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ABSTRACT- We survey some results in the spectral theory of certain one-
dimensiona,l differential and finite-difference operators: Jacobi matrices, Krein
systems, gchrodinger operators and CMV matrices. What ties these results
together is the use of sum rules relating the coefficients and the spectral data.
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1. Introduction

We survey SOme results in the spectral theory of certain one-dimensional dif-
ferential and finite-difference operators- What ties these results together 18 their
use of sum rules relating the coefficients and spectral data. Contemporary math-
ematicians are perhaps most familiar with these identities in the context of the
inverse scattering solution of integrable systems; however, as W€ will explain, the
natural precursor is a formula of Szegd and Verblunsky uncovered in the study of

orthogonal polynomials.
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We wil describe Tesults for , Quartet of OPerators. Jacob; Matrices, Krein
. dc : ;

This innocuous Sounding result jg surprisingiy deep:; Perhapg more important]y,
. c .

Y Point jg the fo]iovving:
in general, ope Cannot hope t, determine the eigenvalues of an Operator; hovvever

computing the trace jg €asy and Says something potentiaiiy usefi] about the eigen-
Values, A good €xample of the Dbower of this little fact jg shown by the foilowing
ingenious applicatioy due tq Avron, van Mouche, and Simon, [1]:

THEOREM 2.2, Conside, the almosy Mathje,, operator
[ng](n) Suln+1) 4 un—1)4 Acos (27 t0)u(n)
acting o, Zz(Z) With o — b/q Tationq] and ) < o Then o _ ﬂgo(Hg) has Lebesgue
measure 4 _ 2).

Let me Outline ¢pg Proof whep 7 is odq. Due t, @ remarkaple formy], of
Chambers, [11], ;¢ is Possible ¢, show that o is the Union of q bands; Moreover,
€ach banq edge Correspon s to an eigenfunction of either Hy_o or Hy,. beionging to
a Specific symmetry class: periodic/anti~periodic (under transiation) and even/odqd
(under reﬂection). In thig Way, one jg led to the Conclusjop that

= k=] 1>
Where A1, Ay, denote the €19envalyeg of 4 according 4, algebraz, multzplzczty
REMARK matrjx elemenyg of Ak 4 he Testriction of 4 ® 4 to ap
tisymmetric ten —are Xactly ¢, kxfk Minorg of A4; thug
k ST 1 el
(A 4) I) =4 3 At 8y
ol




SPECTRAL THEORY ViA SUM RULES 909

Our notation for the minors is as follows: the upper list of indices gives the Tows
used for the minor and the lower, the columns. The second equality comes from
summing over permutations of the indices and noting that the (minor) determinant
vanishes if two indices coincide.

proor. The right-hand equality comes from expanding T+ z\;). These for-
mulae for the coefficients ofa polynomiai in terms of its roots are usually attributed
to Frangois Viete, & 16th century Trench lawyer and mathematician.

The determinant is multi-linear in the columns, thus one may expand det(1 +
zA) in much the same way as the product in the previous paragraph. A few column
operations are all that is required to finish the proof.

It is natural to extend this theorem t0 Banach spaces; it is here that one realizes
that things are not so simple after all. An operator on & Banach space E is called
nuclear if it can be written a8 S~ ejllys ) for sequences ej € E and I[; € ¥ with
S e; WG < oo The big surprise 18 that the eigenvalues of nuclear operators
are only guaranteed to be absolutely summable if £ is jsomorphic to & Hilbert
space, [44).

In the Hilbert space setting, the space of nuclear operators is better known
as trace class, 5,, and the more usual definition is a8 those compact operators,
A, whose singular values are summable. (Recali that the singular values are the
eigenvalues O A*A)Y/2.) Here, the sum of the moduli of the cigenvalues i finite;
indeed it 18 bounded by the sum of the singular values. A very general and elegant
proof of this fact can be found in [109}; 87) contains three further proofs and
historical references.

A second obstruction 0 the extension of Theorem 2.1 %o Banach spaces is more
devastating: there 1s 2 puclear operator A on £+ with tr(A) =1 and A% = 0. A
textbook presentation of this example can be found in (62, §2.d].

