Let X = { f ∈ L 2 ( I ) ∣ ∫ I f d t = 0 } X = \set{f \in L^2\p{I} \mid \int_I f \,\diff{t} = 0} X = { f ∈ L 2 ( I ) ∣ ∫ I f d t = 0 } . Because integration is linear, it's clear that this is a linear subspace of L 2 ( I ) L^2\p{I} L 2 ( I ) . We will show that { h n , j } \set{h_{n,j}} { h n , j } is an orthonormal basis for X X X .
First, notice that h n , j ∈ X h_{n,j} \in X h n , j ∈ X by symmetry. Also,
∥ h n , j ∥ = ∫ I ∣ h n , j ∣ 2 = 2 n ∫ I ( χ I n + 1 , 2 j + χ I n + 1 , 2 j + 1 ) = 2 n ( 1 2 n + 1 + 1 2 n + 1 ) = 1 , \begin{aligned}
\norm{h_{n,j}}
= \int_I \abs{h_{n,j}}^2
&= 2^n \int_I \p{\chi_{I_{n+1,2j}} + \chi_{I_{n+1,2j+1}}} \\
&= 2^n\p{\frac{1}{2^{n+1}} + \frac{1}{2^{n+1}}} \\
&= 1,
\end{aligned} ∥ h n , j ∥ = ∫ I ∣ h n , j ∣ 2 = 2 n ∫ I ( χ I n + 1 , 2 j + χ I n + 1 , 2 j + 1 ) = 2 n ( 2 n + 1 1 + 2 n + 1 1 ) = 1 ,
since χ I n + 1 , 2 j \chi_{I_{n+1,2j}} χ I n + 1 , 2 j and χ I n + 1 , 2 j + 1 \chi_{I_{n+1,2j+1}} χ I n + 1 , 2 j + 1 are disjoint.
To calculate the inner products, consider I n , j I_{n,j} I n , j and I m , k I_{m,k} I m , k , where without loss of generality n ≤ m n \leq m n ≤ m . Notice that I n , j ∩ I m , k I_{n,j} \cap I_{m,k} I n , j ∩ I m , k has positive measure only when k ∈ [ 2 m − n j , 2 m − n j + 2 m − n − 1 ] k \in \br{2^{m-n}j, 2^{m-n}j + 2^{m-n} - 1} k ∈ [ 2 m − n j , 2 m − n j + 2 m − n − 1 ] . Indeed, if k ≤ 2 m − n j − 1 k \leq 2^{m-n}j - 1 k ≤ 2 m − n j − 1 , then
( k + 1 ) 2 − m ≤ ( 2 m − n j ) 2 − m = j 2 − n , \p{k+1}2^{-m} \leq \p{2^{m-n}j}2^{-m} = j2^{-n}, ( k + 1 ) 2 − m ≤ ( 2 m − n j ) 2 − m = j 2 − n ,
i.e., I n , j ∩ I m , k I_{n,j} \cap I_{m,k} I n , j ∩ I m , k is either empty or contains a single point. Similarly, if k ≥ 2 m − n j + 2 m − n k \geq 2^{m-n}j + 2^{m-n} k ≥ 2 m − n j + 2 m − n , then
k 2 − m ≥ ( 2 m − n j + 2 m − n ) 2 − m = ( j + 1 ) 2 − n , k2^{-m} \geq \p{2^{m-n}j + 2^{m-n}}2^{-m} = \p{j+1}2^{-n}, k 2 − m ≥ ( 2 m − n j + 2 m − n ) 2 − m = ( j + 1 ) 2 − n ,
