Title | Co-authors | Status | Link |
Global well-posedness and equicontinuity for mKdV in modulation spaces. | S. Haque M. Visan Y. Zhang |
Submitted. | arXiv:2411.05300 |
The nonlinear Schr\"odinger equation with sprinkled nonlinearity. | B. Harrop‑Griffiths M. Visan |
Submitted. | arXiv:2405.01246 |
The modified Korteweg--de Vries limit of the Ablowitz--Ladik system. | Z. Ouyang M. Visan L. Wu |
Submitted. | arXiv:2404.02366 |
Dispersive decay for the mass-critical nonlinear Schr\"odinger equation. | C. Fan M. Visan Z. Zhao |
Submitted. | arXiv:2403.09989 |
Determination of Schr\"odinger nonlinearities from the scattering map. | J. Murphy M. Visan |
Submitted. | arXiv:2402.03218 |
Invariant measures for mKdV and KdV in infinite volume. | J. Forlano M. Visan |
Submitted. | arXiv:2401.04292 |
Scaling-critical well-posedness for continuum Calogero-Moser models. | T. Laurens M. Visan |
Submitted. | arXiv:2311.12334 |
Deconvolutional determination of the nonlinearity in a semilinear wave equation. | N. Hu M. Visan |
Submitted. | arXiv:2307.00829 |
Sharp well-posedness for the Benjamin--Ono equation. | T. Laurens M. Visan |
Invent. Math. 236 (2024), no. 3, 999--1054. | arXiv:2304.00124 |
Bounded solutions of KdV: uniqueness and the loss of almost periodicity. | A. Chapouto M. Visan |
Duke Math. J. 173 (2024), no. 7, 1227--1267. | arXiv:2209.07501 |
The scattering map determines the nonlinearity | J. Murphy M. Visan |
Proc. Amer. Math. Soc. 151 (2023), no. 6, 2543--2557. | arXiv:2207.02414 MR4576319 |
Continuum limit for the Ablowitz--Ladik system | Z. Ouyang M. Visan L. Wu |
Nonlinearity 36 (2023), no. 7, 3751--3775. | arXiv:2206.02720 MR4601302 |
Global well-posedness for the derivative nonlinear Schr\"odinger equation in L2(R) | B. Harrop-Griffiths M. Ntekoume M. Visan |
To appear in JEMS. | arXiv:2204.12548 |
Large-data equicontinuity for the derivative NLS | B. Harrop-Griffiths M. Visan |
IMRN (2023), no. 6, 4601--4642. | arXiv:2106.13333 MR4565673 |
On the well-posedness problem for the derivative nonlinear Schr\"odinger equation | M. Ntekoume M. Visan |
Anal. PDE 16 (2023), no. 5, 1245--1270. | arXiv:2101.12274 |
Microscopic conservation laws for integrable lattice models | B. Harrop-Griffiths M. Visan |
Monatsh. Math. 196 (2021), no. 3, 477--504. | arXiv:2012.04782 MR4320535 |
Orbital stability of KdV multisolitons in H-1(R) | M. Visan | Comm. Math. Phys. 389 (2022), no. 3, 1445--1473. | arXiv:2009.06746 MR4381177 |
Scattering for the cubic-quintic NLS: crossing the virial threshold | J. Murphy M. Visan |
SIAM J. Math. Anal. 53 (2021), no. 5, 5803--5812. | arXiv:2007.07406 MR4321246 |
Sharp well-posedness for the cubic NLS and mKdV in Hs(R) | B. Harrop-Griffiths M. Visan |
Forum Math. Pi 12 (2024), Paper No. e6, | arXiv:2003.05011 |
Global well-posedness for the fifth-order KdV equation in H-1(R) | B. Bringmann M. Visan |
Ann. PDE 7 (2021), no. 2, Paper No. 21, 46 pp. | arXiv:1912.01536 MR4304314 |
Invariance of white noise for KdV on the line | J. Murphy M. Visan |
Invent. Math. 222 (2020), no. 1, 203--282. | arXiv:1904.11910 MR4145790 |
Sonin's argument, the shape of solitons, and the most stably singular matrix | M. Visan | RIMS Kôkyûroku Bessatsu B74: Harmonic Analysis and Nonlinear Partial Differential Equations, 2019 | arXiv:1811.01836 |
Invariant measures for integrable spin chains and integrable discrete NLS | Y. Angelopoulos M. Visan |
SIAM J. Math. Anal. 52 (2020), no. 1, 135--163. | arXiv:1807.08801 MR4049393 |