THEOREM 9.4, Let A be @ trace class operator on & Hilbert space- For any
orthonormal basis, 193} Z((bj\A(bj) is equal to the sUT of the eigenvalues repeated
according to algebraic multiplicity-

For a compact operator, the algebraic multiplicity of a non-zero eigenvalue A
can be defined as the rank of W(z — A)tdz where 7 is @ small circle around A
excluding the remainder of the spectrum of A. It is not necessary to assign 2
multiplicity t0 A=028as such eigenvalues do not contribute tO the sum.

Theorem 2.4 1 widely known a8 Lidskif’s theorem, [60]. As pointed out by
Pisier, (70}, the statement can be found earlier in {40, g4). Neither paper gives much
detail; thorough treatments can be found in several textbooks: 37, 59, 88]. The

majority of proofs of this theorem €0 one step further and treat the determinant:

THEOREM 95. Let A be a trace class operator oOm o Hilbert space, then

oo

det(1 4+ zA) =1+ S (A A) _ L+ 2)
k=1

proor. The sum converges to an entire function for any nuclear operator
on a Banach space; indeed by applying the Hadamard inequality in (1) one has
tr(AFA) = o(C* Kk . Moreover, by finite-rank approximations, its zeros are
2= ——)\l’l where A are the eigenvalues of A with appropriate multiplicities.

—



» Ohe can thep deduce
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THEOREM 2.6. Given,
det, (1 — 24) =

extends Jrom tra
whose Singulay 4
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a Continuoys

if and only f
oo
det(1+4) =g > Ayl (3)
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is non-vanzshzng The nverse cqp, then pe Written qs 1 B where
1 = Ly
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Proor, T e first Sentence fol]owg from ( 1) and Theorem, 2.5. Note that 14 4
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LEMMA 2.8. Let G be @ bounded operator with semi—sepamble kernel, that s,

( fmgm) nZ™
Gln,m) = {f(m)g(n) mem.

Suppose K is a finite rank operator with K(n,m) + 0 only when m <1 < N for
some integer N, then

f=01+ GK|™'f obeys f(n) = oL f(n) form= N
where & = det(1+ GK).

proor. We will give the main computation and then justify the steps. Writing
A for GK and using the Fredholm formulae from Theorem 2.7, W€ see that for
sufficiently large,
o0
fy = fm - 2 v AR ) Fm)
0 >l ™
o0

_fmy - Y S A ) fm)
k=0 m>l1>-~~>lk
oo

_ ) —aTt ) S A(m) fn)
k=0 m>l1>~->lk

~ fmt—a (e 1,

which simplifies t0 a~1f(n). The second line follows by noting that it m <l then
the top two TOWS of the minor are linearly dependent; this uses the fact that K i8
upper triangular and G is semi-separable. For the same reasons, f(m)A(n, p) =
F(n)A(m, p) whenever D < max{n, m}. This justifies the third equality- The last
line follows by recognizing the determinant from (3)- 0O

3. Trace Formulae for Jacobi Matrices

In this gection, wé will present @ priori sum rules for J acobi matrices.
Given two sequences dn > 0 and bn € R indexed over ™= 1,2,.-5 the associ-
ated Jacobi matrix is the tri-diagonal matrix with these sequences as entries:

by o
al b2 a2
J= e (5)
a b3 ‘.

This defines & bounded self-adjoint operator if and only if the sequences are pounded.
When they are unbounded, the operator may or may not be essentially self-adjoint
when defined on finite sequences; S€€ [91] for & discussion of this and its significance
for the moment problem. )

Given a pair of Jacobi matrices, J and J, that differ at only finitely many
entries, we canl define the perturbation determinant:

a(z) = det J=z] = det[L + G(j-J) with G= G(z) =~ )

—



Taking the real part giyeg the asymptotics of log la(z)].

nderstanding the behavioyy of log la(z)| near the Spectrum jg considerab]y,
more involyeq and wi]] require g Number of Prelimingrjeg

€ vector e; — 1, 0,...]"is cyclic for ' We will write du for the corresponding
Spectra] measuyre, Becauge of the eXistence of g cyclic Vector, a]] eigenspaces are
one~dimensiona1 and hence 4] Zeros and pojeg of a(z) are Simple, Given 5 Concrete
Jacobj Matrix, the naturg] way to determine ap is vig, the m-functiop.