so the same thing happens. Thus, if k ∈ [ 2 m − n j , 2 m − n j + 2 m − n − 1 ] k \in \br{2^{m-n}j, 2^{m-n}j + 2^{m-n} - 1} k ∈ [ 2 m − n j , 2 m − n j + 2 m − n − 1 ] , we have
( k + 1 ) 2 − m ≤ ( 2 m − n j + 2 m − n ) 2 − m ≤ ( j + 1 ) 2 − n , \p{k+1}2^{-m} \leq \p{2^{m-n}j + 2^{m-n}}2^{-m} \leq \p{j+1}2^{-n}, ( k + 1 ) 2 − m ≤ ( 2 m − n j + 2 m − n ) 2 − m ≤ ( j + 1 ) 2 − n ,
i.e., I m , k ⊆ I n , j I_{m,k} \subseteq I_{n,j} I m , k ⊆ I n , j . In particular, given h n , j h_{n,j} h n , j and h m , k h_{m,k} h m , k with n ≤ m n \leq m n ≤ m , the support of h m , k h_{m,k} h m , k is contained entirely in either I n + 1 , 2 j I_{n+1,2j} I n + 1 , 2 j or I n + 1 , 2 j + 1 I_{n+1,2j+1} I n + 1 , 2 j + 1 , so
⟨ h n , j , h m , k ⟩ = ∫ I h n , j h m , k = ∫ I n + 1 , 2 j + i 2 n / 2 h m , k = 0 , \inner{h_{n,j}, h_{m,k}}
= \int_I h_{n,j}h_{m,k}
= \int_{I_{n+1,2j+i}} 2^{n/2}h_{m,k}
= 0, ⟨ h n , j , h m , k ⟩ = ∫ I h n , j h m , k = ∫ I n + 1 , 2 j + i 2 n /2 h m , k = 0 ,
by symmetry. With this, we have shown that { h n , j } \set{h_{n,j}} { h n , j } is an orthonormal set. Next, we will show that they are in fact a basis for X X X . It suffices to show that if f ∈ X f \in X f ∈ X satisfies ⟨ f , h n , j ⟩ = 0 \inner{f, h_{n,j}} = 0 ⟨ f , h n , j ⟩ = 0 for all n , j n, j n , j , then f = 0 f = 0 f = 0 in X X X .
We will show that ∫ I n , j f = 0 \int_{I_{n,j}} f = 0 ∫ I n , j f = 0 for all n , j n, j n , j . When n = 1 n = 1 n = 1 , notice that I = I 1 , 0 ∪ I 1 , 1 I = I_{1,0} \cup I_{1,1} I = I 1 , 0 ∪ I 1 , 1 is a disjoint union, so
0 = ∫ I f = ∫ I 1 , 0 f + ∫ I 1 , 0 f ⟹ ∫ I 1 , 0 f = − ∫ I 1 , 1 f . 0
= \int_I f
= \int_{I_{1,0}} f + \int_{I_{1,0}} f
\implies \int_{I_{1,0}} f = -\int_{I_{1,1}} f. 0 = ∫ I f = ∫ I 1 , 0 f + ∫ I 1 , 0 f ⟹ ∫ I 1 , 0 f = − ∫ I 1 , 1 f .
On the other hand, by assumption,
0 = ∫ I f h 0 , 0 = 2 1 / 2 ( ∫ I 1 , 0 f − ∫ I 1 , 1 f ) ⟹ ∫ I 1 , 0 f = ∫ I 1 , 1 f . 0
= \int_I fh_{0,0}
= 2^{1/2} \p{\int_{I_{1,0}} f - \int_{I_{1,1}} f}
\implies \int_{I_{1,0}} f = \int_{I_{1,1}} f. 0 = ∫ I f h 0 , 0 = 2 1/2 ( ∫ I 1 , 0 f − ∫ I 1 , 1 f ) ⟹ ∫ I 1 , 0 f = ∫ I 1 , 1 f .
