Let X = { f ∈ L 2 ( I ) ∣ ∫ I f   d t = 0 } X = \set{f \in L^2\p{I} \mid \int_I f \,\diff{t} = 0} X = { f ∈ L 2 ( I ) ∣ ∫ I  f d t = 0 } L 2 ( I ) L^2\p{I} L 2 ( I ) { h n , j } \set{h_{n,j}} { h n , j  } X X X 
First, notice that h n , j ∈ X h_{n,j} \in X h n , j  ∈ X 
∥ h n , j ∥ = ∫ I ∣ h n , j ∣ 2 = 2 n ∫ I ( χ I n + 1 , 2 j + χ I n + 1 , 2 j + 1 ) = 2 n ( 1 2 n + 1 + 1 2 n + 1 ) = 1 , \begin{aligned}
   \norm{h_{n,j}}
        = \int_I \abs{h_{n,j}}^2
       &= 2^n \int_I \p{\chi_{I_{n+1,2j}} + \chi_{I_{n+1,2j+1}}} \\
       &= 2^n\p{\frac{1}{2^{n+1}} + \frac{1}{2^{n+1}}} \\
       &= 1,
\end{aligned} ∥ h n , j  ∥ = ∫ I  ∣ h n , j  ∣ 2  = 2 n ∫ I  ( χ I n + 1 , 2 j   + χ I n + 1 , 2 j + 1   ) = 2 n ( 2 n + 1 1  + 2 n + 1 1  ) = 1 ,  since χ I n + 1 , 2 j \chi_{I_{n+1,2j}} χ I n + 1 , 2 j   χ I n + 1 , 2 j + 1 \chi_{I_{n+1,2j+1}} χ I n + 1 , 2 j + 1   
To calculate the inner products, consider I n , j I_{n,j} I n , j  I m , k I_{m,k} I m , k  n ≤ m n \leq m n ≤ m I n , j ∩ I m , k I_{n,j} \cap I_{m,k} I n , j  ∩ I m , k  k ∈ [ 2 m − n j , 2 m − n j + 2 m − n − 1 ] k \in \br{2^{m-n}j, 2^{m-n}j + 2^{m-n} - 1} k ∈ [ 2 m − n j , 2 m − n j + 2 m − n − 1 ] k ≤ 2 m − n j − 1 k \leq 2^{m-n}j - 1 k ≤ 2 m − n j − 1 
( k + 1 ) 2 − m ≤ ( 2 m − n j ) 2 − m = j 2 − n , \p{k+1}2^{-m} \leq \p{2^{m-n}j}2^{-m} = j2^{-n}, ( k + 1 ) 2 − m ≤ ( 2 m − n j ) 2 − m = j 2 − n , i.e., I n , j ∩ I m , k I_{n,j} \cap I_{m,k} I n , j  ∩ I m , k  k ≥ 2 m − n j + 2 m − n k \geq 2^{m-n}j + 2^{m-n} k ≥ 2 m − n j + 2 m − n 
k 2 − m ≥ ( 2 m − n j + 2 m − n ) 2 − m = ( j + 1 ) 2 − n , k2^{-m} \geq \p{2^{m-n}j + 2^{m-n}}2^{-m} = \p{j+1}2^{-n}, k 2 − m ≥ ( 2 m − n j + 2 m − n ) 2 − m = ( j + 1 ) 2 − n , so the same thing happens. Thus, if k ∈ [ 2 m − n j , 2 m − n j + 2 m − n − 1 ] k \in \br{2^{m-n}j, 2^{m-n}j + 2^{m-n} - 1} k ∈ [ 2 m − n j , 2 m − n j + 2 m − n − 1 ] 
