(4.35) c(m) S [Preau(t, z(t))].

As our function is now localized both in frequency and in space, all the Sobolev
norms are practically equivalent. So let’s consider the operator P,.VA~! and

let K,,.q denote its kernel. Then,

() S [Preau(t, ©(8)] S [Kinea ¥ Vu(t, x(t))]

< [ K eala(t) — 0)|[Vult,2)|d
R’ﬂ

~ / K ea(2(t) — 2)||Vult, 2)|da
|z—xz(t)|<C(n1)

+/ | K mea(z(t) — 2)||Vu(t, x)|dx
lz—2()|>C ()

1/2 Vult
< (| vt )par) 4 [ s
le—a(8)|<Cm) je—a(®)>C(m) 17— 2(t)]

where in order to obtain the last inequality we used Cauchy-Schwarz and that

Kpneq is a Schwartz function. Therefore, by (1.13) we have

) 1/2
cm) 5 ([ Vau(t,2)dr) "+ O
lz—a(t)|<C(m)

for some a > 0, proving (4.31).
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Now let f(med be the kernel associated to P,,.q and let 1 < p < co. As above,

we get
) S | | Rneala(t) — o)lJult, 2)|de
Rn
~/' Bmea((t) — @)|[ut, 2)|de
|z—z(t)|<C(n)

+f [Ronea(o(t) = ) Ju(t )| do
lz—z()|=C(m)
1/p
scon( [ u(t,2)[Pdz
lz—a(t)|<C(m)

1 2n
Ol </ o d:c>
Ly lx—x(t)|>C(n1) ’x _ 3;-<t)|100n~n7+2

1/p
s cm)( u(t, )P+ )
lz—a(t)|<C(m)

for some a > 0, which, after scaling, proves (4.32). ]
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CHAPTER 5

Frequency-Localized Interaction Morawetz

Inequality

The goal of this chapter is to prove

Proposition 5.1 (Frequency-localized interaction Morawetz estimate (FLIM)).

Assuming u is a minimal energy blowup solution to (1.1) and N, < ¢(12)Nmin,

we have
P °|P i
- / / Poy.ult, PIPoc et OF 4 o
Io JR™ JR™ v =yl
P t 2 P t nz%
+ // / [P, ult, y) P | P ult, o)) 2dxdydt§771N;3-
o Jan Jan |z — y|

Here, Nyin := infyep, N(2).

Remark 5.2. N,,;,, > 0. Indeed, if Ny, = infieg, N(t) = 0, there would exist a
sequence {t;};en C Iy such that N(t;) — 0 as j — oo. By passing, if necessary,

to a subsequence, we may assume {tj}jeN converges to to, € ly. By definition

(see Corollary 4.4),
HpgzN(tj)u(tj)HH; > o-

From the triangle inequality, we get

Mo < [[Peaniyyu(ty)ll g < [[Peaney) (u(ts) — wltoo)) |l + | P<anieyultos) |l g

S llulty) = ultoo) |y + [[Peaneyyultoo)ll -
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Asu € COHM(Iy x R™), a limiting argument combined with the dominated con-

vergence theorem leads to a contradiction.

As the right-hand side in (5.1) does not depend on | ]|, this estimate excludes
the formation of solitons, at least for frequencies ‘close’ to N, and provided ||
is taken sufficiently large. Frequencies much larger than N,,;, will be dealt with

in Chapter 6.

5.1 An interaction virial identity and a general interaction

Morawetz estimate

The calculations in this section are difficult to justify without additional assump-
tions on the solution. This obstacle can be dealt with in the standard manner:
mollify the initial data and the nonlinearity to make the interim calculations valid
and observe that the mollifications can be removed at the end. For expository

reasons, we skip the details and keep all computations on a formal level.

We start by recalling the standard Morawetz action centered at a point. Let

a be a function on the slab I x R™ and ¢ satisfying
(5.2) i+ Ap =N
on I x R™. We define the Morawetz action centered at zero to be
M) =2 [ (@)@, (o) do.
A calculation establishes

Lemma 5.3.

o = [ (AMIoP+4 [ apReGon +2 [ V.o,

o1



where we define the momentum bracket to be {f,g}, = Re(fVg — gVf) and

repeated indices are implicitly summed.

Note that when A is the energy-critical nonlinearity in dimension n, we have
2n
N, ¢}, = =2V (I¢]2).
Now let a(x) = |z|. For this choice of the function a, one should interpret

M) as a spatial average of the radial component of the L2-mass current. Easy

computations show that in dimension n > 4 we have the following identities:

a;(x) f;—j’
_5]_';{; Ty
) T T ap
Aa(z) _n|;|1
_ AAa ):(n— 1)(n—3)

and hence,

oM = (n=1)n-3) | LGl | (3 - Re(@on) )

o faf? [ [

+2 /R" x—]|{./\/', o} (x)dx

|
—(n—1)(n—3) / %d:p + 4/n %|Vo¢(:ﬂ)|2dx

22 [ Vo)

where we use V( to denote the complement of the radial portion of the gradient,

that is, Vo = V — & (% - V).

We may center the above argument at any other point y € R”. Choosing

a(x) = |x — y|, we define the Morawetz action centered at y to be

M) =2 [ Tt (3 Vo(a)de
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The same considerations now yield

8,5ij:(n—1)(n—3)/R () dx+4/nﬁlvy¢(a:)|2dx

n o —yl?
x—y
+2/}Rn |x—y|{N7 G}p(x)dx

We are now ready to define the interaction Morawetz potential, which is a

way of quantifying how mass is interacting with (moving away from) itself:

Minteract(t> ‘(b(t y)| My( )d

= ZIm/ lo(t,
n Jro | |

One gets immediately the easy estimate

(t,z)o(t, x)dzdy.

| Mmerat ()| < 20l g(t) 172 9 (t) -

Calculating the time derivative of the interaction Morawetz potential, we get

the following virial-type identity:

(53) 8Mmteract TL _ 1 7’L _ / / | |¢ d d

o=y
BV, 0(2)
(5.4) +4/n /n P dxdy
(55 w2 [ ol AN o ) dedy
(5:6) +2 [0, Im(600) () M2dy
5.7 watm [ (N 6)) Vot dady,

where the mass bracket is defined to be {f, g}, = Im(fg).

As far as the terms in the above identity are concerned, at the end of the

section we will establish
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Lemma 5.4. (5.6) + (5.4) >0.

Thus, integrating over the compact interval I, we get:

Proposition 5.5 (Interaction Morawetz inequality).

(n—1)(n—3 /// zSyHgbzm)lddydt
Io JR JRN |z — v

" 2/10 /n R |¢(t,y)|2 |i : ??j| W, o}p(t, x)dxdydt

< 4||¢||%§°Lg(10xu§n)||¢||L§°H;(onw)

4 / / Nt V0t 0ot )y

Note that in the particular case N' = |u|ﬁu, after performing an integration

by parts in the momentum bracket term, the inequality becomes

u(t, (t
(n—1)(n—3 /// y||u3x)|ddydt
IO n n |I_y|
_1 n2
(5.8) 4n /// ult, y)lfult, 2)l 2 dwdydt
Ip JR™ JR™ ‘Zlf—y‘

§4HUHL§OL§(10an) HUHLgOH;(onRn)-

Assuming u has finite mass, this estimate is an expression of dispersion (as the
interaction between the masses of two particles is weak) and local smoothing (as
it implies |ul> € L?H, nT_g) However, we have made no assumptions regarding
the finiteness of the L2-norm of the initial data uy and thus (5.8) cannot be used

directly.

We turn now to the proof of Lemma 5.4. We write

66 =4 [ [ 0, Im(o0 i) T L in @ o) dody,
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where repeated indices are implicitly summed. We integrate by parts moving 9,

to the unit vector =%
lz—yl

<$j - yj) _ 0% ()@ —y)
|z =] [z =yl |z —yl?

and the notation p(x) = 2Im(¢(x)V(x)) for the momentum density, we rewrite
(5.6) as

- [ [t = (o =) (o) =)

In the quantity between the square brackets we recognize the inner product be-
tween the projections of the momentum densities p(z) and p(y) onto the orthog-

onal complement of (z — y). As

r—Yy [ T—Y
e 2w = o) = 1 (= )| = 2@ V()

< 2|6(y)|| V2o (1))

and the same estimate holds when we switch y and x, we get

(5.6) > / BV I6)IV,6(2)) dmdﬂ

/n/n |9y ylxliyfy ). dy _Q/n/n |o(x ‘!Yﬁ liFn dy

| \/

| \/

5.2 FLIM: the setup

We are now ready to start the proof of Proposition 5.1. As the statement is invari-
ant under scaling, we normalize N, = 1 and define uj,; = P~qu and w;,, = P<ju.
As we assume 1 = N, < ¢(n2) Npin, we have 1 < ¢(n2)N(t), Vt € Iy. Choosing

c(ng) sufficiently small (smaller than 1,¢(n2) where &(n2) is the constant appearing
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in Corollary 4.4), the frequency localization result and Sobolev embedding yield

(5-9) Hu<n2 1HL°°H1(IO><R" + ”u<7721HLooLn 2 (o xR") 5 2.

In particular, this implies that u;, has small energy
(5.10) ||Ulo||L;>OH;(10an) + ||Ulo||L?OL;%2(onRn) < 1
Using (1.17) and (5.9), one also sees that uy; has small mass
(5.11) vnill oo L2 (1g xmm) S M2

Our goal is to prove (5.1), which, in particular, implies

i(t, it y)|?
(5.12) / / / it @) |uh3< )l dxdydt < ny.
IO n n |l’ - y|

As in dimension n convolution with 1/|z|® is basically the same as the fractional

integration operator |V|~("=®) the above estimate translates into

5.13 . < pi/2,
(5.13) [ uni|* HLQH oy O

By a standard continuity argument, it suffices to prove (5.13) under the boot-

strap hypothesis

to\»—‘

(5.14) el * < (Com)?,

LfH;nT_g(Io xR")
for a large constant Cjy depending on energy but not on any of the n’s. In fact, we
need to prove that (5.14) implies (5.12) whenever [ is replaced by a subinterval
of Iy in order to run the continuity argument correctly. However, it will become
clear to the reader that the argument below works not only for Iy, but also for

any of its subintervals.

First, let us note that (5.14) implies

_n=3 1
(5.15) 11V 15 unill gt xrey S (Com),

as can be seen by taking f = wy; in the following
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Lemma 5.6.

(5.16) 11V flla S NV 1112

Proof. As |[V|™"%" and |V|™"2" correspond to convolutions with positive kernels,
it suffices to prove (5.16) for a positive Schwartz function f. For such an f, we

will show the pointwise inequality

(5.17) SV T (@) S (V7T £ (@),

where S denotes the Littlewood-Paley square function Sf := (3, |Pnf[*)Y2.
Clearly (5.17) implies (5.16):

V175 e SASAVET Al SHAVEZ P10 S NV P

In order to prove (5.17) we will estimate each of the dyadic pieces,

Py([V]75 ) (x) = / 27 F(6) €] "F (e /N,

where m(§) = ¢(§) - ¢(2§) in the notation introduced in Section 2. Since
|7 T m(€/N) ~ N="T m(¢/N) for 7 a multiplier with the same properties as

m, we have

3(n+1)

Py([V[755 f)(z) ~ [+ (N5 [m(¢/N)] (z)) =

=N [ fo - (V.

fxm(Nz)
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An application of Cauchy-Schwartz yields

SV ) = (ZrPNuvr";‘* Nee)”

3(n+1)

)1/2

[ @iy
3(n+1)
ZN [y [ 1t = wPavl)
n+3 ~ 1/2
SN [ 15— Plivdy)
N
STNF (Ny)l £ 30N min{1, [Ny < [y
N
In this way we get
_n; f(z _n-3
S(|v|~* / iz = y)F ) ~ (VI ) ()2,
ly| =
and the claim follows. ]

We now use Proposition 5.5 to derive an interaction Morawetz estimate for

O = Up,.