Putting these together, we have ∫ I 1 , 0 f = ∫ I 1 , 1 f = 0 \int_{I_{1,0}} f = \int_{I_{1,1}}f = 0 ∫ I 1 , 0 f = ∫ I 1 , 1 f = 0 , so we get the base case. We proceed by induction: suppose ∫ I n , j f = 0 \int_{I_{n,j}} f = 0 ∫ I n , j f = 0 for all 0 ≤ j ≤ 2 n − 1 0 \leq j \leq 2^n - 1 0 ≤ j ≤ 2 n − 1 . Then
0 = ∫ I n , j f = ∫ I n + 1 , 2 j f + ∫ I n + 1 , 2 j + 1 f ⟹ ∫ I n + 1 , 2 j f = − ∫ I n + 1 , 2 j + 1 f , 0
= \int_{I_{n,j}} f
= \int_{I_{n+1,2j}} f + \int_{I_{n+1,2j+1}} f
\implies \int_{I_{n+1,2j}} f = -\int_{I_{n+1,2j+1}} f, 0 = ∫ I n , j f = ∫ I n + 1 , 2 j f + ∫ I n + 1 , 2 j + 1 f ⟹ ∫ I n + 1 , 2 j f = − ∫ I n + 1 , 2 j + 1 f ,
by the inductive hypothesis, and by assumption,
0 = ∫ I f h n , j = ∫ I n + 1 , 2 j f − ∫ I n + 1 , 2 j + 1 f ⟹ ∫ I n + 1 , 2 j f = ∫ I n + 1 , 2 j + 1 f . 0
= \int_I fh_{n,j}
= \int_{I_{n+1,2j}} f - \int_{I_{n+1,2j+1}} f
\implies \int_{I_{n+1,2j}} f = \int_{I_{n+1,2j+1}} f. 0 = ∫ I f h n , j = ∫ I n + 1 , 2 j f − ∫ I n + 1 , 2 j + 1 f ⟹ ∫ I n + 1 , 2 j f = ∫ I n + 1 , 2 j + 1 f .
This implies that ∫ I n + 1 , 2 j f = ∫ I n + 1 , 2 j + 1 f = 0 \int_{I_{n+1,2j}} f = \int_{I_{n+1,2j+1}} f = 0 ∫ I n + 1 , 2 j f = ∫ I n + 1 , 2 j + 1 f = 0 for all 0 ≤ j ≤ 2 n − 1 0 \leq j \leq 2^n - 1 0 ≤ j ≤ 2 n − 1 , which completes the induction. From Problem 5, we see that E n f = 0 E_nf = 0 E n f = 0 everywhere, and because E n f → f E_nf \to f E n f → f almost everywhere, f = 0 f = 0 f = 0 almost everywhere.
Finally, given any f ∈ X f \in X f ∈ X , we have for all n , j n, j n , j that
⟨ f − ∑ n , j ⟨ f , h n , j ⟩ h n , j , h m , k ⟩ = ⟨ f , h m , k ⟩ − ⟨ f , h m , k ⟩ = 0 , \inner{f - \sum_{n,j} \inner{f, h_{n,j}}h_{n,j}, h_{m,k}}
= \inner{f, h_{m,k}} - \inner{f, h_{m,k}}
= 0, ⟨ f − n , j ∑ ⟨ f , h n , j ⟩ h n , j , h m , k ⟩ = ⟨ f , h m , k ⟩ − ⟨ f , h m , k ⟩ = 0 ,
which implies
0 = ∥ f − ∑ n , j ⟨ f , h n , j ⟩ h n , j ∥ 2 = ∥ f ∥ 2 + ∑ n , j ∣ ⟨ f , h n , j ⟩ ∣ 2 − 2 ∑ n , j ∣ ⟨ f , h n , j ⟩ ∣ 2 = ∥ f ∥ 2 − ∑ n , j ∣ ⟨ f , h n , j ⟩ ∣ 2 ⟹ ∥ f ∥ 2 = ∑ n , j ∣ ⟨ f , h n , j ⟩ ∣ 2 , \begin{aligned}
0
= \norm{f - \sum_{n,j} \inner{f, h_{n,j}}h_{n,j}}^2
&= \norm{f}^2 + \sum_{n,j} \abs{\inner{f, h_{n,j}}}^2 - 2\sum_{n,j} \abs{\inner{f, h_{n,j}}}^2 \\
&= \norm{f}^2 - \sum_{n,j} \abs{\inner{f, h_{n,j}}}^2 \\
\implies
\norm{f}^2
&= \sum_{n,j} \abs{\inner{f, h_{n,j}}}^2,
\end{aligned} 0 = ∥ ∥ f − n , j ∑ ⟨ f , h n , j ⟩ h n , j ∥ ∥ 2 ⟹ ∥ f ∥ 2 = ∥ f ∥ 2 + n , j ∑ ∣ ⟨ f , h n , j ⟩ ∣ 2 − 2 n , j ∑ ∣ ⟨ f , h n , j ⟩ ∣ 2 = ∥ f ∥ 2 − n , j ∑ ∣ ⟨ f , h n , j ⟩ ∣ 2 = n , j ∑ ∣ ⟨ f , h n , j ⟩ ∣ 2 ,
which was what we wanted to show.
