Spring 2009 - Problem 6

Fourier analysis

Let In,jI_{n,j} as in Problem 5, define the Haar function hn,j=2n/2(χIn+1,2jχIn+1,2j+1)h_{n,j} = 2^{n/2}\p{\chi_{I_{n+1,2j}} - \chi_{I_{n+1,2j+1}}}.

  1. Prove that if fL2(I)f \in L^2\p{I} with respect to Lebesgue measure and Ifdt=0\int_I f \,\diff{t} = 0, then

    If(x)2dx=n,jf(t)hn,j(t)dt2.\int_I \abs{f\p{x}}^2 \,\diff{x} = \sum_{n,j} \abs{\int f\p{t}h_{n,j}\p{t} \,\diff{t}}^2.
  2. Prove that if fL1(I)f \in L^1\p{I} and If(t)dt=0\int_I f\p{t} \diff{t} = 0, then almost everywhere on II,

    f(x)=n=1j=02n1(f(t)hn,j(t)dt)hn,j(x).f\p{x} = \sum_{n=1}^\infty \sum_{j=0}^{2^n-1} \p{\int f\p{t}h_{n,j\p{t} \,\diff{t}}}h_{n,j}\p{x}.

    Hint: Compare the nn-th partial partial sum to EnfE_nf from Problem 5.

Solution.
  1. Let X={fL2(I)Ifdt=0}X = \set{f \in L^2\p{I} \mid \int_I f \,\diff{t} = 0}. Because integration is linear, it's clear that this is a linear subspace of L2(I)L^2\p{I}. We will show that {hn,j}\set{h_{n,j}} is an orthonormal basis for XX.

    First, notice that hn,jXh_{n,j} \in X by symmetry. Also,

    hn,j=Ihn,j2=2nI(χIn+1,2j+χIn+1,2j+1)=2n(12n+1+12n+1)=1,\begin{aligned} \norm{h_{n,j}} = \int_I \abs{h_{n,j}}^2 &= 2^n \int_I \p{\chi_{I_{n+1,2j}} + \chi_{I_{n+1,2j+1}}} \\ &= 2^n\p{\frac{1}{2^{n+1}} + \frac{1}{2^{n+1}}} \\ &= 1, \end{aligned}

    since χIn+1,2j\chi_{I_{n+1,2j}} and χIn+1,2j+1\chi_{I_{n+1,2j+1}} are disjoint.

    To calculate the inner products, consider In,jI_{n,j} and Im,kI_{m,k}, where without loss of generality nmn \leq m. Notice that In,jIm,kI_{n,j} \cap I_{m,k} has positive measure only when k[2mnj,2mnj+2mn1]k \in \br{2^{m-n}j, 2^{m-n}j + 2^{m-n} - 1}. Indeed, if k2mnj1k \leq 2^{m-n}j - 1, then

    (k+1)2m(2mnj)2m=j2n,\p{k+1}2^{-m} \leq \p{2^{m-n}j}2^{-m} = j2^{-n},

    i.e., In,jIm,kI_{n,j} \cap I_{m,k} is either empty or contains a single point. Similarly, if k2mnj+2mnk \geq 2^{m-n}j + 2^{m-n}, then

    k2m(2mnj+2mn)2m=(j+1)2n,k2^{-m} \geq \p{2^{m-n}j + 2^{m-n}}2^{-m} = \p{j+1}2^{-n},

    so the same thing happens. Thus, if k[2mnj,2mnj+2mn1]k \in \br{2^{m-n}j, 2^{m-n}j + 2^{m-n} - 1}, we have

    (k+1)2m(2mnj+2mn)2m(j+1)2n,\p{k+1}2^{-m} \leq \p{2^{m-n}j + 2^{m-n}}2^{-m} \leq \p{j+1}2^{-n},

    i.e., Im,kIn,jI_{m,k} \subseteq I_{n,j}. In particular, given hn,jh_{n,j} and hm,kh_{m,k} with nmn \leq m, the support of hm,kh_{m,k} is contained entirely in either In+1,2jI_{n+1,2j} or In+1,2j+1I_{n+1,2j+1}, so

    hn,j,hm,k=Ihn,jhm,k=In+1,2j+i2n/2hm,k=0,\inner{h_{n,j}, h_{m,k}} = \int_I h_{n,j}h_{m,k} = \int_{I_{n+1,2j+i}} 2^{n/2}h_{m,k} = 0,

    by symmetry. With this, we have shown that {hn,j}\set{h_{n,j}} is an orthonormal set. Next, we will show that they are in fact a basis for XX. It suffices to show that if fXf \in X satisfies f,hn,j=0\inner{f, h_{n,j}} = 0 for all n,jn, j, then f=0f = 0 in XX.