Proposition 5.7. With the notation and assumptions above we have

I JrR JRA |x—y|
i, i,
/ [ [ el DIEER.
Iy n n ‘x_y‘
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(5.18)

(5.19)
(5.20)
(5.21)
(5.22)
(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

~ 12
_4 _4 4
" ?72/ / i (£, )] [ Pri (Jul 72w — |72 ups — |wo| 2w ) (¢, )| dadt
Iy JR™
4
+ 12 / / |uni(t, )| Po (|uni| "2 up;) (¢, )| dzdt
Iy JR™
4
+ 2 / / |wni(t, 2)|| Pri (Jtio| 72 wo) (¢, )| dadt
Iy JR™
4
+?7%/ / ’vulo(tax)Hulo(t, x)|"*2’Uh1(t,x)|d£L'dt
Iy JR™
+ 13 / Vit )| Juni(t, )| 72 daedt
Iy JR™

s [ 1Pl 50) () s 1 ) o
Iy JR™

+/ / / |uhi<t7y)|2’ulo(t7$)‘z+g’Uhi(t’x>’d$dydt
o Jan Jan |z —y]

/ / / |uhz t Y | "LLZO(Zf m)Huhl<t 33)‘ dl‘dydt
o Jin S |z —y]

4
()| Pro (|wns |2 uns ) (¢, i(t,
] )t
Iy n n

|z — y|

Proof. Applying Proposition 5.5 with ¢ = uy; and N = Pm-(|u|ﬁu), we find

i(t, i,
T T
Iy n n |x_y|

+ 2/ / / |uhi(tv y)l — {th(IU\ﬁU), Uhi}p(t, l’)dl’dydt
Iy n n |.T y|

< 4lup ||?i;>°Lg(10 XR™) [|wni ||L;>°H;(10 xR™)

+ 4/ / |{Ph,(|u|ﬁu), Uni Yo (6 Y) || Vuni (8, ) ||upi (8, ) | dzdydt.
Iy n JR"

Observe that (5.11) plus conservation of energy dictates

| wni ||?ig°Lg(10an) | wni ||L;>°H;(10an) S 77;

which is the error term (5.18).
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We consider the mass bracket term first. Exploiting cancellation, we write
{Pui (Jul ™210)  uni = {Pa (Jul 72 10) — ups| 72 i, uni o
4 4 4
= R U2 U — [Upi | "2 Ups — |Ulo| " Ulo) s Uhi fm
{ P (Ju[7=2u — fup [ |t "2 }
4 4
— {Pro ([t "2 uni ), wni b 4 { Pri ([tio| ™2 o) , i Ym-

Estimating

/ i (£, 2)[[Vuns (¢, 2)|de S [unsl| ge 12 (1o xre) [V tnil| g L2 (10xrm) S 7124
we see that we can bound the contribution of the mass bracket term by the sum
of (5.19), (5.20), and (5.21).

We turn now towards the momentum bracket term and write

{Pu(Jul 72 u) uni}p = {lul 72w, un}p — {Po(lul72u), ui}y
= {lul7=u, u}, — {Jul7=u, w0}, — {Po(Jul72u), un},
= {Jul™=u, uly — {Juio] 720, o by — { Pro (Ju] 72 10) , upi}y
— {Julm=u — Jue| 720, w10},
= 2Vl — el 2) — {7~ o o )
—{Po(Jul7=u), uni}y

=I+11+1I1.

To estimate the contribution coming from I, we integrate by parts in the

momentum bracket term; we obtain, up to a constant,

|uhzty 2n_ _2n
u(t,x)|»2 — |u(t, z)|2)drdydt
/// P (ut,2)| % = g (t.)] )

/// [ni(t,)Plns (1, )] " dedydt
Io JrR JRA |:r—y|

/ / / ‘uhz t y |U(t x)|" 2= ’ulo(t x)‘n : - |uh2(t I‘)| 2n )dxdydt
Ip n n

|z —y|

60



In the above expression we recognize the left-hand side term in Proposition 5.7

and an error that we estimate by the sum of (5.25) and (5.26).

In order to estimate the contribution of 11, we write {f, g}, = VO(fg) +
O(fVyg) and hence,

{Julm 71 — o] ™2 i, w0}
(5.28) = V(?[(|u|ﬁu — |ulo|$ulo)ulo}

(5.29) + (’)[(!u ATy — \ulolﬁulo)Vulo}.

Integrating by parts, we estimate the error coming form (5.28) by a scalar

multiple of

uzt un2u—uon2uotxuotx
///| O P [ GG LT G B
IO n n

|z — y|

(5.25) + (5.26),

where in order to obtain the last inequality we used (1.7).
We turn now to the contribution of (5.29). Let us first note that
(5.30) il oo (roxmy S MwnillFoe 2 (1 xmmy S 715

Taking the absolute values inside the integrals and using (1.7) and (5.30), we

estimate the error coming from (5.29) by

_4 _4
[ )Pl 20 ] =2 6. 2) V) dady
Iy n JR"

< (5.22) + (5.23).

We consider next the contribution of 171 to the momentum bracket term.
When the derivative (from the definition of the momentum bracket) falls on

Plo(|u|$u), we take the absolute values inside the integrals and use (5.30) to
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estimate this contribution by

[ ) P19 Pl 720 ¢ )l s, ) dadyde < (524),
Ip n n

When the derivative falls on uy;, we first integrate by parts and then take the

absolute values inside the integrals to obtain, as an error, a scalar multiple of
_4
[ [ st PIV Pl =50) ()] o ) syt
[0 n n
i t Po n- 2 t i t
LA D R T T
IO n n

[z — |

The first term on the right-hand side of the above inequality is controlled by
(5.24). The second term we estimate via (1.7) by

[ [ [ Il )t
Ip n "

|z — |

4 4
zt Po n—21, — il T2 Up; t, itv
/// uni 1, )PPl ()20 — il ) (6 )it )
Iy n m

lz =yl
(5.25) + (5.26) + (5.27).

5.3 Strichartz control on low and high frequencies in di-

mensions n > 6

The purpose of this section is to obtain estimates on the low and high-frequency
parts of u, which we will use to bound the error terms in Proposition 5.7.
Throughout this section we take n > 6. The proof in dimension n = 5 is different;

see Appendix C.

Proposition 5.8 (Strichartz control on low and high frequencies in n > 6).

There exists a constant Cy possibly depending on the energy, but not on any of
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the n’s, such that we have the following estimates. The low frequencies satisfy
: 2
(5.31) ”uloHSI(onRn) < Cipy" ™.

The high frequencies of u can be split into a ‘good” and a ‘bad’ part, up; = g+ b,

such that
2
(5.32) ||9”SO(10an) < Cing ™,
(5.33) ||9”Sl(10an) < Ch,
(5:31) IV #2b sos < Cimf.

L2027 =372 (I xRn)
Proof. We define the two functions, g and b, to be the unique solutions to the

initial value problems

(5.35) (10, + A)g = G + PriF (wo) 4 Pri(Fwo + g) — F(g) — F(w))
g(to) = uni(to)

and

(i0; + A)b = B + Pyi (bF.(wo + g) + bF:(wo + g))

+ Pri(F(wo + g+ b) — F(uo + g) — b (w0 + g) — bF: (w0 + 9))

b(to) = 0,

\

where F': C — C is the function given by F'(z) = |z|ﬁz and G and B are such
that Py; (|g|$g): G + B, as we will explain momentarily. Note that b = uy; —g.
In Appendix B, we prove the existence and uniqueness of local solutions to (5.35),

which implies the existence and uniqueness of b.

In order to prove Proposition 5.8 we will use a bootstrap argument. Fix
ty := inf Iy and let €; be the set of all times T" € Iy such that (5.31) through
(5.34) hold on [tg, T] with g and b defined above.
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Define also €22 to be the set of all times 7' € I such that (5.31) through
(5.34) hold on [to, T] with C; replaced by 2C; and ¢ and b defined above. More

precisely, for T € )y we have

4

7
(5.36) o]l g1 1t ymy < 2Ch75"
and
(5.37) 190l 30 0 7y xmy < 2C175 2,
(5.38) 191l 51 (it0, 71 xRm) < 2C1,
_ 2 1

L2LI2 732 ([to T xR™)

In order to run a bootstrap argument successfully, we need to check four
things:
e First, we need to see that ¢ty € €2q; this follows immediately from the definition
of uy,, g, and b at the time ¢t = ¢y, provided (] is sufficiently large.
e Secondly, we need 2; to be closed; this follows from the definition of €2; and
Fatou’s lemma.
e Next, we need to prove that if T' € €2y, then there exists a small neighborhood
of T contained in 5. This property follows for u;, from the dominated conver-
gence theorem and the fact that w, is not only in S*([to, 7] x R™), but also in
CYH([to, T] x R™) because of the smoothing effect of the free propagator. As far
as the high frequencies are concerned, it suffices to check it for g since b = up; — g
and thus the claim for b follows again from the dominated convergence theorem.
To prove this property for the function g basically amounts to proving existence of
g on a tiny interval, since the dominated convergence theorem and the smoothing
effect of the free propagator can be used, as before, to conclude our claim. The
existence of g is proved in the usual way: showing convergence of the iterates;

the proof is standard and we will defer it to Appendix B as to not disrupt the
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flow of the presentation.

e The last thing one needs to check in order to complete the bootstrap argument
is that Qs C 7 and this is what we will focus on for the rest of the proof of
Proposition 5.8. Fix therefore T € 25. Throughout the rest of the proof all

spacetime norms will be on [tg,T] x R™.

Before we move on with our proof, let us make a few observations. First, note

that by (5.38) and the conservation of energy, we get
(5.40) IVb][co2 < [[VUnilloo2 + |V lloc2 < 3Ch,

provided C is sufficiently large. Also, from (5.11) and (5.37) and by taking C

sufficiently large, one easily sees that the mass of b is small:
_2
(5.41) [Blloc2 < MJunilloo2 + [19llcc2 < 3Cim5 "

Interpolating between (5.39) and (5.40), we obtain the following estimate which

we will repeatedly use in what follows:

(5.42) 1l 20 2wz < CYJ[V]T7= 2bH 2n(n-2) HVbHooz <3CCn,™

n—2’(n+1)(n—2) 2, 72 _3n_2

where C'is a positive real constant. Also, by interpolation, (5.37), and (5.38), we

estimate
1 1
IViglly 2 < IIVgH 20 H9H4 2 S gl 1||g||50 <ny .
Sobolev embedding dictates

1
(5.43) IV~ 5 gllaa S UVEgly 2o < my™

and hence, by the triangle inequality, (5.15) and (5.43) yield

(5.44) [V~ bl|as < (Com)?.

65



We are now ready to resume the proof. We consider the low frequencies first.

Strichartz’s inequality yields the bound
(5.45) lusoll g S €™ 2w (to) 51 + IV Pro F (1) [, 2

By Strichartz and (5.10),

4

Cy 752
He = tO)AUZO(tO)HSl S ||vu10||0<>2 My < mn( %

To estimate the second term on the right-hand side of (5.45), we write

V Py F(u) = VP F (ui) + V Pio(F(u) — Flu).

By (5.10) and (5.36), we estimate

C’ _ 4
I PuF il 25, S 190l 2 Nt 2 2. S 57 ol < oo™

Using Bernstein to drop the derivative in front of P, and then replacing the pro-
jection P, by the operator with positive kernel P/ having the same LP-mapping

and Bernstein properties as P, (see Section 1.2 for the definition), we estimate

n+2

IV Pio (F (1) = F(uo)) 15, 20, < 10, (Jottol 72 fanal) N, 2+ 117, (Janl 72 ], 2

‘n+2 Sn+2

Decomposing up; = g+ b and exploiting the positivity of the operator P/, we get

IV Pro(F () = F(wio)) o, 26 S 1P, (ol 72191 1,22 + | P (ltaol 72 [b]) ], 22

k) +2 ) +2 bl +2
n+2

1P, (19177 ) Ml 22, + 1127, (161772 ], 20

‘nt2 ‘nt2

Using Bernstein to lower the spatial exponent when necessary, (5.10), as well as
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our assumptions (5.36) through (5.39), (5.41), and (5.42), we estimate

4

n—2 (n—2)2
2 (ol 72 lg1) ], 20, S HUZoH 2 (|92, 22, S 15 gl < oo
| Bl (leaol 72 B1) 1, 20, S ||le(|wo|m|bl)||2 (o)
-2
< ”bH2<”+2> 2n Hul0H2(n+2 (n+2)
n—2 ' n-—2
VI o
< ||b||n+2 an2 ||b||n+2|| l0| n—2 S _1 (n72)2’
n—2"(n+1)(n—2) 100
n+2 n+2 *
150 (19172 ) W2 225 S 1P (lg1772) ] 2npr |!9Hz:+22>722<n3> 191l go
< G ﬁ)
— 100

A 2)Ilz 2 S A 2)||2 BETUS TS ||b||2(n+2> o

n—2 'n—1

4
(n (n—2)2

< bl b
SIS e IBIZ3 < g5

Therefore, putting everything together we obtain control over the low frequencies,
4
o] 31 < Crumg™™"

We turn now to the high frequencies. We will first clarify what G and B are.
The reason we need to split Pp; F'(g) into G + B is that P;F(g) is neither ‘good
enough’ to be part of g (as one cannot close the bootstrap for the S bound on 9)
nor ‘sufficiently bad’ to be part of b (as it’s not sufficiently fast decaying to belong
to the appropriate L? spaces, unless 6 < n < 14). We thus use an interpolation

trick to split Pp; F'(g) into a part which is small and has high spatial integrability,

GG, and a part which has low spatial integrability, B. Indeed, we have

Lemma 5.9. There ezist two functions G and B such that Py F(g) = G+ B and
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moreover,

2

(5.46) HGH2<n+2) 2ant2) < 77577;72
n+4 7 n+4
(547) HVGHz(n+2) 2(nt2) <K ,r]iOO
T4 ni4d
(5.48) H|V|_“ 2B||2(n 2)(n+2) 2(n—2)(n+2) K 77%00,

n24+3n—14 ' n243n—14

where ¢ > 0 1s a small constant depending on the dimension n.