( k + 1 ) 2 − m ≤ ( 2 m − n j + 2 m − n ) 2 − m ≤ ( j + 1 ) 2 − n , \p{k+1}2^{-m} \leq \p{2^{m-n}j + 2^{m-n}}2^{-m} \leq \p{j+1}2^{-n}, ( k + 1 ) 2 − m ≤ ( 2 m − n j + 2 m − n ) 2 − m ≤ ( j + 1 ) 2 − n , i.e., I m , k ⊆ I n , j I_{m,k} \subseteq I_{n,j} I m , k  ⊆ I n , j  h n , j h_{n,j} h n , j  h m , k h_{m,k} h m , k  n ≤ m n \leq m n ≤ m h m , k h_{m,k} h m , k  I n + 1 , 2 j I_{n+1,2j} I n + 1 , 2 j  I n + 1 , 2 j + 1 I_{n+1,2j+1} I n + 1 , 2 j + 1  
⟨ h n , j , h m , k ⟩ = ∫ I h n , j h m , k = ∫ I n + 1 , 2 j + i 2 n / 2 h m , k = 0 , \inner{h_{n,j}, h_{m,k}}
    = \int_I h_{n,j}h_{m,k}
    = \int_{I_{n+1,2j+i}} 2^{n/2}h_{m,k}
    = 0, ⟨ h n , j  , h m , k  ⟩ = ∫ I  h n , j  h m , k  = ∫ I n + 1 , 2 j + i   2 n /2 h m , k  = 0 , by symmetry. With this, we have shown that { h n , j } \set{h_{n,j}} { h n , j  } X X X f ∈ X f \in X f ∈ X ⟨ f , h n , j ⟩ = 0 \inner{f, h_{n,j}} = 0 ⟨ f , h n , j  ⟩ = 0 n , j n, j n , j f = 0 f = 0 f = 0 X X X 
We will show that ∫ I n , j f = 0 \int_{I_{n,j}} f = 0 ∫ I n , j   f = 0 n , j n, j n , j n = 1 n = 1 n = 1 I = I 1 , 0 ∪ I 1 , 1 I = I_{1,0} \cup I_{1,1} I = I 1 , 0  ∪ I 1 , 1  
0 = ∫ I f = ∫ I 1 , 0 f + ∫ I 1 , 0 f    ⟹    ∫ I 1 , 0 f = − ∫ I 1 , 1 f . 0
    = \int_I f
    = \int_{I_{1,0}} f + \int_{I_{1,0}} f
\implies \int_{I_{1,0}} f = -\int_{I_{1,1}} f. 0 = ∫ I  f = ∫ I 1 , 0   f + ∫ I 1 , 0   f ⟹ ∫ I 1 , 0   f = − ∫ I 1 , 1   f . On the other hand, by assumption,
0 = ∫ I f h 0 , 0 = 2 1 / 2 ( ∫ I 1 , 0 f − ∫ I 1 , 1 f )    ⟹    ∫ I 1 , 0 f = ∫ I 1 , 1 f . 0
    = \int_I fh_{0,0}
    = 2^{1/2} \p{\int_{I_{1,0}} f - \int_{I_{1,1}} f}
\implies \int_{I_{1,0}} f = \int_{I_{1,1}} f. 0 = ∫ I  f h 0 , 0  = 2 1/2 ( ∫ I 1 , 0   f − ∫ I 1 , 1   f ) ⟹ ∫ I 1 , 0   f = ∫ I 1 , 1   f . Putting these together, we have ∫ I 1 , 0 f = ∫ I 1 , 1 f = 0 \int_{I_{1,0}} f = \int_{I_{1,1}}f = 0 ∫ I 1 , 0   f = ∫ I 1 , 1   f = 0 ∫ I n , j f = 0 \int_{I_{n,j}} f = 0 ∫ I n , j   f = 0 0 ≤ j ≤ 2 n − 1 0 \leq j \leq 2^n - 1 0 ≤ j ≤ 2 n − 1 
0 = ∫ I n , j f = ∫ I n + 1 , 2 j f + ∫ I n + 1 , 2 j + 1 f    ⟹    ∫ I n + 1 , 2 j f = − ∫ I n + 1 , 2 j + 1 f , 0
    = \int_{I_{n,j}} f
    = \int_{I_{n+1,2j}} f + \int_{I_{n+1,2j+1}} f