    We will show that In,jf=0\int_{I_{n,j}} f = 0 for all n,jn, j. When n=1n = 1, notice that I=I1,0I1,1I = I_{1,0} \cup I_{1,1} is a disjoint union, so

    0=If=I1,0f+I1,0f    I1,0f=I1,1f.0 = \int_I f = \int_{I_{1,0}} f + \int_{I_{1,0}} f \implies \int_{I_{1,0}} f = -\int_{I_{1,1}} f.

    On the other hand, by assumption,

    0=Ifh0,0=21/2(I1,0fI1,1f)    I1,0f=I1,1f.0 = \int_I fh_{0,0} = 2^{1/2} \p{\int_{I_{1,0}} f - \int_{I_{1,1}} f} \implies \int_{I_{1,0}} f = \int_{I_{1,1}} f.

    Putting these together, we have I1,0f=I1,1f=0\int_{I_{1,0}} f = \int_{I_{1,1}}f = 0, so we get the base case. We proceed by induction: suppose In,jf=0\int_{I_{n,j}} f = 0 for all 0j2n10 \leq j \leq 2^n - 1. Then

    0=In,jf=In+1,2jf+In+1,2j+1f    In+1,2jf=In+1,2j+1f,0 = \int_{I_{n,j}} f = \int_{I_{n+1,2j}} f + \int_{I_{n+1,2j+1}} f \implies \int_{I_{n+1,2j}} f = -\int_{I_{n+1,2j+1}} f,

    by the inductive hypothesis, and by assumption,

    0=Ifhn,j=In+1,2jfIn+1,2j+1f    In+1,2jf=In+1,2j+1f.0 = \int_I fh_{n,j} = \int_{I_{n+1,2j}} f - \int_{I_{n+1,2j+1}} f \implies \int_{I_{n+1,2j}} f = \int_{I_{n+1,2j+1}} f.

    This implies that In+1,2jf=In+1,2j+1f=0\int_{I_{n+1,2j}} f = \int_{I_{n+1,2j+1}} f = 0 for all 0j2n10 \leq j \leq 2^n - 1, which completes the induction. From Problem 5, we see that Enf=0E_nf = 0 everywhere, and because EnffE_nf \to f almost everywhere, f=0f = 0 almost everywhere.

    Finally, given any fXf \in X, we have for all n,jn, j that

    fn,jf,hn,jhn,j,hm,k=f,hm,kf,hm,k=0,\inner{f - \sum_{n,j} \inner{f, h_{n,j}}h_{n,j}, h_{m,k}} = \inner{f, h_{m,k}} - \inner{f, h_{m,k}} = 0,

    which implies

    0=fn,jf,hn,jhn,j2=f2+n,jf,hn,j22n,jf,hn,j2=f2n,jf,hn,j2    f2=n,jf,hn,j2,\begin{aligned} 0 = \norm{f - \sum_{n,j} \inner{f, h_{n,j}}h_{n,j}}^2 &= \norm{f}^2 + \sum_{n,j} \abs{\inner{f, h_{n,j}}}^2 - 2\sum_{n,j} \abs{\inner{f, h_{n,j}}}^2 \\ &= \norm{f}^2 - \sum_{n,j} \abs{\inner{f, h_{n,j}}}^2 \\ \implies \norm{f}^2 &= \sum_{n,j} \abs{\inner{f, h_{n,j}}}^2, \end{aligned}

    which was what we wanted to show.

  2. Let

    SN(x)=n=1Nj=02n1(fhn,jdt)hn,j(x).S_N\p{x} = \sum_{n=1}^N \sum_{j=0}^{2^n-1} \p{\int fh_{n,j} \,\diff{t}} h_{n,j}\p{x}.