Proof. Let us first note that for 6 < n < 14, we can choose G := 0 and B :=

PyiF(g), since by Bernstein and interpolation,

__2
IV 72 Poi F(9) || 2tn-2)(nt2) 201-2)(n42)

n243n—14 ’ n243n—14

5 ||Phl ( )||2(n 2)(n+2) 2(n 2)(n+2)
n2+43n—14 ' n243n—14

~ Hgl 2(n+2)2 2(n+2)2
n243n—14"n243n—14

3n2—4n-20 <n+2><14 n)

< H |‘2(n+2)(n72) H H2(n+2 n—2)

~ 119 2(n42)2 2n(n+2)2 2(n+2)2  2n(n+2)2
n2+43n—14’n3+2n2 —2n+28 n2+4+3n—14’n3—-10n+20
3n2—4n—20 (n+2)(14—n)

H H2(n+2)(n 2)H HQ(n+2)(n 2)
S <™,

where the last line follows from (5.37) and (5.38). Here, ¢ is a small positive

constant! depending only on the dimension n.

We consider next the case n > 14. To decompose Py;F(g) into a part with

high spatial integrability and a part with low spatial integrability, we first need
2(n—2)

PpiF(g) to belong to an intermediate L space. We choose the space L, ,” and

use (5.37) and (5.38) to estimate

n+2

n+2
(549) Pt rot S 9] 5 sasn S 915" < 5l

)

!'Throughout the proof, the constant ¢ may vary from line to line; however, it will always
remain positive and will depend only on the dimension.
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and, by the boundedness of the Riesz potentials on L2, 1 < p < oo,

4
NIVIE )]z 20 S V(@) | sts 200 S [Vl st 2t0sn 1911

2
+2) 2(n+2)
n n n n

’ n

_4
(5.50) S llgllsllgllge™ < ms-
We now decompose

(5.51) PhiF(g) = P1<,<172—100F(g) -+ Pz%—looF(g).

Consider first the term in (5.51) involving very high frequencies. Writing
PZn{wOF(9> = \V]*1P2n2_100(|V|F(g)),
we define
Goni = | V|71 Psyao0 (x 91701y VIF (9))
and
Bupi = |V[7 Py (1= xqivir@i<y) [VIF(9)),

where x{|v|F(g)<1} is a smooth cutoff.

By Bernstein, Holder, and (5.50), we estimate

1Gonillass 2o S ™ | Poyrioo (X9 12(0)1<1y VIF(9)) 2tz 200sn

(n=2)(n+4)

(5.52) S IVIF@ 20 202 < 1™

By the boundedness of the Riesz transforms on L2 with 1 < p < oo and (5.50),

we estimate

||Vthi||2<:7ﬁ,% S 1P,y 100 (X912 <13 [ VIF(9)) | 20042) 20042

(n—2)(n+4) 10;L+4 o
n(n+2
(5.53) SVIE@) ] sy 2y < 15 < 01
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By Bernstein, Holder, and (5.50), we get

200
H’V| n- 2Byh@H2(n 2)(n+2) 2(n 2)(n+2) < 772 2Hthl“2(n 2)(n+2) 2(n 2)(n+2)

n + n—14 n + n—1 n +3n 14 ' n +3n 14
= wanole 100
(5.54) S MIVIF@ s b <127

We consider next the medium frequency term in (5.51) and write

Pi__,wF(g)~ Y  PyPyF(g),

1<N<ny 1%

where Py is an operator having the same properties as Py and double support

on the Fourier side. For dyadic N’s between 1 and 7, '°°, we define

GN = X{pyF(o)|<i/N} PN E(9),

By = (1 = xqpyr(g)<1/ny) PN F(g),
where Xy pyF(g)|<1/N} are again smooth cutoffs. We define
G = Gmed + thi and B := Bmed + thi;

where

Gmed = Z ﬁNGN and Bmed = Z ﬁNBN.

1<N<ny 190 1<N<ny

Using Holder and (5.49), we estimate
(n=2)(n+4) (n+4)

- __ 8 (ntd) s
(5.55) ||PNGN||2(7L7:—42)72(7L7:;12) < ||F(g )||2(:(7;)+2;(n o N4 < ||g||5,0" N~ ntnt2) |

n

which implies together with (5.37) that

HGmedH 2(n+2) 2(n+2) < Z HPNGNH 2(n+2) 2(n+2)

n+4 1<N<n;10 n+4 n+4
(n+4) __ 8
Slallem Y, N
1<N <y 100
(n+4)
(5.56) Slgllger < méllgllgo-
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Now, by Bernstein, Holder, and (5.50), we get

(n—2)(n+4)

- _ 8
|VPNG || 2042 242 S N||PyEF (g )||z<:f(7§>+2;(n y N 7 FD
n+d > ntd =

(n—2)(n+4)

< NN- R TCRC ||PNVF( )||2(;;<’;;2(n ) N7

’ n

(5.57) < 1

As there are about log(n; ') dyadic numbers N between 1 and 7, ', by (5.50)
and (5.57), we get

IV Gineall 200t 2000 S IV PGy ztns 2ot
n+4 7 n+4 +4

1<N<ny %0
(5.58) < log(ny )ns < m ™.
By Holder, Bernstein, and (5.50), we estimate
V] = 2PNBN”2(n 2)(n42) 2(n—2)(n+2)
n243n—14 ' n243n—14
n +3n 14

n—14
< N #2||PyF(g )||2[;<”;)2>2(n , Nt

’ n

n243n—14 14
SN =2NT G ”PNVF< M 2z gnz) N7+
(5.59) < N2,
Hence,

|||V| " 2B'rnecl||2(n 2)(n+2) 2(n 2)(n+2)
n +.3n 14 ' n +.3n 14

N Z Hlv’ e 2PNBNH n 2)(n+2) 2(n—2)(n+2)

Y
+3n—14 ' n243n—14

1<N<rfm0

(5.60) Snso Y, NTEE S

Thus, by (5.52) and (5.56) we get (5.46), by (5.53) and (5.58) we get (5.47),
and by (5.54) and (5.60) we get (5.48). O
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We are now ready to resume the bootstrap for g and b. Consider first the
‘good’ part, g. By Strichartz, Bernstein, (1.8), (5.10), (5.11), (5.36), (5.37), and
(5.46), we estimate

gllso < llunilloos + Gl 2een) 2t + ([ PaiF (o), 20,
n+4 ' n+4 'n+2

+ || Pui (F (wo + 9) — Fwo) — F(g)) Hz,f—fz

_2
c, n—2

4
S+ neng T+ vahi}?’(ulo)H2,n2—j2 + Hg‘ulo’”_2X{Iglﬁluzol}”2,%2

_4
+ [0l 91772 X o<1 12, 22,
¢ w3

Sy A+ ol g1 o]

4 4

n—2 —=

—2

2%+ [|gluo] 2[5, 20

00, =15 9 2003
2
CcC,on—2

_4
<557 + lgllgollunol 2 2,
2

< CWF-

Similarly, by Strichartz, (1.9), (5.36), (5.38), and (5.47), we estimate

l9ller S | Vunillosz + VG| 2ty 202y + ||V Pri (wio) || 5, 2n
n+4  n+4 Tn+2

IV Pi (F(wo + 9) = Fluio) = F(g)) |13, 22,
4 4 4
<1490 4 ltoll so ol g 22 + 1V gluio] =2 o, 2o, + [V tto] g 72 15, 22,
4 4
S 1A fJwioll 5 %n llgllge + lleollsellgll 5

S Cla

provided ' is sufficiently large.

We turn now to b. Using the triangle inequality and the inhomogeneous

72



Strichartz estimates (2.6) and (2.7), we estimate

H|V‘ n— 2bH2 Qn(n 2) < H|V’ n— 2B“2(n 2)(n+2) 2(n—2)(n+2)

2_3pn—2 n+n14’n+3n14

+ |||V| " 2th(bF (Ulo +g) + bF (ulo —|—g))||2 2n(n=2)

n+n 10

+IvV

~iZp, <F(ulo +g4b) — Flup + g)

— bFz(ulo —+ g) — BFE(UlO + g)) ”2 2n(n— 2) .

n +n7

By (5.48),

C 1
H|V| n— 2BHz(n 2)(n+2) 2(n=2)(n+2) <K 771 ! —n.

> n243n—14 o 100

By the Fundamental Theorem of Calculus, we have
1
F(z4+w)— F(z) —wF,(2) —wFs(z) = w/ [F,(z + tw) — F,(z)|dt
0
1
+@ / Fals + tw) — Fu(2)]dt.
0

As z — F.(z) and z — F3(2) are Hélder continuous of order —, we see that

1
F(z 4+ w) — F(2) — wF.(2) — 0F:(2)| < Jul / tw|2dt < Joof 5
0

Therefore, by Sobolev embedding and the above considerations (with z = w;, + ¢

and w = b), we get

H|V\_%Phi(F(ulo + g4 b) — Flu,+ g) — bF.(wo + g) — bF:(wo + 9)) Iy, an(n-2)

n +n 10
n+2

< |||b|n 2||2 2" < ||b||2(n+2) 2n(nt2) -

n—2 ’(n—2)(n+3)

Interpolating between (5.39), (5.40), and (5.44), we obtain

n2-3n—6 4n(n—4)
T n- — 75 h|| n?—3n (n—2)(n2—3n—2)
HbHQ(”Jr;) (2n§;t(+2>3) S H|V‘ b”41 ; V| *2bH 22;3(n 22) ”VbH( 2)(n?—3n-2)
" " et n<—3n—2
1
(5.61) < it
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Hence,

|||V|7$Phi (F(ulo + g+ b) - F(ulo + g) - bFz(ulo + g) bF (ulo + g)) H2 2n(n—2)

"n24n—10
< G i
= 100"
We turn now towards the remaining two terms,
_ 2 4
|HV’ niQPhi(b’ulo + g "72) H2 2n(n—2)
’n2+n710
and
-2 7 4 (ulo + g)
V| 72 Py (bl + gl 72— n(n
H| | hl( ’ lo g| |Ulo—|—g|2)H2’ 227(Ln 21)0

As the method of treating them is the same, in particular it appeals to the fact

that the maps z — ]z|n 2 and z — |z]n 2 ? are Hélder continuous of order —%5,

let us pick, for the sake of the exposition, the first one. By the triangle inequality,

we estimate
_ 2 4 _ 2 4
I[V]7772 Pay (bluio + 91772 ||y, 2nin2 S N[V]7772 Poy (bluso| 72 [l 2nn2)
77124»n710 7'n2+nfl()
_ 2 4 4
+ [V =2 Py (blulo +g|"—2 — b|Ulo|"*2) ||2 2n(n—2) .
’n2+n—10
Using the Holder continuity and Sobolev embedding, we bound

119717752 Pa (bluuso + 9172 = blaaso| 72|, EREDIIS 1619172 [, 20

'n+3

Now, by interpolation and our assumptions,

b n— 2 b .
L P P B
n+6
S 10l 20 HgH sz ol e
n—2’ (n +1>( n— 2 n2—n+2 n— 2’ 2 —3n+2
n+6
Sl zn 20z |lg] ngl o
—27 (n+1)(n—2)
< G
S 100771
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In order to estimate
_ 2 4
V17772 Py (bluio| 72 ) ||, 2002
7'r12+n—10
we drop the projection onto the high frequencies, Py;, but we split |u10|$ into

high and low frequencies. By the triangle inequality, we get

2 4 2 4
Th—2 n_o < Th_2 n_o
V]2 (blugo | 2)|‘2v§2"i11?0 S V772 (0P<1yafuo| ™ Q)IIQ,fn&:?O

As b is high frequency, we see that

2 4
|||V| n2 (bP§1/4|u‘lO|n_2) %’M < ||(|V| n- 2b)P<1/4|ulo|n 2||2 2n(n—2)

I, "WZtno10

S V72l 2nmo2) | Peryalue] 72 ||oo,2
"n2_3n—2

4

1 _4
S 2C17714||ul0 ;;22771
‘n—2
01 i
~ 100"

As far as the term

11V 7772 (bPsral o] 72) || 2nn2

"nZ4n—10

is concerned, let us note that

__2 _4
[[V]~ == (bP>1/4|“lo|"‘2)||2,m
n

NI Qng Znnz) 11V]772 Pay paugo| 72 2] ain=2)
S 201771 V17552 Pay a|ugo] 72 2| g

as can easily be seen by taking j = ]V\_mb and k = |V\%P>1/4|ulo\ﬁ in the

following

Lemma 5.10.

2 _2 . __2 .
(5.62)  IVI7=={(V[7=ZH) (VTR 200 S N5 2pw=ay [[B]] 22 -
LG +n—10 L;’ —3n—2 Lﬂ?(”_l)
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Proof. In order to prove Lemma 5.10, we decompose the left-hand side into 7y, 4,
m,h, and 7y, which represent the projections onto high-high, low-high, and high-

low frequency interactions.

The high-high and low-high frequency interactions are going to be treated in
the same manner. Let’s consider for example the first one. A simple application

of Sobolev embedding yields

VT2 mnn { (VI (VT2 R 2pee)

Lg’::12+n710

S mat (V=) (V=2 k)] an

Now we only have to notice that the multiplier associated to the operator T'(j, k) =

ol ([V[725) (V| 72 k)}, .