\implies \int_{I_{n+1,2j}} f = -\int_{I_{n+1,2j+1}} f, 0 = ∫ I n , j   f = ∫ I n + 1 , 2 j   f + ∫ I n + 1 , 2 j + 1   f ⟹ ∫ I n + 1 , 2 j   f = − ∫ I n + 1 , 2 j + 1   f , by the inductive hypothesis, and by assumption,
0 = ∫ I f h n , j = ∫ I n + 1 , 2 j f − ∫ I n + 1 , 2 j + 1 f    ⟹    ∫ I n + 1 , 2 j f = ∫ I n + 1 , 2 j + 1 f . 0
    = \int_I fh_{n,j}
    = \int_{I_{n+1,2j}} f - \int_{I_{n+1,2j+1}} f
\implies \int_{I_{n+1,2j}} f = \int_{I_{n+1,2j+1}} f. 0 = ∫ I  f h n , j  = ∫ I n + 1 , 2 j   f − ∫ I n + 1 , 2 j + 1   f ⟹ ∫ I n + 1 , 2 j   f = ∫ I n + 1 , 2 j + 1   f . This implies that ∫ I n + 1 , 2 j f = ∫ I n + 1 , 2 j + 1 f = 0 \int_{I_{n+1,2j}} f = \int_{I_{n+1,2j+1}} f = 0 ∫ I n + 1 , 2 j   f = ∫ I n + 1 , 2 j + 1   f = 0 0 ≤ j ≤ 2 n − 1 0 \leq j \leq 2^n - 1 0 ≤ j ≤ 2 n − 1 E n f = 0 E_nf = 0 E n  f = 0 E n f → f E_nf \to f E n  f → f f = 0 f = 0 f = 0 
Finally, given any f ∈ X f \in X f ∈ X n , j n, j n , j 
⟨ f − ∑ n , j ⟨ f , h n , j ⟩ h n , j , h m , k ⟩ = ⟨ f , h m , k ⟩ − ⟨ f , h m , k ⟩ = 0 , \inner{f - \sum_{n,j} \inner{f, h_{n,j}}h_{n,j}, h_{m,k}}
    = \inner{f, h_{m,k}} - \inner{f, h_{m,k}}
    = 0, ⟨ f − n , j ∑  ⟨ f , h n , j  ⟩ h n , j  , h m , k  ⟩ = ⟨ f , h m , k  ⟩ − ⟨ f , h m , k  ⟩ = 0 , which implies
0 = ∥ f − ∑ n , j ⟨ f , h n , j ⟩ h n , j ∥ 2 = ∥ f ∥ 2 + ∑ n , j ∣ ⟨ f , h n , j ⟩ ∣ 2 − 2 ∑ n , j ∣ ⟨ f , h n , j ⟩ ∣ 2 = ∥ f ∥ 2 − ∑ n , j ∣ ⟨ f , h n , j ⟩ ∣ 2    ⟹    ∥ f ∥ 2 = ∑ n , j ∣ ⟨ f , h n , j ⟩ ∣ 2 , \begin{aligned}
    0
        = \norm{f - \sum_{n,j} \inner{f, h_{n,j}}h_{n,j}}^2
       &= \norm{f}^2 + \sum_{n,j} \abs{\inner{f, h_{n,j}}}^2 - 2\sum_{n,j} \abs{\inner{f, h_{n,j}}}^2 \\
       &= \norm{f}^2 - \sum_{n,j} \abs{\inner{f, h_{n,j}}}^2 \\
    \implies
    \norm{f}^2
        &= \sum_{n,j} \abs{\inner{f, h_{n,j}}}^2,
\end{aligned} 0 = ∥ ∥  f − n , j ∑  ⟨ f , h n , j  ⟩ h n , j  ∥ ∥  2 ⟹ ∥ f ∥ 2  = ∥ f ∥ 2 + n , j ∑  ∣ ⟨ f , h n , j  ⟩ ∣ 2 − 2 n , j ∑  ∣ ⟨ f , h n , j  ⟩ ∣ 2 = ∥ f ∥ 2 − n , j ∑  ∣ ⟨ f , h n , j  ⟩ ∣ 2 = n , j ∑  ∣ ⟨ f , h n , j  ⟩ ∣ 2 ,  which was what we wanted to show.