) = el - )y, duft) (®)

he Green function is Constructeq from two solutiong of the finjte diﬂ"erence
mig,

€quation associated ¢, J. Let us define DPolynom;i Is p, (2) of degree 5, 20 by the
recurrence

an+1pn+1 (Z) + bnpn (Z) + anslpn~1 (Z) = zZpy, (Z) (9)

with p_, (2) =0 and pg = 1. Then ano Pn (z)enﬂ isa forma] solution of Ju = 5,
Oreover, thege polynomiais form gap orthonormal basis fo Lz(d,u) and p, (J)e; =

G(n +1,n +1; Z) = (en+ll('] - Z)~len’+l> = pmin{n,n’} (z)zpmax{n,n’} (z)
The point in introducing all thig Machinery jq the following discrete analogye
is, [4

oo
~ ay,
() (2) = (z)kgl o (11)
In particulgy Jor a.e. T with Tespect to du
i Im n(z + 40) ‘0 -2 T G2
du ‘Imm(a:-HO) :Ia(x’LZO)/ IS (12)
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PROOF. Let D be the diagonal matrix with Dnn = 1%, @/ax- By the resol-
vent identity,

DJ-2) D= -2 - (- 2)~YD~1JD - JID(J — 2)7' D7,

which implies that the sequence én = (Dpn/ D11)1l~1n obeys
fn = 1/}71 - GK gn

where G is the Green function for J and K is the matrix D~'JD — J, which is
lower triangular. As Dpy 18 eventually identically one and

det[l + GK] = det[D™Y(J — 2)D(J - 2)7 = a(2),
Lemma 2.8 implies that (11) holds.
To prove (12) we merely combine (11), the fact that

i 1+ ) =l 20— =)l = g o I

Lebesgue almost everywhere, and the corresponding result for J. O

With a little more care, one may use the reasoning above to deduce that
log |a(z)| has a non-tangential limit at dac-a.e. = € R. Actually, it is easy to
obtain this kind of information about a(z):

LEMMA 3.2. If J — J has finite rank, then a(z) is a polynomial in z and m(z).

PRrOOF. The key observation is that every matrix element of (J — 2)" (T =)
is a polynomial in m(2) and 2. This can be justified by noting that

<e'n+1l(=] — z)_lem+1> — / pn(m)pm(x) d,u(a:)

r—z

and z¥(z — 2) "t =" + 2z l(z —2)7 L O

The reader is no doubt familiar with function theory in the unit disk and
hence in any simply connected domain. In multiply-connected domains, matters
are more complicated, primarily because of the non-existence of Blaschke products.
Of course, one may always lift questions to the universal cover and apply results
from the disk case, but in general, the covering map can be a horror. We do not
wish to get waylaid by these problems and so treat a very simple case.

HyPOTHESIS 3.3. We assume that J is periodic, that is, the sequences an and
b, are periodic.

Under this hypothesis, o(J ) consists of finitely many compact intervals together
with finitely many points. (This remains true for finite-rank perturbations.)

Let us write © for the complement of ess(J) in the Riemann sphere. By
applying Joukowski transformations, this region can be transformed to one bounded
by finitely many analytic curves; thus we can apply the general results described
in [31, 77].

The trace formulae we will derive amount to the relation between log |a(2)]
on 0ess(J) as given in Theorem 3.1 and the asymptotics given in (7). In essence,
log |a(2)| is the Poisson integral of its boundary values; however a(z) may have both
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zeros and poles. When ) is simply connected, the traditional approach has been
to remove the problem with Blaschke products. We use Green’s identity:

_ o9 _ Of
/Qng—gAf—/mfan 95, (13)

(The Poisson integral representation of harmonic functions follows by choosing ¢
to be the Dirichlet Green function for 2.)