The radial mass-subcritical NLS in negative order Sobolev spaces | S. Masaki J. Murphy M. Visan |
Discrete Contin. Dyn. Syst. 39 (2019), no. 1, 553--583. | arXiv:1804.06753 MR3918185 |
KdV is wellposed in H-1 | M. Visan | Ann. Math. 190 (2019), no. 1, 249--305. | arXiv:1802.04851 MR3990604 |
Low regularity conservation laws for integrable PDE | M. Visan X. Zhang |
GAFA 28 (2018), no. 4, 1062--1090. | arXiv:1708.05362 MR3820439 |
Almost sure scattering for the energy-critical NLS with radial data below H1(R4) | J. Murphy M. Visan |
Comm. PDE. 44 (2019), no. 1, 51--71. | arXiv:1707.09051 MR3933623 |
The initial-value problem for the cubic-quintic NLS with non-vanishing boundary conditions | J. Murphy M. Visan |
SIAM J. Math. Anal. 50 (2018), no. 3, 2681--2739. | arXiv:1702.04413 MR3805546 |
A relation between the positive and negative spectra of elliptic operators | S. Molchanov O. Safronov |
Lett. Math. Phys. 107 (2017), no. 10, 1799--1807. | doi:10.1007/s11005-017-0970-y MR3690032 |
Symplectic non-squeezing for the cubic NLS on the line | M. Visan X. Zhang |
IMRN 2019 (2019), no. 5--6, 1312--1332. | arXiv:1606.09467 MR3920348 |
Finite-dimensional approximation and non-squeezing for the cubic nonlinear Schr\"odinger equation on R2 | M. Visan X. Zhang |
Amer. J. Math. 143 (2021), no. 2, 613--680. | arXiv:1606.07738 MR4234976 |
Large data mass-subcritical NLS: critical weighted bounds imply scattering | S. Masaki J. Murphy M. Visan |
NoDEA Nonlinear Differential Equations Appl. 24 (2017), no. 4, Art. 38, 33pp. | arXiv:1606.01512 MR3663612 |
Nonexistence of large nuclei in the liquid drop model | R. L. Frank P. T. Nam |
Lett. Math. Phys. 106 (2016), 1033--1036. | arXiv:1604.03231 MR3520116 |
The focusing cubic NLS with inverse-square potential in three space dimensions | J. Murphy M. Visan J. Zheng |
Differential Integral Equations 30 (2017), 161--206. | arXiv:1603.08912 MR3611498 |
The energy-critical NLS with inverse-square potential | C. Miao M. Visan J. Zhang J. Zheng |
Discrete Contin. Dyn. Syst. 37 (2017), 3831--3866. | arXiv:1509.05822 MR3639442 |
Mass-critical inverse Strichartz estimates for 1d Schrödinger operators | C. Jao M. Visan |
Rev. Mat. Iberoam. 35 (2019), 703--730. | arXiv:1509.03592 MR3960256 |
The final-state problem for the cubic-quintic NLS with non-vanishing boundary conditions | J. Murphy M. Visan |
Anal. PDE 9 (2016), 1523--1574. | arXiv:1506.06151 MR3570231 |
Sobolev spaces adapted to the Schr\"odinger operator with inverse-square potential | C. Miao M. Visan J. Zhang J. Zheng |
Math. Z. 288 (2018), no. 3--4, 1273--1298. | arXiv:1503.02716 MR3778997 |
Matrix models and eigenvalue statistics for truncations of classical ensembles of random unitary matrices | R. Kozhan | Comm. Math. Phys. 349 (2017), no. 3, 991--1027. | arXiv:1501.05160 MR3602821 |
The focusing cubic NLS on exterior domains in three dimensions | M. Visan X. Zhang |
Appl. Math. Res. Express 2016 (2016), 146--180. | arXiv:1501.05062 MR3483844 |
Solitons and scattering for the cubic-quintic nonlinear Schrodinger equation on R3 | O. Pocovnicu T. Oh M. Visan |
Arch. Ration. Mech. Anal. 225 (2017), 469--548. | arXiv:1409.6734 MR3634031 |
Scale invariant Strichartz estimates on tori and applications | M. Visan | Math. Res. Lett. 23 (2016), 445--472. | arXiv:1409.3603 MR3512894 |
Quintic NLS in the exterior of a strictly convex obstacle |
M. Visan X. Zhang |
Amer. J. Math. 138 (2016), 1193--1346. | arXiv:1208.4904 MR3553392 |
Riesz transforms outside a convex obstacle |
M. Visan X. Zhang |
Int. Math. Res. Not. IMRN 2016 (2016), 5875--5921. | arXiv:1205.5784 MR3567262 |