 
Let
S N ( x ) = ∑ n = 1 N ∑ j = 0 2 n − 1 ( ∫ f h n , j   d t ) h n , j ( x ) . S_N\p{x} = \sum_{n=1}^N \sum_{j=0}^{2^n-1} \p{\int fh_{n,j} \,\diff{t}} h_{n,j}\p{x}. S N  ( x ) = n = 1 ∑ N  j = 0 ∑ 2 n − 1  ( ∫ f h n , j  d t ) h n , j  ( x ) . Notice that { j 2 − n ∈ I ∣ n ≥ 1 ,   0 ≤ j ≤ 2 n − 1 } \set{j2^{-n} \in I \mid n \geq 1,\ 0 \leq j \leq 2^n-1} { j 2 − n ∈ I ∣ n ≥ 1 ,   0 ≤ j ≤ 2 n − 1 } 0 0 0 x x x n ≥ 1 n \geq 1 n ≥ 1 j ( n , x ) j\p{n,x} j ( n , x ) x ∈ I n , j ( n , x ) x \in I_{n,j\p{n,x}} x ∈ I n , j ( n , x )  δ ( j , x ) \delta\p{j,x} δ ( j , x ) { 0 , 1 } \set{0, 1} { 0 , 1 } x ∈ I n + 1 , 2 j ( n , x ) + δ ( n , x ) x \in I_{n+1,2j\p{n,x}+\delta\p{n,x}} x ∈ I n + 1 , 2 j ( n , x ) + δ ( n , x )  
j ( n , x ) = 2 j ( n − 1 , x ) + δ ( n − 1 , x ) , j\p{n, x} = 2j\p{n-1, x} + \delta\p{n-1, x}, j ( n , x ) = 2 j ( n − 1 , x ) + δ ( n − 1 , x ) , since our indices are unique. Thus,
S N ( x ) = ∑ n = 1 N ∑ j = 0 2 n − 1 ( ∫ f h n , j   d t ) h n , j ( x ) = ∑ n = 1 N ( ∫ f h n , j ( n , x )   d t ) h n , j ( n , x ) ( x ) = ∑ n = 1 N 2 n ( ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f   d t − ∫ I n + 1 , 2 j ( n , x ) + ( 1 − δ ( n , x ) ) f   d t ) = ∑ n = 1 N 2 n ( ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f   d t − ( ∫ I n , j ( n , x ) f   d t − ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f   d t ) ) = ∑ n = 1 N 2 n ( 2 ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f   d t − ∫ I n , j ( n , x ) f   d t ) = ∑ n = 1 N 2 n + 1 ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x ) f   d t − 2 n ∫ I n , 2 j ( n − 1 , x ) + δ ( n − 1 , x ) f   d t \begin{aligned}
    S_N\p{x}
        &= \sum_{n=1}^N \sum_{j=0}^{2^n-1} \p{\int fh_{n,j} \,\diff{t}} h_{n,j}\p{x} \\
        &= \sum_{n=1}^N \p{\int fh_{n,j\p{n,x}} \,\diff{t}} h_{n,j\p{n,x}}\p{x} \\
        &= \sum_{n=1}^N 2^n\p{\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - \int_{I_{n+1,2j\p{n,x}+\p{1-\delta\p{n,x}}}} f \,\diff{t}} \\
        &= \sum_{n=1}^N 2^n\p{\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - \p{\int_{I_{n,j\p{n,x}}} f \,\diff{t} - \int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t}}} \\
        &= \sum_{n=1}^N 2^n\p{2\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - \int_{I_{n,j\p{n,x}}} f \,\diff{t}} \\
        &= \sum_{n=1}^N 2^{n+1}\int_{I_{n+1,2j\p{n,x}+\delta\p{n,x}}} f \,\diff{t} - 2^n\int_{I_{n,2j\p{n-1,x}+\delta\p{n-1,x}}} f \,\diff{t} \\