Let
S N ( x ) = ∑ n = 1 N ∑ j = 0 2 n − 1 ( ∫ f h n , j d t ) h n , j ( x ) . S_N\p{x} = \sum_{n=1}^N \sum_{j=0}^{2^n-1} \p{\int fh_{n,j} \,\diff{t}} h_{n,j}\p{x}. S N ( x ) = n = 1 ∑ N j = 0 ∑ 2 n − 1 ( ∫ f h n , j d t ) h n , j ( x ) .
Notice that { j 2 − n ∈ I ∣ n ≥ 1 , 0 ≤ j ≤ 2 n − 1 } \set{j2^{-n} \in I \mid n \geq 1,\ 0 \leq j \leq 2^n-1} { j 2 − n ∈ I ∣ n ≥ 1 , 0 ≤ j ≤ 2 n − 1 } is countable, hence with Lebesgue measure 0 0 0 . Pick an x x x outside of this set so that for each n ≥ 1 n \geq 1 n ≥ 1 , there exists a unique j ( n , x ) j\p{n,x} j ( n , x ) such that x ∈ I n , j ( n , x ) x \in I_{n,j\p{n,x}} x ∈ I n , j ( n , x ) . Further let δ ( j , x ) \delta\p{j,x} δ ( j , x ) be the unique number in { 0 , 1 } \set{0, 1} { 0 , 1 } such that x ∈ I n + 1 , 2 j ( n , x ) + δ ( n , x ) x \in I_{n+1,2j\p{n,x}+\delta\p{n,x}} x ∈ I n + 1 , 2 j ( n , x ) + δ ( n , x ) . These satisfy
j ( n , x ) = 2 j ( n − 1 , x ) + δ ( n − 1 , x ) , j\p{n, x} = 2j\p{n-1, x} + \delta\p{n-1, x}, j ( n , x ) = 2 j ( n − 1 , x ) + δ ( n − 1 , x ) ,
since our indices are unique. Thus,
S N ( x ) = ∑ n = 1 N ∑ j = 0 2 n − 1 ( ∫ f h n , j d t ) h n , j ( x ) = ∑ n = 1 N ( ∫ f h n , j ( n , x ) d t ) h n , j ( n , x ) ( x ) = ∑ n = 1 N 2 n ( ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f d t − ∫ I n + 1 , 2 j ( n , x ) + ( 1 − δ ( n , x ) ) f d t ) = ∑ n = 1 N 2 n ( ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f d t − ( ∫ I n , j ( n , x ) f d t − ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f d t ) ) = ∑ n = 1 N 2 n ( 2 ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f d t − ∫ I n , j ( n , x ) f d t ) = ∑ n = 1 N 2 n + 1 ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f d t − 2 n ∫ I n , 2 j ( n − 1 , x ) + δ ( n − 1 , x ) f d t \begin{aligned}
S_N\p{x}
&= \sum_{n=1}^N \sum_{j=0}^{2^n-1} \p{\int fh_{n,j} \,\diff{t}} h_{n,j}\p{x} \\
&= \sum_{n=1}^N \p{\int fh_{n,j\p{n,x}} \,\diff{t}} h_{n,j\p{n,x}}\p{x} \\
&= \sum_{n=1}^N 2^n\p{\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - \int_{I_{n+1,2j\p{n,x}+\p{1-\delta\p{n,x}}}} f \,\diff{t}} \\
&= \sum_{n=1}^N 2^n\p{\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - \p{\int_{I_{n,j\p{n,x}}} f \,\diff{t} - \int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t}}} \\
&= \sum_{n=1}^N 2^n\p{2\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - \int_{I_{n,j\p{n,x}}} f \,\diff{t}} \\
&= \sum_{n=1}^N 2^{n+1}\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - 2^n\int_{I_{n,2j\p{n-1,x}+\delta\p{n-1,x}}} f \,\diff{t} \\