3 l6l7E Pj(6) |72 Park(£2),

N~M

is a symbol of order one with £ = (£, &2), since then a theorem of R. R. Coifman

and Y. Meyer ([10], [11]) yields the claim.

To deal with the 7,; term, we first notice that the multiplier associated to

the operator T'(j, k) = |V|_£7rh7l{(|V|$j)l~€}, ie.

S J + 6l 67 Pj(6) Park(6a),

N>M

is an order one symbol. The result cited above yields
VI m {1V ]F25) (V] 72k < Ilj V[ "k
V1= ms (71721720 yecn S 131 e 119121,

Finally, Sobolev embedding dictates the estimate |||V|7$k‘||L% S k| a2 -
z LIQ("*U
O

Thus, we are left with the task of estimating

”|V|%P>1/4!Uzo|ﬁ|| (n—2) .
0 3(n—1)
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n(n—2)

Note that P>1/4|ulo|n 2 € AQ(" Y that is, P>1/4|u10|n 2 is homogeneous Holder
n—2

n(n 2)

continuous of order ﬁ in L;""". Indeed, as Vuy, € L Ln (by Bernstein),

we have
h
2 0) O]y < BNV 2 Sl
where 1™ denotes the translation u®(z) := u(z — h). As the map z — |z|$ is

Holder continuous of order —2, we see that

4
1 (lutol73) P (@) = et P2 (O] niner S 12 RJ72,
Li(n—l)

n(n—2)

which implies Psq 4|, | ™= =y A2~ Furthermore, as Py a|ug| 7 773 is restricted
p >1/ & >1/

to high frequencies, the Besov characterization of the homogeneous Holder con-

tinuous functions (see Chapter VI in [32]) yields

n(n—2)
V72 Po g 72 € LELID.
n(n—2)
Indeed, for Fy = P>1/4|ulo|n 2, we have Fy € A*7Y iff for all dyadic N’s we
n—2
have
4 4
Nw=2||[PyFol| nm-2y Smp 77
Lﬁ(nil)
Hence,

I|V]7=2 2F0H TIPS S N 2||PNF0H 2oy 57;;*2 Y NTENTwE

N>1/4 N>1/4
_4
N/
Thus,
2 4 4 1
V=2 (0P jalno] =2l zpn-2 S 27 < ot
100
Putting everything together, we find that
__2_ 1
[V]77=2b]|, 20m-2 < Cinff.
'n2_3n—2
Therefore T' € ;. This concludes the proof of Proposition 5.8. n
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5.4 FLIM: the error terms in dimensions n > 6

In this section we use the control on u;, and wuy; that Proposition 5.8 won us to
bound the terms appearing on the right-hand side of Proposition 5.7. For the

rest of this section n > 6 and all spacetime norms are taken on Iy x R™.

Consider (5.19). Using (1.8) and Holder, we estimate

o}

_4 _4 _4
S melfunl*luol =2 1y, < ma{ g1 lusol =21y, + 1101 uo "=l , }

_4 n+2
(5:19) < 24 N i [0l =2 X grunatctuso 2, + [ 20mil "= a0 X g unaly

_4 _4
S{lglls 2 ol 2o +100% e Nlwoll’y? 2}
n—2 -2 n=2"(n+1)(n—2) n—2’(n+2)(n—2)

For n > 6, an application of Bernstein yields

wioll 20— anz S lltioll 2n 2n2 S [lrol|n
n—2’(n+2)(n—2) n—27(n—2)2

and hence, by Proposition 5.8 and (5.10),

4

_4 _4
(5:19) S mo{llglfsolnoll T % +101%00 202 Nlwollge™} < m.

n—2’(n+1)(n—2)

Consider next the error term (5.20). Replacing the projection P, by the
positive-kernel operator P/ having the same L2-mapping and Bernstein proper-

ties as P, and splitting uy; = g + b, we estimate

n+2

n+2 n+2 n+2
(5.20) < m{ 9P (lgl==2)lcr, + 9P (1ol =2) ]l s, + 10 (19l "2 |z,

n+2
+ (0P, (10|, -
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By Proposition 5.8 and Bernstein, we estimate
4

s I
lgPr (g1, S N9ll5 20 90070 S CF 725 ™,

n+2
lgPr(lol=)l:, S PL(1815) g, 22 S Nl o 127, (18772 ], 20

'n+3

n4+2 2 _2

< ||g||SO||b|| 2(n+2) 2n(n+2) 5 Cln_2n2n_2 77117

n—2 ’(n—2)(n+3)

nt2
DA S P T A T
S 110 2 7IIBO(|9|“ )] [T,
n—2"(n+1)(n— n+2’ (n2-2n+4)(n+2)
nt2
n—2
S 1ol 2 Mol o
(n +1)( n—2"n2 _2nt4
nt2 o2 2(n+2)
n—2 n— n—2
< HbH 2n +f)n( ||g| S0 C 27]1471 772( B 9
n+42 n+2
AP P T A TP
S 0] 2 7IIBO(|’?I" M o
n72’(n+ )(n— n+2’(n+1)(n+2)

2= 2= 3
S e SO
n—2’(n+1)(n—2)

Hence,

2n 2 n—2 2(n42) 1

(5.20) S mCT g * +nd i+ 4t} <.

We turn next to the error term (5.21). Decomposing again uy; = g + b, we

estimate
(5.21) < mo{ 119 P (|io| ™2 1) ey, + ||bPhi(|ulO|ﬁu10)HL;I}'

By Holder, Bernstein, and Proposition 5.8, we estimate

4 s
g Phi (feaol ™o)1, S Mgl 20 1V tktollz, 20 et %2
4 —— 4
S llgllso ol g llvoll 2 %2n < gl g,
_4_
10Ph (Jutol ™2 uso) 12y, S 118 o HWon o et ol e
(n+1( - —2'n2—2n+4 n—2’(3n—2)(n—2)
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For n > 6, Bernstein dictates

(5.63) [eio]] 2n S S o]l 2o 2uz S luto]| g
= —2)(n-2) =2 (n—2)2
and hence
n+2 4 .n+2

6P (fuso| 72 2uo) |3, S (1B 20 2n $||ulo|g12 < C’ 2 772<n 52
n

Thus (521) <L N.

Consider now (5.22). Decomposing up; = g + b and applying Hoélder, we

estimate
(5.22) < 73| Vo, 20 {Ilglwo|“ g, 20 + 1o 72 |, 2}

Using again Proposition 5.8, we estimate

4 _6_
lgluo| =2 g, 2 S M9l 2 flnoll % S HgHsoHuloH SO

and

42

bzl 72 [, 22 S [IDl] 20 LHMJ "o s
27 (n+1)(n— n—2'(Bn+2)(n—2)

4 nt+2 npn_2 1623

(5.64) SOl 2 ez Jlusoll g™ S G L

where we also used the fact that for n > 6, an application of Bernstein yields

(565) ||ulo|| 4n 8n2 < ||Ul0|| 4n 2n2 < ||ul0||517

E’W *27n273n+
Thus
4
(5.22) < ™ T O + O T <

We turn now towards the error term (5.23), which we estimate by

(5.23) S 3 { [ Vunolg| 2 2||L1 + [ Vuiolb] 2 2||L1 NE
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By Holder and Proposition 5.8,

2

n+2
Vol glm==1zs , S [1Vwollo, S HonyHgHsngHSl

4

2
2 ('n n—-22 72
Cn 772 )

n+2

(TR TP\ I [V

2n2
n— 2 ' (n+1)(n—2)

4 n n+2

Cn 2 (n 2)2 4n n—2
1 )

where we applied Bernstein to estimate

HvulOH 2n =5 2n2 < HvulOH 2n 22n < ”ul0||Sl~

n—2"n2_3p—2 - n<—2n+4

Hence,

_ 4 nt2
(5.23) < 2P e e +a L <

Consider now the error term (5.24). We estimate

4 4 4
HVPIO(’U\"*U)UMHM S HVPlo(’Uhi’"*QUhi)UhiHLl + vazo(|ulo’"*2ulo)uhi 1,1

_4 _4 _4
(5.66) + IV Po(Jul7=u — o™ wo — |uni| 72 uni) uni|1,1-

Using Bernstein to drop the derivative in front of the projection Pj,, we recognize
in the first term on the right-hand side of (5.66) the error term (5.20). Hence,

by the previous computations, we have
_4
(567) nSHVPlo(]uhi]n—Q uhi)uhiHL%’x < 7’]2(520) <L 7M.

To estimate the second term on the right-hand side of (5.66), we decompose

up; = g+0b and use (5.10), (5.63), and Proposition 5.8 to control the two resulting
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terms as follows:

4 4
IV Pio (Jwo] 2 wi0) 9l 1y, < HVUonz%Huon" 2 (|92, 22, S 72 QHUonmHgHso

4

2 n— 2 (n 2)
< Cing )

4 4
19 Pl 72 By, \|Vu,on%,nﬁ+%|rumun ST P
on o Alni2)
Sl 10l 2 e S CT T

n—2’(n+1)(n—2)

Thus,
4
(5.68) NIV Pio (Jtato| 72 wso ) unill . < 11

To estimate the third term on the right-hand side of (5.66), we first use Bernstein
to drop the derivative in front of P, and then replace the projection P,, by the
positive-kernel operator P/, (see Section 1.2 for the definition and properties of

P ); using (1.8), we obtain the bound

_4 _4
17 (lttao =2 il X grunsl <lunoly ) wnall 2, 1Py (2ns |72 [tta0 X grusg < funty ) nill 3

_4
S 1Py (lraao 72 i il 21 -

Decomposing up; = ¢ + b and using (5.10), (5.64), (5.65), and Proposition 5.8,

we further estimate the third term on the right-hand side of (5.66) by the sum
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of the following four terms:

2n2

4 4
1P (w29l gl 2, < IIQIIS,%IIWOII" S 2||9||So S Cins

2 7L2 16

4 2n
b|uzo|"’2||2,n2—j;2 SO ny gy »’

4
1P (ol =2 181) gl 1, S Mgl 2

4
1Py (o 2 g])0ll 1, S (L[

4
HQHQ 2n||ugo] Zf in2
o= 2 (Bnt2)(n=2)

S0l 2o Lllglbollwollgf
—27(n+1)(n—2)

2n n—2 2 16

n— n— 3
SO "Ny 772< Y

_4 _4
1L (ol =5 )bl, < ||B’o(|uw|nfz|b|>b||1,#i4
_4
S0P e Mol e
n—2’(n+1)(n—2) n—2"(n—2)2

2n n—2 16

S P
Hence,
(5.69) W31V Pro ([l 72 — [atio| ™ 1uto — Junal ™ un ) unill < .
Collecting (5.66) through (5.69), we obtain

We turn now to the error terms (5.25) through (5.27). We notice they are of

the form (Jupi|* * 17, f) where

o] 72 [upi| in (5.25),
f= Jgo| || =2 in (5.26),

’Plo(’uhi’muhi)uhi‘ n (527)

6n
Let us first note that uy,; € L3L7"*. Indeed, by Strichartz,

_2
(5.70) lglls oo < llgllso S Cims,
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while

n—~6

1
02752 < Cunf

(5.71) 1bll5, 0n; S T

n— 2 ' (n+1)(n—2)

Thus,

1
(5.72) [unills, e S Crnf

_6n 2B
As up; € LILZ" and uy; € LS°L2, we get |up;|? € LILg" . Therefore, by

Hardy-Littlewood-Sobolev, |u;|? * \?I € L3L3". Moreover,
1
[ %
|z

1
(5.73) S 017716772Hf||g,3n331-

) S lnal 5 | 7 | g, 1 s o S Huills, o unilloo2l1 Il on

<|U/hz 273n 273n

Consider the case of (5.25), that is, f = |ulo|%§]uhi]. By Hélder, (5.31), and

(5.72), we estimate

4
n—2

gt o1 2, o Nl on
1 $
6, n— 2 (n—2)2

< CmanHulngl < C2nfny

llso *2 il s, _so S [l

2'3n—1

Thus, by (5.73) and the above computation, (5.25) < n;.
Consider next the error term (5.26), that is, f = |uloHuhi|%§. By (5.31),

(5.72), and the conservation of energy, we estimate

_4
[

1
5 C17716||ul0||51

2n ||ul0

letiolunil ¥ 15 _sn S Nanall, oo llenillZ

4

< i

Hence, by (5.73) and the above computation, (5.26) < 7.

The last error term left to consider is (5.27); in this case we use Bernstein,
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(5.72), and the conservation of energy to estimate

_4 _4
i 7= )l s, sn < llunals, on |1 (fune] 7220ns) ly, on

1
< Cunt 1Pl = uns) s 02
4

1 4
< o lunily o s %
1
< Cing'.
Thus, considering (5.73), we obtain (5.27) < 7.

Hence all the error terms (5.19) through (5.27) are bounded by 7;. Upon

rescaling, this concludes the proof of Proposition 5.1.

As a consequence of Proposition 5.8 and scaling, we obtain the following:

Corollary 5.11. Let n > 6, u a minimal energy blowup solution to (1.1), and

N. < ¢(n2) Npin. Then, we can decompose P>y, u = g+ b such that

_2
(5.74) 191l 5070 xzny S M5~ NI,
(5.75) HQHSI(IOan) S
2 i _3
(5.76) IIVI77=2b||  2nm-2) <Sni N 2.