Blowup behaviour for the nonlinear Klein--Gordon equation | B. Stovall M. Visan |
Math. Ann. 358 (2014), 289--350. | arXiv:1203.4886 MR3157999 |
Global well-posedness of the Gross-Pitaevskii and cubic-quintic nonlinear Schrodinger equations with non-vanishing boundary conditions | T. Oh O. Pocovnicu M. Visan |
Math. Res. Lett. 19 (2012), 969--986 | arXiv:1112.1354 MR3039823 |
Smooth solutions to the nonlinear wave equation can blow up on Cantor sets | M. Visan | math.AP/1103.5257 | |
Global well-posedness and scattering for the defocusing quintic NLS in three dimensions | M. Visan | Analysis and PDE 5 (2012), 855--885 | math.AP/1102.1192 MR3006644 |
Scattering for the cubic Klein--Gordon equation in two space dimensions | B. Stovall M. Visan |
Trans. Amer. Math. Soc. 364 (2012), 1571--1631 | math.AP/1008.2712 MR2869186 |
Autocorrelations of the characteristic polynomial of a random matrix under microscopic scaling | E. Ryckman | math.PR/1004.1623 | |
The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions | M. Visan | Proc. Amer. Math. Soc. 139 (2011), 1805--1817. | math.AP/1002.1756 MR2763767 |
The defocusing energy-supercritical nonlinear wave equation in three space dimensions | M. Visan | Trans. Amer. Math. Soc. 363 (2011), 3893--3934. | math.AP/1001.1761 MR2775831 |
On the mass-critical generalized KdV equation | S. Kwon S. Shao M. Visan |
DCDS-A 32 (2012) 191--221. | math.AP/0907.5412 MR2837059 |
A doubling measure can charge a rectifiable curve | J. Garnett R. Schul |
Proc. Amer. Math. Soc. 138 (2010), 1673--1679. | math.AP/0906.2484 MR2587452 |
Energy-supercritical NLS: critical $\dot H^s$-bounds imply scattering | M. Visan | Comm. PDE. 35 (2010), 945--987. | math.AP/0812.2084 MR2753625 |
Nonlinear Schr\"odinger equations at critical regularity | M. Visan | In ``Evolution equations'', 325--437, Clay Math. Proc., 17, Amer. Math. Soc., Providence, RI, 2013. | Lecture Notes MR3098643 |
The characterization of minimal-mass blowup solutions to the focusing mass-critical NLS | D. Li M. Visan X. Zhang |
SIAM J. Math. Anal. 41 (2009), 219-236. | math.AP/0804.1124 MR2505858 |
The focusing energy-critical nonlinear Schrodinger equation in dimensions five and higher | M. Visan | Amer. J. Math. 132 (2010), 361--424. | math.AP/0804.1018 MR2654778 |
The mass-critical nonlinear Schrodinger equation with radial data in dimensions three and higher | M. Visan X. Zhang |
Analysis and PDE 1 (2008), 229-266. | math.AP/0708.0849 MR2472890 |
The cubic nonlinear Schrodinger equation in two dimensions with radial data | T. Tao M. Visan |
J. Euro. Math. Soc. 11 (2009), 1203-1258. | math.AP/0707.3188 MR2557134 |
Gaussian fluctuations for $\beta$ ensembles. | Int. Math. Res. Not. (2008) 19pp. | math.PR/0703140 MR2428142 |
|
Perturbations of orthogonal polynomials with periodic recursion coefficients | D. Damanik B. Simon |
Ann. Math. 171 (2010), 1931-2010 | math.SP/0702388 MR2680401 |
Energy-critical NLS with quadratic potentials | M. Visan X. Zhang |
Comm. PDE. 34 (2009), 1531-1565. | math.AP/0611394 MR2581982 |
Eigenvalue statistics for CMV matrices: From Poisson to clock via random matrix ensembles | M. Stoiciu | Duke Math. 146 (2009), 361-399. | math-ph/0608002 MR2484278 |
Eigenfunction statistics in the localized Anderson model | F. Nakano | Ann. Henri Poincar\'e 8 (2007), 27-36. | mp_arc/06-150 MR2299191 |
Absence of reflection as a function of the coupling constant | R. Sims | J. Math. Phys. 47 (2006). | math-ph/0601033 MR2239949 |