DEFINITION 3.4. Let go(z) denote the (Dirichlet) Green function for £ with
singularity at infinity. That is, go is the unique continuous function on C that is
harmonic on C \ 0es(J), vanishes on oes(J), and has asymptotics

go(2) = —L log|z| + O(1) as z — .
Similarly we introduce functions g, & > 1, that are continuous and harmonic as
before, but with asymptotics

gk(z) = —5=Re2" + 0(1) as z — .

We will also use the analogue of harmonic measure:
_ s 9 .
dvi(z) = 2[13/11101 By 9k(T + zy)] dz,
which is supported on gess(J).

Note that Green’s identity with f = 1 shows that J dvk = k0. These functions
are Green functions for infinity in the following sense: if f is smooth and supported
in a small neighbourhood of infinity with

f(Z) ~ ch Re(z_l) + dl Im(z_l)a then /ngk - {ka -k 2 17
l

14
Co :k=0. ( )

THEOREM 3.5. Suppose J is a periodic Jacobi matriz and J is a finite-rank
perturbation, then

—Y logla;/a;] = 27 > l90(E5) — go(E;)] — %/log[%,%] dvo(z), (15)
where E; and Ej enumerate the discrete spectrum of J and J. For k > 1,

—tr(J* — %) = 21 3 (on(By) — g(E;)] — § / log[&] (). (16)

PROOF. The equations follow from Green’s identity, (13), with f = log la(z)|

and g = gi. As a(z) has simple poles/zeros at the eigenvalues of J and J,

—Af =Y 2md(z— Ej) =Y 2n6(z — Ey),

while [, fAgk can be evaluated with (7) and (14).

We need to show that the integrals over the boundaries can be taken in an
almost-everywhere, rather than distributional, sense. Because we have assumed
that J is periodic, its m-function is extremely well behaved and so Lemma 3.2
makes this elementary. In more general settings, one needs to use the fact that
m € HP(Q) for any 0 < p < 1 and hence a(z) € HP() for p sufficiently small.

From the definition, a(2) = a(z) and so f(z) = f (2). This allows us to combine
the contributions from upper and lower edges of each slit. The final result follows by
re-writing f on the boundary via (12). Note that log[d,/a;] appears with coefficient
one in (15) and not at all in (16) because [ dvy = dxo. a
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These formulae may seem rather far removed from the trace formulae we dis-
cussed in Section 2. However, the important property has remained: the left-hand
side involves the coefficients of the operator, while the the right, the spectral prop-
erties.

The simplest periodic operator has constant coefficients; by scaling and shifting,
it suffices to consider ag =1 and by = 0. The resulting J acobi matrix has spectrum
[-2,2], which is purely absolutely continuous,

Al = Xz (@) V2~ 2 do.
For this choice of J, Theorem 3.5 is due to Case, [10], although he was very much

inspired by the trace formulae for Schrodinger operators that we will describe in
the next section.

Certain linear combinations of the Case formulae turn out to be more useful
for applications; the key ingredient is positivity. The following example synthesizes

[47, 54]. Let T,, and Up denote the usual Chebyshev polynomials:

T, (cos(9)) = cos(nf) and U, (cos(9)) = S_lg[grfa—;lﬂ
Then for each n > 1,

2 . ) B
—%/2log[%‘i]\/4—x2\Un_1(%)\ dz + Y, Gnl(E))

o (17)
— | PTG - AT ()} +4 2 F - ay4mn) + Xn
j=1

where F(z) =2z —1-— log(z) = 0,
Ga(B+B7) =0~ B2 — 4nlog|B| for 181> 1, (18)

and X, is a simple function of the first few entries of J. This is most easily
deduced by simply repeating the proof of Theorem 3.5 using the harmonic function

= —217 Re G, in place of any particular gk. One further observation is necessary
however: 2Tn(3J) differs from the matrix with ones on the nth sub- and super-

diagonals and zeros elsewhere in only a few entries. This implies

—str{ [Tn(3)) ~ Lo Ta(3)} = Xn = 4308+ 8snr =1

with the proper choice of X,,; in fact, X1 =0.