LfL;‘Q_S"_Q (IgxR™)

Moreover, under scaling, (5.42), (5.61), and (5.72) become the following

1 3. n—2
5.77 b . < (pIN_2)
( ) | HL%LW(&XR") ~ (771 * ) ;

1 3. n—2
5.78 b n(n < (ptN, 2)n*2
(5.78) ) s e S (N

1
5.79 P n <psN7L
(5.79) I zN*U|L§LJ§Sﬁ4(onRn) ~

Remark 5.12. In dimension n =5, the analogue of (5.79) is

(5.80) |Ponu

For details see Appendiz C.
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CHAPTER 6

Preventing Energy Evacuation

The purpose of this chapter is to prove

Proposition 6.1 (Energy cannot evacuate to high frequencies). Suppose that u

is a minimal energy blowup solution to (1.1). Then for all t € Iy,

(6.1) N(t) < C(n4) Nimin.

6.1 The setup

We normalize so that N, = 1. As N(t) € 27 there exists tmin € Iy such that

At time t = t,,,;,, we have a considerable amount of mass at medium frequen-

cies:

(6.2) | Pe(no) <-<Cmo)Wtmin) I 22 2 €(n0) | Peno)<-<Cno)Wtmin) || 1 ~ (o)

However, by Bernstein, there is not much mass at frequencies higher than C(1,):
| P> 0oy u(tmin) |22 S (o)

Let’s assume in order to reach a contradiction that there exists t.pqe € 1o such
that NV (tewc) > C (774). By time reversal symmetry we may assume tepae > tmin-

As for every ny < n < o and all t € Iy, ||Peeiynpu(t)]| g < 1, we see that by
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choosing C(n4) sufficiently large, at time ¢ = .4 there is very little energy at

low and medium frequencies:
(6'3) ||P<n4*1u(teva6)||H; < M.
We define w;, = P.pponu and up; = Pso0u. Then by (6.2),

(6.4) i (tmin) || 22 > M1

Suppose we could show that a big portion of the mass sticks around until time

t = tevac, 1-€.,

1
(65) Huhi<tevac)HL% > 5771

Then, since by Bernstein

P> cmyuni(tevac) [z < (m),

the triangle inequality would imply

1

||P§C(m)uhi(teva6>”L3, > 1771-

Another application of Bernstein would give
||P§C(n1)u(tevac>||]_'[% z C(Wl; 773)7

which would contradict (6.3) if 1, were chosen sufficiently small.
It therefore remains to show (6.5). In order to prove it we assume that there

exists a time t, such that ¢,,;, < t, < tepae and

) 1
(6.6) inf_Jun(®)llzz > 51

t7nin§t§t*

We will show that this can be bootstrapped to

) 3
(6.7) inf_ Jun(0)llzz > S0

t7rzin§t§t*
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Hence, {t. € [tmin, tevac] : (6.6) holds} is both open and closed in [tin, tevac] and
(6.5) holds.

In order to show that (6.6) implies (6.7), we treat the L2-norm of uy; as an

almost conserved quantity. Define

L(t) = /n lupi(t, z)[*da.

By (6.4) we have L(t,.:n) > n?. Hence, by the Fundamental Theorem of Calculus

it suffices to show that

ty 1
dt < —
| 1o < gt

min

4
dL(t) =2 / (Pl 72 u),
4 4
=2 {Phi(fu\"*zu) - |Uh7;|"*2uhi, Uhi}mdx,
R’ﬂ
we need to show

o[

In order to prove (6.8) we need to control the various interactions between

4 1
Pi n-2 " 2 1y Yhi md dt < —
[ Pl = Jun 2, )it < o

low, medium, and high frequencies. In the next section we will develop the tools

that will make this goal possible.

6.2 Spacetime estimates on low, medium, and high fre-

quencies

Remember that the frequency-localized interaction Morawetz inequality implies

that for N < C(nQ min

tevac | Psnu(t, y) 2| Psyu(t, x)? B
oo [ e g
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This estimate is useful for medium and high frequencies; however it is ex-
tremely bad for low frequencies since N3 gets increasingly larger as N — 0. We
therefore need to develop better estimates in this case. As u<,, has extremely
small energy at t = feee (see (6.3)), we expect it to have small energy at all
times in [tyin, tevae). Of course, there is energy leaking from the high frequencies
to the low frequencies, but the interaction Morawetz estimate limits this leakage.
Indeed, we have

Proposition 6.2. Under the assumptions above,

n+2

-3 8 —nEond2
(610) ||PSNu”Sl([tminytevac]XR") 5 774 + maX{n3 : N2 ’ T]3 : NniQ}
for all N < ns.

Remark 6.3. One should think of the ny term on the right-hand side of (6.10)
as the energy coming from the low modes of u(tevac), and the second term as the
energy coming fmm the high frequencies of u(t) for tmm < t < tepae- The two
possible bounds, 15 N2 and 1 HZNH 2, are a consequence of the scaling that g

_n4+2

and b obey. Note that for n > 10, ny "~ 2 N2 s the larger term.

Proof. Consider the set € of times t € [tnin, tevac) Such that

n+2

”PSNuHSl([t,temc]xR") < Cona + 1o max{n; > N2 My QN" 2}

for all N < n3. Here Cj is a large constant to be chosen later it will not depend

on any of the n’s.

Our goal is to show that t,,;, € €. First, we will show that ¢ € Q for t close

t0 tepae- Indeed, from Strichartz we get

IP<nttllgr (gt eneixrmy SIVP<NUllLgo L2t tevac xrm) + ||VP<NU||L2Lm([ttmc]an)

SIV Panu(tevae) |z + Cltevae — tIVO Penul| g £z (19 xrn)

+ tevac — t| ||VP<NU|| 2n
L°°L" (IoxR™)
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The last two norms are finite and proportional to N (as can easily be seen from

Bernstein and the conservation of energy), so (6.3) implies

1
HP§NU|‘Sl([t,tmc]an) S, N4+ N2’tevac — t| + N’tevac — t|2 .

Thus t € Q provided |teyee — t| is sufficiently small and Cj is chosen sufficiently

large.

Now fix ¢t € €2; then for all N < n3 we have

-3 .3 —na% g2
(6.11) HPSNUHs'*l([t,tmc]an) < Cona + momax{ng *N2,n3 "*Nn=2}.
We will show that in fact,
1 1 —% 3 —mE2 ny2
(612) ||P§Nu||$'1([t,temc}><ﬂ§") < _00774 + 5770 maX{TIS N>z ) Tl3 Nn72}

holds for all N < 3. Thus, €2 is both open and closed in [tin, tevac] and we get

tmin € €1, as desired.

Throughout the rest of the proof all spacetime norms will be on the slab

[t, tevac] X R™. Fix N < n3; by Strichartz,

_4
[P<nullgr S [1Penvtutevae) gy + IV Pen (Julm=2u) |5, 20 .

n+2
By (6.3), we have
HPSNU(tEUaC)”H; < s
which is acceptable if Cj is chosen sufficiently large.

To handle the nonlinearity, we use the triangle inequality to estimate

_4 _4
19 Pen (ul720) 20 < [V Pen (fucns 7 2ucy,) 20

_4 _4
(6.13) IV Py ([l 770~ g |71, 3, 20,
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Using our bootstrap hypothesis, i.e., (6.11), and dropping the projection P<y,
we estimate the first term on the right-hand side of (6.15) as follows:

4
1V P (Jucn, |72 0c) o, 20 S 11 Vucplly, 20 fJucp |7 %,

n+2
S <] g1
_n+t2 ni42 n+2

_3 3
< (Coms + nomax{ng *nZ, ng " >n )"
(6.14) < s

which again is acceptable provided Cj is sufficiently large.

We turn now to the second term on the right-hand side of (6.13). By Bern-

stein,

HVP<N(|U’" U — ]u<,74]n 2u<774)H2, 2=

S N[ Pen (Jul ™2 = [y, |72 ucy,) s, 20

Replacing the projection P<y by the positive-kernel operator PZy sharing the
same LP-mapping and Bernstein properties as P<y and using (1.7), we further

estimate

19 Pen (Jul 720 = g, |72y, llo, 20 S NIPLy (Jucy, |72 [z, ]) o, 22,

Snt2
n+2
(6.15) NPy (s 555) ], 2.
Decomposing >y, = Uy,<.<y, + Usy,, We estimate
NIPLy (e 572) g, 20 S NI PLy (Junaconsl #2) o, 22,
n+2

(6.16) NPy (s 75 2
and

NIPLy (|72 ), 22, S NIPLy (e, 72 ooz, 22
(6~17) + N||PQN(|U<774| |U>ns‘) ||2 2o
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Consider the first term on the right-hand side of (6.16). By Bernstein,

nt2
N||P;N<|un4< <775|" 2)”2 2n S N ||PéN(|u774< <na | )HQ e

n42 n+2
S N2 Hun4< <173|| 2(n+2) 2n(nt2) -

n—2 ' p +4

Using (6.11), we get

|’un4§.gn3”2(n+2) 2n(n+2) 5 Z ||PMUH2(n+2) 2n(n+2)
n—2 ' n244 n—2 ' pn244

na<M<ns3
S Z M_l HVPMUH 2(n+2) 2n(n+2)
n—2 7 n244
n<M<n3
S > MNPl
na<M<ns3
n+2
S Z ~(Cona + no max{n, > M2,773n M2 2})
ma<M<ns
(6.18) < moms '
and hence,
n+2 nt2  _ nt n+2
N||PQN(|“774< <ns|™2 2)”2, .. S in QN"
n+2 n
(6.19) S max{n, 2 N3, 2N”+5}

To estimate the second term on the right-hand side of (6.16), we further decom-
pose! us,, = g+ b according to Corollary 5.11. Using again the positivity of the

operator P, we estimate

N Ly ([t | 72 [, ETS NPy (191772) [, 2n + NI PLy (18772) [, 22

Snt2

By Bernstein and Corollary 5.11, we get

n+2
NIIPLy (19172) I, TS N2 || Py (lgl 72 2)||22n<n 2 S N2 gl ssy smis
n—2 7 n244
nt2 , 25 nd2
SNw=2(ny g t)

LOf course, the decomposition holds in dimensions n > 6. To cover the case n = 5, we make
use of Remark 5.12 and treat u,, in the same manner as b is treated below.
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and

n+2

NI PLy (b7 ) g2 S N[ PLy ([172) [l 22, S N2 ]2

2(n+2) 2n(n+2)

’ +2 n—2 ’(n—2)(n+3)

SN%W?

Thus,

n+2

NPy (s =2) |1, S S 771 max{1; * N27773 . QN" 2}
n+2
(6.20) S max{n, EN3 N,
By (6.19) and (6.20), we get
/ = =

(6.21) N||P<N(|u>n4|” 2)”27 ECIN S e max{n 2 N27773 e 2}

We turn now to the first term on the right-hand side of (6.17). By (6.11) and
(6.18),
N||P<N(|u<774|” 2 |u774< <773’) HQ, 2_32

< NHun4< <773” "*2) 2"<"+2) Hu<774H 2<n+2) 2(n+2)

n—2 7 n-—2

S nonngN\lu@JIf

n+2 n+2

S 770773 (Com + 7o maX{ng 774 M3 " - })

S 770774 “n3 'N.

Treating the cases N < n4 and ny < N < n3 separately, one easily sees that

n+42
(6.22) noni 0y N S o (s + o max{n * N¥, gy 2 N ).
Hence,
N PLy (lttn, |72 [ty <.z ) 2
(6.23) < Mo (774 + 10 max{7; 2N2>773 " 2N2+§})
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To estimate the second term on the right-hand side of (6.17), in dimensions n > 6
we decompose us,, = g + b according to Corollary 5.11 and use the triangle

inequality and the positivity of P%y to bound
NPy ([t |72 [y ) |, ETS NPy (Jucn 72191 s, 2n

+ NIPLy (s |72 [01) [, 22

‘n+2

By Bernstein, Corollary 5.11, and (6.11), we get

NPy (ftcns| 72191 ll, 22 S Nllgllzeen gz |IU<n4||2<n+2> 2nt2)

?
+2 n—2 7’ n-2

1n2

S NHQ”SOHU<774||312 < Nuj Py ]
and
_4 _n—6_ 4
NPy (Jtcn, 72 D) )15, 20 S NNZ2 IIP’<N(IU<n4I"*2 b)) IIQ,%

< N2<n+2> Hu<774H 2(n+2) 2(n+2) HbHM 27711
n—2 7 n—2

SN,

n—2'(n+1)(n— 2)

13

i n— l —_
<y N2 (i, 2 )"+2 (775” gy
3n—2

<y Ny, 200
~ Ty M3 :

Thus, by treating the cases N < n, and n, < N < n3 separately, one sees that in

dimensions n > 6,

n+2 n+2

4 -3 8 -5 5
NPy (lttcna| 772 s [ N1, 22 S 1 (0 + 1m0 masc{ng >0, 15 ™0~ }).
In dimension n = 5, by Remark 5.12 and (6.11) we have
NI PLy ([t 72 g ) s, 22, = NI PLy (|3t ) 1.0
S Nl[tssls, 20 [
F 4
5 N7713773 1||u<774||gq

1 4
Snini Nyt S mm.
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Hence, for all n > 5,

n+2 n+2

_4 _3 3 —ods ot
(6.24)  NIPLy ([tcnsl 7 [tes]) 12, 20 < m(na + 1o max{ng 0 my "0y 7" }).