Spectral theory via sum rules | In ``Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon's 60th birthday'', 907--930, Proc. Sympos. Pure Math., 76, Part 2, Amer. Math. Soc., Providence, RI, 2007. | Full Text MR2310217 |
|
Sum rules and spectral measures of Schr\"odinger operators with $L^2$ potentials | B. Simon | Ann. Math. 170 (2009), 739-782. | math/0608767 MR2552106 |
CMV: the unitary analogue of Jacobi matrices | I. Nenciu | Comm. Pure Appl. Math. 60 (2007), 1148-1188. | math/0508113 MR2330626 |
Bounds on the spectral shift function and the density of states | D. Hundertmark S. Nakamura P. Stollmann I. Veselic |
Comm. Math. Phys. 262 (2006), 489-503. | math-ph/0412078 MR2200269 |
Schr\"odinger operators with few bound states | D. Damanik B. Simon |
Commun. Math. Phys. 258 (2005) 741-750. | math-ph/0409074 MR2172016 |
Ergodic potentials with a discontinuous sampling function are non-deterministic | D. Damanik | Math. Research Letters 12 (2005) 187-193. | math-ph/0402070 MR2150875 |
Almost everywhere positivity of the Lyapunov exponent for the doubling map | D. Damanik | Commun. Math. Phys. 257 (2005), 287-290. | math-ph/0405061 MR2164599 |
Half-line Schr\"odinger operators with no bound states | D. Damanik | Acta Math. 193 (2004), 31-72. | math-ph/0303001 MR2155031 |
Matrix models for circular ensembles | I. Nenciu | Int. Math. Res. Not. 2004, 2665-2701. | math/0410034 MR2127367 |
Necessary and sufficient conditions in the spectral theory of Jacobi matrices and Schr\"odinger operators | D. Damanik B. Simon |
Int. Math. Res. Not. 2004, 1087-1097. | math/0309206 MR2041649 |
Energy growth in Schr\"odinger's equation with Markovian forcing | M. Erdogan W. Schlag |
Commun. Math. Phys. 240 (2003), 1-29. | MR2004977 |
Variational estimates for discrete Schr\"odinger operators with potentials of indefinite sign | D. Damanik D. Hundertmark B. Simon |
Commun. Math. Phys. 238 (2003), 545-562. | math-ph/0211015 MR1993385 |
Sum rules for Jacobi matrices and their applications to spectral theory | B. Simon | Ann. of Math. 158 (2003), 253-321. | math-ph/0112008 MR1999923 |
Dynamical upper bounds on wavepacket spreading | A. Kiselev Y. Last |
Amer. J. Math. 125 (2003), 1165-1198. | math/0112078 MR2004433 |
Perturbations of 1-dimensional Schr\"odinger operators preserving the absolutely continuous spectrum | Int. Math. Res. Not. 2002, 2029-2061. | mp_arc/01-387 MR1925875 |
|
Reducing Subspaces | C. Remling | J. Funct. Anal. 187 (2001) 396-405. | mp_arc/01-155 MR1875153 |
Perturbations of one-dimensional Schr\"odinger operators preserving the absolutely continuous spectrum | Caltech Ph.D. Thesis. | mp_arc/00-326 | |
Reflection symmetries of almost periodic functions | D. Damanik | J. Funct. Anal. 178 (2000) 252-257. | math-ph/0005018 MR1802894 |
Uniform spectral properties of one-dimensional quasicrystals, III. $\alpha$-continuity | D. Damanik D. Lenz |
Commun. Math. Phys. 212 (2000) 191-204. | math-ph/9910017 MR1764367 |
On the absolutely continuous spectrum of one-dimensional Schrodinger operators with square summable potentials | P. Deift | Commun. Math. Phys. 203 (1999) 341-347. | MR1697600 |
Adaptive single-shot phase measurements: The full quantum theory | H. Wiseman | Phys. Rev. A 57 (1998) 2169-2185. | PROLA |
Adaptive single-shot phase measurements: A semiclassical approach | H. Wiseman | Phys. Rev. A 56 (1997) 944-957. | PROLA |
Nonlocal momentum transfer in welcher Weg measurements | H. Wiseman F. Harrison M. Collett S. Tan D. Walls |
Phys. Rev. A 56 (1997) 55-75. | PROLA |