For future reference, let us note that the right-hand side of this equation is finite
if and only if To(3J) — T, (3J) is Hilbert—Schmidt; the sum over F(a;--- @j4n—1)
is bounded by the sum of the squares of the entries on the nth super-diagonal of
this matrix.

The first two terms on the right-hand side of (17) are manifestly positive, as
is the sum over the eigenvalues. Strict positivity of the integral is not essential;
however, by Lemma 6.2 it is bounded from below. There are several other sum
rules for Jacobi matrices that have good positivity properties; see, for example,
[47, 53, 81, 100]. A very general (but rather abstract) approach to the positivity

problem can be found in [66].
1

The observation regarding 2T (3 J) has an analogue for general periodic Jacobi

matrices, which gives rise to similar formulae. Let J be 2 periodic Jacobi matrix
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with period p scaled so that ajas - “+ap = 1 and let A denote the corresponding
discriminant. For any J differing from J by finite rank,

2r 3 lo(By) ~ 9(Ep) ~ 4 [ togl4E] (e
= su{[a0) - AU+ &S iy ) + X

where g = % Re{log[3A + 1/AZ ) - 1AVAZ =4} and dv is the probability
measure supported on oes(J) with density dv - ﬁ]A' (z)[v/4— A(z)2. These
formulae and related results are the topic of forthcoming joint work, [14]. Note also
that (17) follows from this formula by considering the case of constant coefficients

as a period-n problem.

(19)

4. Trace Formulae for Other Operators

As mentioned in the previous section, the derivation of sum rules for Jacobi
matrices follows earlier results for Schrodinger operators. The first goal of this
section is to describe these results. After that we will briefly discuss certain older
results that fit naturally into the same framework. As in the previous section, we
will state a priori versions of these sum rules; that is, with far stronger hypotheses
than turn out to be necessary.

Consider the whole-line Schrédinger operator associated to a smooth compactly
supported potential V,

[Lu](z) = —u"(z) + V(z)u(z),

and write L for the free operator (V = 0). In this setting, the perturbation de-
terminant a(z) = det[(L — 2)/(L — z)] happens to be equal to the reciprocal of
the transmission coefficient and most references we quote take this point of view.
The analogue of Theorem 3.5 is much better known, primarily because of its role
in the inverse scattering solution of the KdV equation. As o (L) is not compact,
one studies the behaviour of a(z) as z approaches infinity in a particular direction,
specifically, along the negative real axis.

THEOREM 4.1. IfV is C*® and of compact support, then forn >0,
(=1)"2m

b . e —1)"r
/0 log|a(E +i0)|E""Y24E = (‘)/§2n+1(a:)dz+ 1

+1/2
22n+1 E"T:l / (20)

where E,, < 0 enumerate the discrete spectrum and &an 11 is defined by the following
recurrence: §o(z) =0, & (z) = V(z) and Ent1+&, + 3 Ebnr = 0.

The original paper is [110], which builds upon earlier work [7, 34, 35]. The
reader may have noticed that Jacobi matrices are parameterized over a half-line,
while now we discuss whole-line Schrédinger operators. The trace formulae for
half-line Schrodinger operators, [7], contain values of V (and its derivatives) at the
origin; this makes them unsuitable for the applications we have in mind.

The formulae for J & dx can be simplified by recognizing complete derivatives.
We will primarily discuss the n = 1 case of (20):

L [Cosla(s +i0)(E 2 + 23 Y LY
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If V is supported on the positive half-axis, then we obtain the following analogue
of the Jost—Pais theorem: for k > 0,

_ |m(k? +i0) + ik|? > 1
" 4kImm(k? +i0) ~
where m denotes the Weyl m-function associated to the half-line Schrédinger op-
erator with potential V and a Dirichlet boundary condition. In Theorem 3.1, we
made a direct link to the spectral measure; that is not quite possible here. While

1 Im m(E 4 10) is equal to the Radon-Nikodym derivative of the spectral measure,

tﬂhe formula for a involves Rem and hence the Hilbert transform of the spectral
measure.