By (6.23) and (6.24), we obtain

_n+2 n+2

4 _3 3
(6:25) NI Pey (Jucn 72 luznil) o, 22, S 10 (s + 1o max{mg *nmy ™ *ni *}).
By (6.15), (6.21), and (6.25), we get

(6.26)

_nt2

o n

4 4 -3 3 s o2
IV Pen (ful 2w — Jucy, |2 ucy,) HQ% Sy max{n; 2Nz, my " Na2 )
By (6.13), (6.14), and (6.26),
n+2

4 -3 3 -2 nig2
IV P (Julm=2u) |y, 20 S 05" max{n; *N2,m; " Na=z }.

Hence, (6.12) holds for C sufficiently large and the proof of Lemma 6.2 is com-
plete.

6.3 Controlling the localized mass increment.

We now have good enough control over low, medium, and high frequencies to

prove (6.8). Writing

_4 _4 _4 _4 _4
Pri(Jul"=2u) — |upi| "2 up; = Pri(|u|"=2u — [upg| 72 un — | =2 u,)

4 4
— Pio(Juni| "2 upi) + Pri(Juwo| "2 w,),

95



we see that we only have to consider the following terms

tx
(6.27) / / Wi Pri (|1 720 — [uni| ™2 uni — o] 72 wi)dz| it
tmin n

(6.28) /t tf
(6.29) /t tf

min

4
/ Uni Puo(|wni| =2 up; ) dz | dt,

4
/ i P10 77 03, .

For the remaining of this section all spacetime norms will be on the slab

[tmin, t«] x R™. Consider (6.27). By (1.8), we estimate

4 nt2
(6.27) S (1m0 ™2 X (funs o 111+ 1 tthi) ™2 0 X (e funely 1.1
_4
< MenalPluso] 72 10 S et Lo 72 11 + [, 1on << || t10] 72 1.1

Taking N, = n3 in Corollary 5.11, we decompose u~,, = g + b and estimate

s Pleaio 72111 S gl o] 72

Using Holder, Bernstein, Corollary 5.11, and Proposition 6.2, we get

4 e
gl w72 l11 S ||g||§,%||wo||;‘o “an

< (7 2 m5)? (s + max{ng iy w2 10n%’})
<1,
6P luzo| 72 11 S 1002 o H%Hﬁ a2
= 2’<n+1><n %) P2 (T 2) (n=2)
< (ming ) ] 3,
< (Fng®) "= 0l (i, + maxny Tl g TR YA
< 13,

where in the last sequence of inequalities we used the fact that for n > 6, Bernstein

dictates
i 10(n—6) 1 10(n—6)
wol " he S lwoll "y sne <13 [[tzo]| -
n—2’(n+2)(n—2) n—27(p—2)2
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To cover the case n = 5, we estimate

4
3
15

e Pleatol 72 1 = e Pzl 31111 S [t 13 20

2) is Schrédinger admissible

In dimension n = 5, one easily checks that the pair (4, 5

and hence, by Sobolev embedding,
(6.30) [wollas S N Vtollss S lluollg:-

Thus, by (6.30), Remark 5.12 (with N, = n3), and Proposition 6.2 (with n = 5),

we get

_3 4
52 (na+ 15 203°) < i

[t P a0 3

Hence, in all dimensions n > 5 we have

_4
2255 * 1110|7211 < 3’

Next, by Holder,

4
| n—2
2n_ -

oo, n—2

etggon < P10l T2 1,1 S lttggon <.y I3 2o [l

Using Proposition 6.2, we estimate

IS > NMYuylg

||un§0n§-§n3||27ff”2 S Z

ni0n<N<n3 N30 <N<n3
n+2
(6.31) S S N+ max{n; PN m, T NERY) S gy
730 <N<n3

and hence,

3 n+4+2 10n n+2

i - _§ 1 n n— n— n—
n—2 Hl,l S 773 2(774 _|_ maX{ng 27]3 27,'73 2 2}) 2 << 771

eg0m <. < | o

Therefore,

(6.27) < n3.
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To estimate (6.28), we write

_— 4
(6.28) /Plo(uhi)|uhi|n2uhida: dt.

trnzn

As P,(up;) = Pri(w,) satisfies all the estimates that g, and uy; satisfy, we see

by the previous analysis that
_4
(6.28) < [lfeens* o] "2 [l1,1 << .
We consider next (6.29). We estimate
_4
(6.29) < ”uhiphi(|ulo’”_2ulo) 11
< Hu>173th(|ulo|" 2ulo) Hl 1+ ||U 10n<. <r]3th(|ulo|" 2ulo) Hl 1-
Using Bernstein to place a derivative in front of P;, we get

4
n—2
2n_
‘n—2

_4
H%;Ong.gmphiﬂwo\"—2ulo)H11 3 ;" HU 10 <. <n5H2 2n HVUonz 2n ”Ulo

By (6.31) and Proposition 6.2, we obtain

4
||U’77§0"§'§773Phi (|ulo| n=2 ulO) || 1,1

n+2 10n n+2 n+2

—10n__— -3 10n§ n— n—
<0305 (e + max{ng *ny 2,y " my ")

< nf.

On the other hand, decomposing us,, = g + b in dimensions n > 6 according to

Corollary 5.11, we estimate

s Pri ([110] ™2 o) 111 S 119 P (J1010] 72 o) (Jwio] T2 o)

By Bernstein, (5.63), Corollary 5.11, and Proposition 6.2, we have

i - ]
I Pas il 7200} s S 75"l 2 [l 2
—10 =
< 1 ”HgHsoHUloHSl

3 n+2 10n n+2 n+2

n— -3 10n5 n— n— —
S 10n772 g (774+max{773 13 27773 13 2}) °

<
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and

4
116Pr; (Jtio] ™ o) |11

4

SN e [Vl sl
n— (n+1)(n n—2 n2—2n+4 n—2’(3n—2)(n—2)
—5(n+6 3 n=2 nt2
<0 (i 2) Hul0‘512
< B0 (5~ 5 B “3 long 0 10n0E 0\ 2
~ T3 (771 UE ) (774+ max{n3 N3 7573 73
<L 7

To cover the case n = 5, we use Bernstein (to add a derivative in front of Py;),

Remark 5.12, (6.30), and Proposition 6.2 (with n = 5) to estimate instead

5 P ([t 3100) 11 S Tt 21t 2 o
S nfng‘lllulollg’l
N 771%773 (774 + 13 277?) < 771
Thus,
||u>n3Phi(|ulo|ﬁulo) 1 < 03
for all n > 5 and hence

(6.29) < n3.

Therefore (6.8) holds and this concludes the proof of Proposition 6.1.
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CHAPTER 7

The contradiction argument

We now have all the information we need about a minimal energy blowup solution
to conclude the contradiction argument. Corollary 4.4 shows that it is localized
in frequency and Proposition 4.7 that it concentrates in space. The interaction
Morawetz inequality provides good control over the high-frequency part of u in
LfL;’%“ (see Corollary 5.11 and Remark 5.12). By the arguments in the previous
chapter we have also excluded the last enemy by showing that the solution can’t
shift its energy from low modes to high modes causing the L:, (fj;) -norm to blow

_6n
up while the L? L3 *-norm remains bounded. Hence, N (f) must remain within a

bounded set [Npin, Nimaz), where Npar < C(04) Npin, and Ny > 0. Combining
all these (and relying again on the interaction Morawetz inequality), we will derive

the desired contradiction. We begin with

Lemma 7.1. For any minimal energy blowup solution to (1.1), we have

(7.1) N(t)~'dt < C(ni,m2) Ny

I min*
In particular, as N(t) < C(n4) Npin for all t € Iy, we have
(72) |IO| 5 0(771777277]4)Nr;z'2n-

Proof. By (5.79) and (5.80), in all dimensions n > 5 we have

3n—4

n n 1
[ ([ 1Povadr) ™ de g nine
IO n
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for all N, < ¢(12) Npin- Let Ny = ¢(12) Nypin and rewrite the above estimate as

3n—4

(7.3 [ ([ 1Pewalsd) ™ de < O,
Iy n

On the other hand, by Bernstein and the conservation of energy,

(7.4)

/ Py ult)| 5 de
|lz—z(t)|<C(n1)/N(t)

S Con)N@) " Penul®)| 15"

3n(n—2)

S Cln)N@) "N () 51 () || Pen. u(t)]

2n

S clm) N (t) 731,

By (4.32), we also have

/ ()| de > ()N (t) 75
lx—x(t)|<C(n1)/N(t)

6n
3n—4
2n
n—

x

Combining this estimate with (7.4) and using the triangle inequality, we find

N S [ Pe.ult, )| 5.
lz—2(t)|<C(m)/N(?)

Integrating over Iy and comparing with (7.3) proves (7.1).

We can now (finally!) conclude the contradiction argument. It remains to

prove that ||ul| 2m+2) < C(no,m1,m2,M3,M1), which contradicts (1.10) for

L, 27% (IoxR™)

ns sufficiently small and which we expect since the bound (7.2) shows that the

2(n+2)

interval Iy is not long enough to allow the L, ;™ -norm of u to grow too large.

Indeed, we have

Proposition 7.2.

<
Il = < C (0o, 11,2, M)
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Proof. We normalize N,;, = 1. Let 6 = 6(no, Njpaz) > 0 be a small number to
be chosen momentarily. Partition Iy into O(|/y|/d) subintervals Iy, ..., I; with

|I;| < 6. Let t; € I;. As N(t;) < Npqz, Corollary 4.4 yields

1P5000) N @(E5) |1 111 < 700-

Let @(t) = /2PN, u(t;) be the free evolution of the low and medium

frequencies of u(t;). The above bound becomes

(7.5) [ult;) — a(t) ]|z < o

Moreover, by Remark 3.2, (7.5) implies

-

76) (I PV (ult) — AP sy mn ) S
N

L,"7 L™ (xR

By Bernstein, Sobolev embedding, and conservation of energy, we get

la(t)

HLLgyj;) S Cl0, Nenaa) @t 22, < €0, Nenao) [6(E)l 17y

5 C(n07 Nmam)
for all t € I;, so
(7.7) 1] 2ns) < C (10, Nypag ) 570755
L, ™% (I;xRn)
Similarly, we have

V(a2 am)ll 2, < [IVaE)| %Hﬁ(t)!jinz

L;vn 2 Lz T

< C (00, Nuna) | VA |12 2t 1717
n+2

< C (0, Nunao) 0() 13,7

S C(n()aNmax);
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which shows that

(7.8) IV (|a|==a)| < C (10, Nomaz )82,

L%L;% (I; xR™)
By (7.5) through (7.8), conservation of energy, and Lemma 3.1 with e = —|ﬂ|ﬁﬂ,

we see that

<1
||U||ngt_+2> IRy ™ )

provided § and 7y are chosen small enough. Summing these bounds in j and

using (7.2), we get

HUH 2(n+2) S) 0(7707 Nmax)‘jo‘ S C<770?77177727774>-

Lt,;72 (IoxR™)

103



APPENDIX A

Fractional derivatives of fractional powers

In this appendix we show how a characterization of Sobolev spaces due to
Strichartz, [33], can be used to prove results of chain-rule type. This extends [8]

from C' functions to merely Holder continuous functions.

The results in this appendix were worked out in collaboration with Rowan
Killip.

Strichartz proved that for all Schwartz functions f, 1 < p < oo, and 0 < s < 1,

(A1) 11V £|

™~ |Ds(f)]

P
Ly’

where

2 1/2
dr /
r1+2s :

This extended earlier work of Stein; see the discussion in [31, Ch. V, §6.13].

a2 - ( m\ /| ) = )] dy

Proposition A.1. Let F' be a Hélder continuous function of order 0 < o < 1.
Then, for every 0 <o < a, 1 <p<oo, and 2 < s <1 we have

el

(A-3) [IVI7F @), < [[Jul*~*

V[P
p1

p2’

s
g
s

gl 1 1 o
provided > = -~ + - and (1 — Z)p1 > 1.

Proof. The result will follow from the pointwise inequality

»|Q

(A4) D, (F(u))(z) S [M(|Ju]*)(x)]' ™ [Dy(u)(2)] 7,

~
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where M denotes the Hardy—Littlewood maximal function.

As F'is a-Hélder continuous,

[F(u(z +ry)) — Flu(@))| S Ju(z +ry) —w@)|* S Julz +ry)[* + |u(z)]”.
We use both estimates; the first one for small values of r, the second for large
values of r. The meaning of ‘small” and ‘large’ will be x-dependent.