\end{aligned} S N ( x ) = n = 1 ∑ N j = 0 ∑ 2 n − 1 ( ∫ f h n , j d t ) h n , j ( x ) = n = 1 ∑ N ( ∫ f h n , j ( n , x ) d t ) h n , j ( n , x ) ( x ) = n = 1 ∑ N 2 n ( ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f d t − ∫ I n + 1 , 2 j ( n , x ) + ( 1 − δ ( n , x ) ) f d t ) = n = 1 ∑ N 2 n ( ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f d t − ( ∫ I n , j ( n , x ) f d t − ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f d t ) ) = n = 1 ∑ N 2 n ( 2 ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f d t − ∫ I n , j ( n , x ) f d t ) = n = 1 ∑ N 2 n + 1 ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f d t − 2 n ∫ I n , 2 j ( n − 1 , x ) + δ ( n − 1 , x ) f d t
where the third-to-last equality comes from the fact that I n , j ( n , x ) I_{n,j\p{n,x}} I n , j ( n , x ) is the disjoint union of I n + 1 , 2 j ( n , x ) I_{n+1,2j\p{n,x}} I n + 1 , 2 j ( n , x ) and I n + 1 , 2 j ( n , x ) + 1 I_{n+1,2j\p{n,x}+1} I n + 1 , 2 j ( n , x ) + 1 . This sum telescopes, and using the fact that ∫ I f = 0 \int_I f = 0 ∫ I f = 0 , we're left with
S N ( x ) = 2 N + 1 ∫ I N + 1 , 2 j ( N , x ) + δ ( N , x ) f d t − 2 ∫ I 0 , 0 f d t = 2 N + 1 ∫ I N + 1 , j ( N + 1 , x ) f d t = 2 N + 1 ( ∫ I N + 1 , j ( N + 1 , x ) f d t ) χ I N + 1 , j ( N + 1 , x ) ( x ) = ∑ j = 0 2 N − 1 2 N + 1 ( ∫ I N + 1 , j f d t ) χ I N + 1 , j ( x ) = E N + 1 f ( x ) . \begin{aligned}
S_N\p{x}
&= 2^{N+1} \int_{I_{N+1,2j\p{N,x}+\delta\p{N,x}}} f \,\diff{t} - 2\int_{I_{0,0}} f \,\diff{t} \\
&= 2^{N+1}\int_{I_{N+1,j\p{N+1,x}}} f \,\diff{t} \\
&= 2^{N+1}\p{\int_{I_{N+1,j\p{N+1,x}}} f \,\diff{t}} \chi_{I_{N+1,j\p{N+1,x}}}\p{x} \\
&= \sum_{j=0}^{2^N-1} 2^{N+1} \p{\int_{I_{N+1,j}} f \,\diff{t}} \chi_{I_{N+1,j}}\p{x} \\
&= E_{N+1}f\p{x}.
\end{aligned} S N ( x ) = 2 N + 1 ∫ I N + 1 , 2 j ( N , x ) + δ ( N , x ) f d t − 2 ∫ I 0 , 0 f d t = 2 N + 1 ∫ I N + 1 , j ( N + 1 , x ) f d t = 2 N + 1 ( ∫ I N + 1 , j ( N + 1 , x ) f d t ) χ I N + 1 , j ( N + 1 , x ) ( x ) = j = 0 ∑ 2 N − 1 2 N + 1 ( ∫ I N + 1 , j f d t ) χ I N + 1 , j ( x ) = E N + 1 f ( x ) .
where the second-to-last equality comes from the fact that { I N + 1 , j } j \set{I_{N+1,j}}_j { I N + 1 , j } j partition I I I (ignoring endpoints). By Problem 5, it follows that
lim N → ∞ ∣ S N ( x ) − f ( x ) ∣ = lim N → ∞ ∣ E N + 1 ( x ) − f ( x ) ∣ = 0 , \lim_{N\to\infty} \abs{S_N\p{x} - f\p{x}}
= \lim_{N\to\infty} \abs{E_{N+1}\p{x} - f\p{x}}
= 0, N → ∞ lim ∣ S N ( x ) − f ( x ) ∣ = N → ∞ lim ∣ E N + 1 ( x ) − f ( x ) ∣ = 0 ,
so we have the formula almost everywhere, as desired.