Spring 2009 - Problem 5

Lebesgue differentiation theorem

Let I=I0,0=[0,1]I = I_{0,0} = \br{0, 1} be the unit interval, and for n=0,1,2,,n = 0, 1, 2, \ldots, and 0j2n10 \leq j \leq 2^n - 1 let

In,j=[j2n,(j+1)2n].I_{n,j} = \br{j2^{-n}, \p{j+1}2^{-n}}.

For fL1(I,dx)f \in L^1\p{I, \diff{x}} define

Enf(x)=j=02n1(2nIn,jfdt)χIn,j(x).E_nf\p{x} = \sum_{j=0}^{2^n-1} \p{2^n\int_{I_{n,j}} f \,\diff{t}}\chi_{I_{n,j}}\p{x}.

Prove that if fL1(I,dx)f \in L^1\p{I, \diff{x}} then limnEnf(x)=f(x)\lim_{n\to\infty} E_nf\p{x} = f\p{x} almost everywhere on II.

Solution.

Let xx be a Lebesgue point of ff, i.e., a point where the Lebesgue differentiation theorem applies. Because the {In,j}j\set{I_{n,j}}_j partition II for all n1n \geq 1, there exists j(n,x)j\p{n,x} such that xIn,j(n,x)x \in I_{n,j\p{n,x}} for all n1n \geq 1.

Notice that this collection shrinks nicely to xx: In,j(n,x)B(x,21n)I_{n,j\p{n,x}} \subseteq B\p{x, 2^{1-n}} and if mm denotes the Lebesgue measure on II,

m(In,j(n,x))=12n>1412n1=m(B(x,21n))4.m\p{I_{n,j\p{n,x}}} = \frac{1}{2^{-n}} > \frac{1}{4} \cdot \frac{1}{2^{n-1}} = \frac{m\p{B\p{x, 2^{1-n}}}}{4}.

Thus, the Lebesgue differentiation theorem applies:

Enf(x)f(x)=2nIn,j(n,x)fdtf(x)=1m(In,j(n,x))In,j(n,x)f(t)f(x)dt1m(In,j(n,x))In,j(n,x)f(t)f(x)dt,\begin{aligned} \abs{E_nf\p{x} - f\p{x}} &= \abs{2^n \int_{I_{n,j\p{n,x}}} f \,\diff{t} - f\p{x}} \\ &= \abs{\frac{1}{m\p{I_{n,j\p{n,x}}}} \int_{I_{n,j\p{n,x}}} f\p{t} - f\p{x} \,\diff{t}} \\ &\leq \frac{1}{m\p{I_{n,j\p{n,x}}}} \int_{I_{n,j\p{n,x}}} \abs{f\p{t} - f\p{x}} \,\diff{t}, \end{aligned}

which tends to 00 as nn \to \infty, by the Lebesgue differentiation theorem. Thus, because the Lebesgue differentiation theorem applies for almost every xx, it follows that Enf(x)nf(x)E_nf\p{x} \xrightarrow{n\to\infty} f\p{x} almost everywhere, as required.