For r small, we apply Holder’s inequality:

/A@ 2 dr
0

,,»1+20'

/| [Fule -+ ) = Fute))] dy

< /*A(CL‘) / | ( ) ( )’a 2 dr
N u(x +ry) —u(z)| dy
B yl<1 7«1+20
A(x) 2a d
s[]] utes ) —u@lay|
0 ly|<1 r

A(z) 2 4 @
2(sa—0) r
S [A(@) ( / )

< JA@)C 7 [Dy(w) ()]

/| fular ) — (o) dy

Note that the penultimate step requires s — o > 0.

For large r, we first note that

/| futa+ )| dy S M () 2)

because the left-hand side is essentially the average of |u|* over the r-ball centered

at x. Consequently,
/ o0 > dr
Az)

7"1+20

/ Gt ) Fut)] dy
< o0
N/A(:c)
< oodr M (|ul®)(z 2
< [ ()@

< [A@)] 77 [M(jul*) ()]

2 dr

T1+2U

/ ‘u(:c—l—ry)]a—ir \u(x)‘ady
lyl<1

105



Choosing A(z) = [M(|u]*)(z)]s [Dy(u)(z)]"+ leads immediately to (A.4).
The proposition follows from Holder’s inequality and the boundedness of the

maximal operator; the latter requires (1 — Z)p; > 1. O
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APPENDIX B

Details of the ‘good’/‘bad’ splitting

In this appendix we prove the existence and uniqueness of local S° N ST so-

lutions to the initial value problem

(10, + A)g = G + PuiF (wo) + Pri(Fwo + g9) — F(g) — F(u,))

(B.1)
g(to) = uni(to),

where the function F' represents the energy-critical nonlinearity, uy; = P-qu and

U, = P<qu are as in Section 5.2, and G = Gjeq + Gopi with

Grmed = Z P~N (X{|PNF(9)|§1/N}PNF(9))7

1<N<ny '

Goni = [V Py, 100 (Xq9ir o)<y VIF(9)),

and, in each case, x represents a smooth cutoff to the set indicated.

In other words, we need to prove that the integral equation

t
g(t) _ ei(tfto)AuM(t()) +/ ei(tfs)AG(S)dS

to

+ / ei(t_s)APhi(F(ulo +g) — F(g))(s)ds,

to

admits an S°(S' solution on a small interval I := [to, T] C I, task which we

accomplish by proving convergence (in the appropriate spaces) of the iterates

g(l)(t) = ei(t‘tO)Auhi(to)
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and, for m > 1,

t
g(m+1)(t) - 6i(t_t0)Auhi(to)+/ ei(t—s)AG(m)<S)d3

to

(B.2) + / t eI Py (F(wo + g'™) — F(g"™)) (s)ds,

to

G = Gl + 6l

= > Pv(Xqpvriomy<ym Py E(9™))

1<N<ny '

+ VTP o0 (X vy <y [V IF (9™))).

By Lemma 5.9 (specifically (5.49), (5.50), (5.52), (5.53), (5.56), and (5.58)),

we have
< |lgm|| .~
(B,S) HGmedH t2;"+2> (IxR™) ~ ”9 HSO(MR”)
< Tow( LY (|4 (m) || 72 B td)
(B4) ||VGmed|| 2(7?:2) (IxRn) ~ 1Og(n_2)(||g ||5’1(IXR”)||g |SO(IXR"))
(m) 100 (m) %
R[] N1 (] EYe A ey

(n—2)(n+4)

(m) (m)]| . (m) || 7=3 2!
BO) IV a5 (U™ s [0 15 )

To simplify notation, we introduce the norm || - || defined on the slab I x R"

as
[fllw = A llwaxeny = IV awiz) 202
L, "% L™t (IxRn)
Note that

HfHW f<v Hf”Sl(Ix]R")'

The first step is to take [ sufficiently small such that

(B.7) unillw S 15
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for some 0 < ¢ < 1; the dominated convergence theorem shows that this is indeed

possible.

Throughout the rest of the proof all spacetime norms will be on [ x R™.
Using Bernstein, (1.8), (1.9), and our hypotheses on w;, (more precisely, (5.10)
and (5.36)), we estimate

4
[Phi ' (wio)l|o, 20 S IV Pri ' (wio) la, 20y S 1V twiolla, 20 flio| 3] o
‘n+42 ‘n+42 ‘n—2 Y h—2

4(n—1)

(5.3) Sy

~

and

| Poi (F (o + ¢™) — F (o) — F(g™))]]5. 20

‘n+2

_4 _4
S Natolg ™ 172 X g <ty 22, + 19 atto 72t a2, 2

_4
n—2

< g™ o

4
22 S N9 o, 2 llutoll 2 o

_4
(B.9) <177 19" 2o,

HVPM(F(Ulo + g(m)) — F(wo) — F(Q(m))) 2, 2n_

‘n+2

_a_ a4
S IVuolg ™72 g, 20 + 11V Jtro| 72 |15, 20,

n+2
4 4
< V0l [ s+ 199 el
T () wE (m)
(B.10) S0 g™ E T s g g
Using the recurrence relation (B.2), Strichartz, and (B.3) through (B.10), we

estimate
19 g0 S Nuni(to)llz + |G || sme2) 20s2 + || P (o) ||, 20
n+4 ’ n+4 'n+2

+ || Pri (F(UZO + g(m)) — F(ug,) — F(g(m))) HQQ—”

n+2

nt4d (n=2)(n+4)

_4
S+ 19" 8 gy + N9 g1 1w 19 o egy) 77

4(n—1)

4
n—2)2 n—2 m
+ 05"+ 0572 19" | g0,
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I lss IV unto) s + 176 ami s + 17 PGl 2,

+ |V Pri (F(wo + g"™) = F(u,) — F(Q(m)))

2’ 2f2

(n—2)(n+4)

< 1+10g () (197 st (rxmmy 1™ Hgoian)) e

(n—2)(n+4) 4(n—1)

4
m m n— n(n n—2)2
+ (19" s g™ Wi lrugey) ¥ 405"

_4
+ 15" 2)2||9 m)ll" 2+ 05 7 1lg" g,
and

I Vllw S llwnallw + 1VG N 2mim 2mss + [V P (o) 2,2,

+ IV P (F (o + ™) = F(wio) = F(g"™)) [, 22,
(n=2)(n+4)
n(n+2)

< 115 +108 () (19" N1 rseme 197 W i )

4(n—1)

m m n% (nz(n#l) n—2)2
+(||9( Mg (rnm l19¢ )|SO(2lan)) (2 g

n (n—2)2 n n—
T g ET £ nE g 50
A simple inductive argument yields
7
(B.11) 19" g0 S 1577,
(B.12) lg"™ s S 1.
(B.13) lg"™ Ml < 75,

for all m > 1 and provided ¢ is sufficiently small.

To prove that the initial value problem (B.1) admits a local solution

n

SO SY, it suffices to prove that the sequence {g(™},, converges strongly in

S0 to some function g. This function is guaranteed to lie in St for the following

reasons: As the sequence {g™},, stays bounded in S' (see (B.12)), it follows

that ¢™ converges weakly to ¢ in S'. As weak limits are unique, we conclude

that ¢ lies in both S and S'. Moreover, by Fatou, (B.11), and (B.12), ¢ obeys
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the bounds
_2
l9llgo Sms™™ and gl S 1.
In what follows, we prove that the sequence {g(m)}m is Cauchy in 5'0, which
completes the proof of local existence for the reasons just given. We start by

considering differences of the form ¢+ — ¢ Using the recurrence relation

(B.2) and Strichartz, for m > 1 we bound
I9 gl S UG =G s+ 1F(6™) = Flg™ V)] s
(B.14) +1F (o + g) = F(uio + g™ V)| 2np.
L

By (1.7), Sobolev embedding, (5.36), and (B.13), we get

1E(g"™) = F(g" )| 20s

Lt,:c
( 1 (m) (|73 (m—1) |73
SN1g™ = g™ V|| i (Ilg’” "2y + 119" ||"5<n+2>>
Lt'zn Lt,g_Q Lt,g_Q
(m) _ _(m—1) (m) |73 (m—1)|| 73
<™ = g™ o (19" 1572 + g™ Vi)
de
(B.15) <ne g™ — g™ 40

and

HF(ulO‘l’g(m)) - F(Uzo+g(m_1))\| 2(n+2)

+2
n+4
Lt x

_4 _4
S (9™ 1 sgsr + 19" 1 + ol ")

t,x Lt;L_ Lt,;_
X 19" = g™ V| atmsn) 2ns)
< g™ — g™ (g™ A3 || (m—1)) 2 =
S llg 9" Mo (g™l ™ + g™ Ml + llwoll &

4e

(B.16) <l — g o,

again, assuming ¢ is sufficiently small, which amounts to taking I sufficiently

small.
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We are left with the task of estimating

G = G sy < g, — gtm- H s + |Gl — G%A)HL%-

t ac t,x

We consider first differences coming from medium frequencies. For 1 < N <

ny 1%, denote
N = xqpyri<iny PN E.

Then,

m (m—1 g m m—
Hnged_ med )” 2(”+2) 5 Z HPN(fN(g( )> _fN(g( 1)))”[,2(’:?42)

L™ T<N<ny 100 t
DD TR A Ch [Py
1< N<no100 Lt,;“r
b

By the Fundamental Theorem of Calculus, we write

V(g™ — N (glmD) = (glm) — glmD) / Y+ £Y)(g™)db,

0

where for 6 € [0, 1] we define gém) = g™ 1 0(g™ — gtm=1). As

£ = Xqpyrizymy PN e + Xy ey NPy F

and
Y = xqpyri<i M PN Es + X Py i1y N Py F

for some smooth cutoff y to the set indicated, Minkowski’s inequality and Sobolev
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embedding yield

N¢ (m)y _ ¢N¢_(m—1)
17 (g"™) = [ (g )”Lf%?
) 4
< m)|w
Nﬁil[lol,)l](”go HL2<7:Lj2) + HX{|PNF( )| 1/N}

(m—1)

x lg"™ — g

|| 2(n+2)
n
t,x

_4 _4
< (g™ 15 + g™ Pl ) g™ = "Vl go

+ sup ||x (m) NPyF n2lg
HE[Ol]H {IPnF(g5™")I~1/N} ( )|| ||

<03 7 [lg™ — gV g0

+ sup ||X{|p F(g <m>)|N1/N}NPNF( )HL:%?HQW)

0el0,1]

For 6 € [0, 1], by Bernstein and (5.50) we estimate

(
HX{IPNF(g(m’n 1/N}NPNF( )||Lng2

~ ||>~<{|PNF<g§m>>|~1/N}[

4(n—2)

S INPeF(g5™)| "2’22”2>

( ) 4(n— 2)
m n(n+2
SIVE(gg™ )50

Ltz

m m 4(n—2)
< (lg8™ 1 g™ 17, 7) w6

Thus, by (B.11), (B.12), and taking ¢ sufficiently small, we get

_4e

1N (g™) = (g 1))II S

tz

which yields

[[ess

t:v 1<N<n;100
4e
<10g(i) 52 ]|g™ — g™

(B.17) < g™ - 9" g0
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"I ns2)

-9

-9

50,

4e
m—1 n—2o m m—
med Gmed )“ M}) 5 E Up) 2”9( ) — g( 1)||S0

lgo

t,x

D 50

D] go.

NPNF(gém))} n(n+2) H ny2



We consider last the difference coming from very high frequencies.

precisely, denoting

fvhz . yv‘ >n_100 (X{HV|F|<1}‘V’F)

we have to estimate

(m—1) vhi m vhi m—
||th7, - thi ||Lj(g%}) = ||f (g( )) - f (.g( 1))||Lt2?_:—2) .

By the Fundamental Theorem of Calculus, we write

1
fvfn(g(m)) _ fvhz<g(m—1)) — (g(m) _ g(m—l))/ vahl(gém))de’
0

with the convention that for § € [0,1], gém) = gm + 0(gm™ — gim=
Minkowski’s inequality, the boundedness of the Riesz potentials on L2
p < 00, and (5.50), we estimate

1777 (g™) = £ (g™ ) 2gmsm

L n+4

t,x

S =" 2 8 el VIO,

0el0,1]

4(n—2)
S 19 = "Vl [xgepeiggmyen [V (G™] ] g
t

4(n—2)

S g™ = g™ il VIF(g5™)] ""Z%
4(n—2)
< 1™ = g™ g0 (lgs™ 1 llg5™ ISJ ).
Thus, by (B.11), (B.12), and taking ¢ sufficiently small, we get

(B.18) 1G4 — iy I 2<n+2><772‘2||g — g7 0.

tz

Collecting (B.14), (B.15), (B.16), (B.17), and (B.18), we obtain

3e
g™ — gm0 S ms 210" — g™V g0
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V). By

for 1 <



for all m > 1. Also, as by (B.2), (B.3), (B.8), and (B.9), we have

l9® = gDl g0 S NGV 2tz 2t + || PriF (uto)lly, 22,
n+4 > n+4 'n+2

+ || Pui (F (w0 + gM) = F(u) — F(g(l))) 2,20

‘n+2
(n—2)(n+4)

W 100 (1 (1) =
< llg |‘Sg(1an)+772 (g™ N1 (rmmllg ’§O(Ian)) nnt2)

4(n—212) 4 L
+ 03"+ 057219 50

Y e, 2

S A m T Y g,

we immediately obtain that the sequence {g(™},,cy is Cauchy in SO and thus

convergent to some function g € S0,

The uniqueness of S° N S* solutions to (B.1) is standard and based on the

estimates above. We skip the details.
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APPENDIX C

The frequency-localized interaction Morawetz

estimate in dimension n =5

In this appendix we prove the frequency-localized interaction Morawetz es-
timate in dimension n = 5, which amounts to controlling the error terms in
Proposition 5.7. The setup is as in Section 5.2. In particular, N, = 1, the low
frequencies have small energy (see (5.10)), and the high frequencies have small
mass (see (5.11)). Moreover, we assume (5.15) for a large constant Cyy depending

on the energy, but not on any of the 7’s.