\end{aligned} S N  ( x )  = n = 1 ∑ N  j = 0 ∑ 2 n − 1  ( ∫ f h n , j  d t ) h n , j  ( x ) = n = 1 ∑ N  ( ∫ f h n , j ( n , x )  d t ) h n , j ( n , x )  ( x ) = n = 1 ∑ N  2 n ( ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x )   f d t − ∫ I n + 1 , 2 j ( n , x ) + ( 1 − δ ( n , x ) )   f d t ) = n = 1 ∑ N  2 n ( ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x )   f d t − ( ∫ I n , j ( n , x )   f d t − ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x )   f d t ) ) = n = 1 ∑ N  2 n ( 2 ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x )   f d t − ∫ I n , j ( n , x )   f d t ) = n = 1 ∑ N  2 n + 1 ∫ I n + 1 , 2 j ( n , x ) + δ ( n , x )   f d t − 2 n ∫ I n , 2 j ( n − 1 , x ) + δ ( n − 1 , x )   f d t  where the third-to-last equality comes from the fact that I n , j ( n , x ) I_{n,j\p{n,x}} I n , j ( n , x )  I n + 1 , 2 j ( n , x ) I_{n+1,2j\p{n,x}} I n + 1 , 2 j ( n , x )  I n + 1 , 2 j ( n , x ) + 1 I_{n+1,2j\p{n,x}+1} I n + 1 , 2 j ( n , x ) + 1  ∫ I f = 0 \int_I f = 0 ∫ I  f = 0 
S N ( x ) = 2 N + 1 ∫ I N + 1 , 2 j ( N , x ) + δ ( N , x ) f   d t − 2 ∫ I 0 , 0 f   d t = 2 N + 1 ∫ I N + 1 , j ( N + 1 , x ) f   d t = 2 N + 1 ( ∫ I N + 1 , j ( N + 1 , x ) f   d t ) χ I N + 1 , j ( N + 1 , x ) ( x ) = ∑ j = 0 2 N − 1 2 N + 1 ( ∫ I N + 1 , j f   d t ) χ I N + 1 , j ( x ) = E N + 1 f ( x ) . \begin{aligned}
    S_N\p{x}
        &= 2^{N+1} \int_{I_{N+1,2j\p{N,x}+\delta\p{N,x}}} f \,\diff{t} - 2\int_{I_{0,0}} f \,\diff{t} \\
        &= 2^{N+1}\int_{I_{N+1,j\p{N+1,x}}} f \,\diff{t} \\
        &= 2^{N+1}\p{\int_{I_{N+1,j\p{N+1,x}}} f \,\diff{t}} \chi_{I_{N+1,j\p{N+1,x}}}\p{x} \\
        &= \sum_{j=0}^{2^N-1} 2^{N+1} \p{\int_{I_{N+1,j}} f \,\diff{t}} \chi_{I_{N+1,j}}\p{x} \\
        &= E_{N+1}f\p{x}.
\end{aligned} S N  ( x )  = 2 N + 1 ∫ I N + 1 , 2 j ( N , x ) + δ ( N , x )   f d t − 2 ∫ I 0 , 0   f d t = 2 N + 1 ∫ I N + 1 , j ( N + 1 , x )   f d t = 2 N + 1 ( ∫ I N + 1 , j ( N + 1 , x )   f d t ) χ I N + 1 , j ( N + 1 , x )   ( x ) = j = 0 ∑ 2 N − 1  2 N + 1 ( ∫ I N + 1 , j   f d t ) χ I N + 1 , j   ( x ) = E N + 1  f ( x ) .  where the second-to-last equality comes from the fact that { I N + 1 , j } j \set{I_{N+1,j}}_j { I N + 1 , j  } j  I I I 
lim  N → ∞ ∣ S N ( x ) − f ( x ) ∣ = lim  N → ∞ ∣ E N + 1 ( x ) − f ( x ) ∣ = 0 , \lim_{N\to\infty} \abs{S_N\p{x} - f\p{x}}
    = \lim_{N\to\infty} \abs{E_{N+1}\p{x} - f\p{x}}
    = 0, N → ∞ lim  ∣ S N  ( x ) − f ( x ) ∣ = N → ∞ lim  ∣ E N + 1  ( x ) − f ( x ) ∣ = 0 , so we have the formula almost everywhere, as desired.