    Notice that {j2nIn1, 0j2n1}\set{j2^{-n} \in I \mid n \geq 1,\ 0 \leq j \leq 2^n-1} is countable, hence with Lebesgue measure 00. Pick an xx outside of this set so that for each n1n \geq 1, there exists a unique j(n,x)j\p{n,x} such that xIn,j(n,x)x \in I_{n,j\p{n,x}}. Further let δ(j,x)\delta\p{j,x} be the unique number in {0,1}\set{0, 1} such that xIn+1,2j(n,x)+δ(n,x)x \in I_{n+1,2j\p{n,x}+\delta\p{n,x}}. These satisfy

    j(n,x)=2j(n1,x)+δ(n1,x),j\p{n, x} = 2j\p{n-1, x} + \delta\p{n-1, x},

    since our indices are unique. Thus,

    SN(x)=n=1Nj=02n1(fhn,jdt)hn,j(x)=n=1N(fhn,j(n,x)dt)hn,j(n,x)(x)=n=1N2n(In+1,2j(n,x)+δ(n,x)fdtIn+1,2j(n,x)+(1δ(n,x))fdt)=n=1N2n(In+1,2j(n,x)+δ(n,x)fdt(In,j(n,x)fdtIn+1,2j(n,x)+δ(n,x)fdt))=n=1N2n(2In+1,2j(n,x)+δ(n,x)fdtIn,j(n,x)fdt)=n=1N2n+1In+1,2j(n,x)+δ(n,x)fdt2nIn,2j(n1,x)+δ(n1,x)fdt\begin{aligned} S_N\p{x} &= \sum_{n=1}^N \sum_{j=0}^{2^n-1} \p{\int fh_{n,j} \,\diff{t}} h_{n,j}\p{x} \\ &= \sum_{n=1}^N \p{\int fh_{n,j\p{n,x}} \,\diff{t}} h_{n,j\p{n,x}}\p{x} \\ &= \sum_{n=1}^N 2^n\p{\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - \int_{I_{n+1,2j\p{n,x}+\p{1-\delta\p{n,x}}}} f \,\diff{t}} \\ &= \sum_{n=1}^N 2^n\p{\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - \p{\int_{I_{n,j\p{n,x}}} f \,\diff{t} - \int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t}}} \\ &= \sum_{n=1}^N 2^n\p{2\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - \int_{I_{n,j\p{n,x}}} f \,\diff{t}} \\ &= \sum_{n=1}^N 2^{n+1}\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - 2^n\int_{I_{n,2j\p{n-1,x}+\delta\p{n-1,x}}} f \,\diff{t} \\ \end{aligned}

    where the third-to-last equality comes from the fact that In,j(n,x)I_{n,j\p{n,x}} is the disjoint union of In+1,2j(n,x)I_{n+1,2j\p{n,x}} and In+1,2j(n,x)+1I_{n+1,2j\p{n,x}+1}. This sum telescopes, and using the fact that If=0\int_I f = 0, we're left with

    SN(x)=2N+1IN+1,2j(N,x)+δ(N,x)fdt2I0,0fdt=2N+1IN+1,j(N+1,x)fdt=2N+1(IN+1,j(N+1,x)fdt)χIN+1,j(N+1,x)(x)=j=02N12N+1(IN+1,jfdt)χIN+1,j(x)=EN+1f(x).\begin{aligned} S_N\p{x} &= 2^{N+1} \int_{I_{N+1,2j\p{N,x}+\delta\p{N,x}}} f \,\diff{t} - 2\int_{I_{0,0}} f \,\diff{t} \\ &= 2^{N+1}\int_{I_{N+1,j\p{N+1,x}}} f \,\diff{t} \\ &= 2^{N+1}\p{\int_{I_{N+1,j\p{N+1,x}}} f \,\diff{t}} \chi_{I_{N+1,j\p{N+1,x}}}\p{x} \\ &= \sum_{j=0}^{2^N-1} 2^{N+1} \p{\int_{I_{N+1,j}} f \,\diff{t}} \chi_{I_{N+1,j}}\p{x} \\ &= E_{N+1}f\p{x}. \end{aligned}

    where the second-to-last equality comes from the fact that {IN+1,j}j\set{I_{N+1,j}}_j partition II (ignoring endpoints). By Problem 5, it follows that

    limNSN(x)f(x)=limNEN+1(x)f(x)=0,\lim_{N\to\infty} \abs{S_N\p{x} - f\p{x}} = \lim_{N\to\infty} \abs{E_{N+1}\p{x} - f\p{x}} = 0,

    so we have the formula almost everywhere, as desired.