The first step is to obtain estimates on the low and high-frequency parts of w.

C.1 Strichartz control on low and high frequencies in di-

mension n = 5H

Proposition C.1 (Strichartz control on low and high frequecies in n = 5). There

exists a constant C possibly depending on the energy, but not on any of the n’s,

such that
(C.1) [tto|| g1 (1 xmsy < C1(Comn)?
(C.2) 19| 2 | < C1(Com)?.

10 <
L2L;3 (IpxR5)

Proof. To prove Proposition C.1, we will use a bootstrap argument. Fix t; :=

inf Iy and let ©; be the set of all times 7" € I such that (C.1) and (C.2) hold on
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[tO, T]

Define also €25 to be the set of all times T € [ such that (C.1) and (C.2) hold

on [tg, T] with Cy replaced by 2C;. More precisely, for T' € Q, we have

N

(C.3) ||ul0||5'1([t0,T]><R5) < 2C1(Com)
(C.4) V| 2upe|| . 10 < 204(Com)2.

L2L3 ([to,T]xR5) —

(VI

In order to run a bootstrap argument successfully, we need to check four
things:
e First, we need to see that ty € €2q; this follows immediately from the definition
of u;, and wuy; at the time t = ty, provided (] is sufficiently large.
e Secondly, we need 2; to be closed; this follows from the definition of €2; and
Fatou’s lemma.
e Next, we need to prove that if T" € €2y, then there exists a small neighbor-
hood of T" contained in 25. This property follows from the dominated conver-
gence theorem and the fact that w, is not only in S*([to, T] x R?), but also in
CPH}([to, T] x R®)
e The last thing we need to check in order to complete the bootstrap argument
is that 5 C 7 and this is what we will focus on for the rest of the proof of
Proposition C.1. Fix therefore T" € 5. Throughout the rest of the proof all

spacetime norms will be on [to, T] x R.

We consider the low frequencies first. By Strichartz and (5.10), we estimate

4
[ o] g1 S IVwo(to) 2 + IV Pro([ul3u)]],10

(C.5) S 2+ [V PiolJuf 51 5,20,

Replacing P, by the positive-kernel operator P/, (see Section 1.2 for its definition

and properties) and estimating

a5 < Jugo]® + Jung 3,
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we obtain

IV By (ul3 )l a0 S IV P (Jto]$) 1o, 10 + 11V Py (Junil5)ll, 0.

By Hélder, (5.10), and (C.3), we estimate
4 1 4
(C.6) VP, ([uwol5) 15,10 S 11V ttoll 20 [l |2, w S 2C1(Com)2n <

while, by Bernstein, Holder, interpolation, and (5.11), we get

G

1

00

(Com)

z 5
IV Pl (Junil )l S 117 Juanil )30 S ||wn||14 LIPS ||UmI| a0 llunill %2

IS \|th'||§@77§-
11

By interpolation and (C.4), we estimate

win

_1 2 1 1
(C.7) lunill,zo S V™2 unilly sl Vurilln S 2C1(Com)?]

and hence

G
100
Putting together (C.5), (C.6), and (C.8), we obtain (C.1).

1 5
(C.8) IV Py (il )l 20 S 2C1mEm < —(Com) 2.

We turn now toward the high frequencies of u. By Strichartz,

_1 _1 _1 4
(C9) VI 2unillo, 0 S IV 2uni(to) |2 + V]2 Puillul3u)l2, 0

Using Bernstein and (5.11), we estimate

1
(C.10) V™2 uni(to)llrz < llunilloo < 72
By the triangle inequality,

4
IIV172 Pa(Jul 3u) 5,10

S V172 Paifuato] 10) 1,20

_1 _1 —
+ V172 Pri(uni Fx (o] )Mo, 10 + [1V]™2 Pri (@i Fx ([ o)) [, 10

(C.11) + H\V]%Phiﬂuﬁu — |ulo|%ulo — up F(Jugo|) — U_MF2(|U10|>) HZ%'
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Here, the function F' denotes the nonlinearity, i.e., F'(z) = |z|§z

Using Bernstein, (5.10), and (C.3), we estimate the first term on the right-
hand side of (C.11) as follows:

1 4 4 4
IV 172 Pri(fuio 3 wio)lla, 10 S IV Prilwso]3to) 2,10 S 1V etoll o, o]l 3, 10

1 4 C
(C.12) S 201 (Com)2ng < 1—10(00771) :

N|=

To estimate the last term on the right-hand side of (C.11), we note that
1
Fz+w)—F(z) —wF,(2) —wF:(z) = w/ [F.(z 4 tw) — F,(z)]dt
0
1
+ w/ [F:(z 4 tw) — Fx(2)]dt,
0
and hence
[F(z +w) — F(2) — wF.(2) — ©Fs(2)| S Jw]$ + Jw]?|2]5.
Thus, by Sobolev embedding, Bernstein, (5.10), and (C.7) we estimate
1 4 4 _
1172 P (Ju] 5u—|wo| 3 w0 — wni Fo (o) — Whi (o)) HQ%
7 1
S Munil 311, + lunl* o] # 12,2
7 1
S Nunilla s+ lunills s0 [[unille 0ol So.00
312 11 13
7 3 11
S unill s ss + lunill 3 sollwnill S 2m5
3712 711
7 p 11
S llunilliy 55 +2C1(Com)znsn;
As by interpolation, (5.15), and (C.7),

10 5 2
[unill s 5 S V=2 w75 Vunil| 2 ol a0
711

4

< (Com) % [2C1 (Com ) 2] 70

4 3

S (2C1)= (Com)™,
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we estimate the last term on the right-hand side of (C.11) b
157172 P (Ll 3 w—Jeaso| St — ni Fo et = o= (fuso])) [, 0
< (201)7 (Com)® +2C1(Comy) 2 2%772%
(C.13) < —L(com)z,
where the last inequality follows provided (' is sufficiently large.

We are left to estimate

172 P (un £ (fuao| )Nl 2, 10+ [1V172 B (i (o)) [l 20

As the method of treating the two terms is the same, we only consider the first

one. In the same spirit as Lemma 5.10 we have
V172 Poi (uni F (o] ) |, 20 S HIVIT2 tnillg 10 V]2 Fx([io])[]oo,2,
which we estimate via Bernstein, Sobloev embedding, (5.10), and (C.4) by

1 4 1 1 i
201 (Com)2 | Vw3l oo s S 201(00771)5|WuloHo<>,2HuloH3 RIS < 2C1(Com) 23

w5
Thus,
(C.14)
19173 Bns -l + 1191 PPl )l e < < (Com)?.
Collecting (C.9) through (C.14), we derive (C.2). O

Remark C.2. Interpolating between (5.10) and (C.1), for any Schréidinger ad-

missible pair (q,r) we obtain

-Q\»—

(C-15) HVU;OHLqU (IoxR5) (00771)‘”72 ‘ 5 (00771)

Similarly, interpolating between (5.11) and (C.2), for any Schrédinger admissible
pair (q,r) with ¢ > 3 we get

2

il Lazr (roxms) S (Com)omy * < (Com).

Al
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C.2 FLIM: the error terms in dimension n = 5

In this section we use the control on wu;, and wuy; that Proposition C.1 won us
to bound the error terms on the right-hand side of Proposition 5.7 in dimension

n = 5. Throughout the rest of the section all spacetime norms will be on I x R®.

Consider (5.19). By (1.8), Holder, Sobolev embedding, Proposition C.1, and

Remark C.2 we estimate

(5.19) < ol [unal3wiol|11 + || unal *luuso] 3|1,

4
210 + [[1nill§ a0 [lu0/15 10)

< 12 (Jluns

11 713

NE [(00771)%(00771)%(00711)% + (00771)%(00771%]
(Cl6) 5 ?72007]1.

1
3,30 l[unills,so lunil 3, 10 l[tto

We move on to (5.20). Using Bernstein, Proposition C.1, and Remark C.2 we

get
(5-20) S 772”uhiplo(|uhi|%uhi)Hl,l
S o lnall 5 1 Profuna ) 3,59
< 12(Com)* | Pro il S1ani) | 3.
S 772(007]1)% Huth§% ||UmH§O1370
(C.17) < 12Com.

We examine next (5.21). By Bernstein, Sobolev embedding, Proposition C.1,
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and Remark C.2, we estimate

4
(5:21) < nalluni Pri(wio] 3 o) |11

4
S M2llunills 30|V Phi([uio] 5 o0) || 5 30
1 1
S 772((70771)5||Vulo||2,g||Uzo||6,§||ulo||§o,§
1 1 1 1
S n2(Com )3 (Com )2 (Com ) 81

(C.18) S 1200

We turn now toward (5.22) and use Holder, Sobolev embedding, Proposi-
tion C.1, and Remark C.2 to estimate

(5.22) < 12| wns|wio] 3 Vo 1.1

1
S B nalla 2 190 0 ol 2 o,

1

N 77%(00771)%(00771)%(00771)%772§

(C.19) < mComn.

To estimate (5.23), we use again Bernstein, Proposition C.1, and Remark C.2:

(5.23) < 12l [uns |3 Vo | 1.1

711

< 12(Com)3 (Com )5 (Com) 2

(C.20) < nCon.

1
S s llunilly o llnillo,so lwnill 20 l1V ko]l

Now we turn toward (5.24). By the triangle inequality we estimate

4 4 4
(5:24) S 73 luniV Poo((u] 31 — Jupil 5 1ung — Juso| 1110 |11,

4 4
(C.21) + 75 || wni V Pro([wni |3 uni) 11,1 + 1511 tni V Pio(|wio] 3wo) [|1.1-
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Using Bernstein to drop the derivative in front of P, we note that the first and
second terms on the right-hand side of (C.21) are of the same form as (5.19),

respectively (5.20). Hence,

11 S mComi.

4 4 4
15 [tniV Pro(Ju|3 1 — ] 3tn; — [to] 3ug,)
and
4
3|1 wni V Pro(|uni| 3 uni) [11 S m3Com:.

On the other hand, using Proposition C.1 and Remark C.2 we bound the third
term on the right-hand side of (C.21) as follows:

4 1
05 1[unsV Pio([taso ¥ wio) 1,1 S s llumilla 0 11Vt o, so et g 2 o |, 10
1 1 1 1
< 03(Com )3 (Com) 2 (Comy)om3
N 77300771-

Therefore,

(C.22) (5.24) < 75 Coms.-

We turn now to the error terms (5.25) through (5.27). We notice that they

are of the form (Ju;|? * |71\’ f) where

|ugo| #[ups| in (5.25),
f= Jgo| [ung|  in (5.26),

|ni Pro (|| 3uns)| in (5.27).

30
Let us first note that as uy; € L?LE and uy; € LS°L2, we also have |uy;|? €

x?

15
L3LE . Therefore, by Hardy-Littlewood-Sobolev, |up;|? * ﬁ € L3L!°. Moreover,

1 _
(funal® * m,ﬁ S anal® = | 7|y sl £l 32 S Nlanalls,so llumalloo 2| Il s 25

(C.23) < (Com)3m £l 3.1

2714

123



Consider the case of (5.25), that is, f = |uo|3|up|. By Holder, Proposi-

tion C.1, and Remark C.2, we estimate
7 4
P P I B
2 1 1
S 13 (Com ) (Com )3
Thus, by (C.23) and the above computation,
7
(C.24) (5.25) < n3 Com.

Consider next the error term (5.26), that is, f = |up||un|3. By Proposi-

tion C.1, Remark C.2, and the conservation of energy, we estimate

7 4 1 1
ltolunil# 1l 15 S Mol 6 llwnsls, sollunill 3, 10 S (Com)s (Com)s.

Hence, by (C.23) and the above computation,

(C.25) (5.26) < n2Com-

The last error term left to consider is (5.27); in this case we use Bernstein,

Proposition C.1, Remark C.2, and the conservation of energy to estimate

S llun 3,30 ||P10<|uhi|%uhi) ||3%<;
1 _4
Com) 3 | Pro (|unil "2 uni)

S
1 4
S (Com)? lunill ggluni| 2 2

§ (Com)%-

4
HUMPZO(’UMEUM) ||%%

30
3,55

Thus, considering (C.23), we obtain

(C.26) (5.27) < mCom.

Collecting (C.16) through (C.26), we obtain that all the error terms on the
right-hand side of Proposition 5.7 are controlled by n;. Upon rescaling, this

concludes the proof of Proposition 5.7 in dimension n = 5.
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