Jacobi matrices are naturally associated to the theory of orthogonal polyno-
mials for measures supported on the real line. There is an analogous theory of
orthogonal polynomials for measures on the unit circle in the complex plane. While
this theory is of considerable vintage, the proper analogue of Jacobi matrices was
discovered surprisingly recently. We will now describe these operators and describe
how the corresponding sum rules relate to certain classical questions.

Given a probability measure dy on §* = {z € C: |2| = 1} (with infinite sup-
port), we can construct a system of orthonormal polynomials ¢ (z) by applying the
Gram-Schmidt procedure to 1, 2, 22, .... As in the Jacobi case, these polynomials
obey a recurrence relation. As it is simpler in this case, we write the relation for
the monic orthogonal polynomials:

Bpa(2) = 20u() ~ BBL(), () = Bi(2) —owsBu(z) (23)
Here oy € D are the recurrence coefficients, which we call Verblunsky coefficients,
and @} denotes the reversed polynomial: ®%(z) = zF®x(z71).

In general, these polynomials need not form a basis for L?(du), as can be
seen when dy = §l;d0. Instead, we may apply the Gram—-Schmidt procedure to
1,2,271, 22,272, .. ; in this way we obtain an orthonormal basis xx(z) for L?(du),
which are related to the orthonormal polynomials by

z—k/2¢z(z) : k even
xk(2) = {Z—(k—l)/2¢k(z) : k odd.

Let C be the matrix representing f(z) — zf(2) in this basis. The resulting class
of matrices are known as CMV matrices and comprise a natural unitary analogue
of Jacobi matrices. The name is taken from authors of [8]; however, the original
discovery predates this paper as discussed in [95] and [108).

Let us write Co for the CMV matrix associated to dy = %dO, which corresponds
to ax = 0. The analogue of Theorems 3.1 and 3.5 can be combined into one:

|a(k? +0)|”

(22)

(24)

THEOREM 4.2. Suppose C — Co is of finite rank (that is, ay = 0 for all but
finitely many k). Then d(z) := det[(1 — 2CT)/(1 — zC’é)] is related to the Szegd
function,

e + 2
D(z) = exp{ﬁ/ T — 10g[27r%%] dO}, by d(z)D(z) = H(l — Iak|2)1/2.

: ; d
Notice that |D(e%)|? = 2n 5.

This result is Theorem 4.2.14 in [94]. By comparing the Taylor coefficients of
d(z) and D(z) one easily deduces sum rules resembling (15) and (16).
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While the interpretation of D(z) as a perturbation determinant of CMV ma-
trices is very recent, the primary content of this theorem is not. Szegd, (102, 103],
proved that when the integral defining D is convergent, ¢* (z) — D(z)~?! uniformly
on compact subsets of . By using the recurrence relations for @y, one can deduce
the same family of sum rules.

Krein, [52], introduced a continuous analogue of the recurrence (23),

%P(r, z) =1zP(r,z) — A(r)P.(r, 2), dirP* (r,z) = —A(r)P(r, 2), (25)

where A(r) is a complex function on [0,00) and P,(0,z) = P(0,z) = 1. These
equations are referred to as the Krein system. Note that P,(r, z) = ¢"*P(r, z) and

T
P(r,z) = '™ — / V()T 8)% 4y
0

for some integrable function +,, which explains the relation of r to the degree of the
polynomial. The polynomial analogy is further strengthened by the existence of a
measure dy on R so that [(1+22) *du(x) < co and [ P(r,z)P(s,z) du = 6(r — s).
While of interest in their own right, results for Krein systems also have consequences
for Schrédinger operators; the key observation is that if A is real-valued, then

. __ —irz P(ZT, Z) — P*(Q’f', Z)
W(riz) =e 2iz
where V(r) = 4A(2r)? — 4A'(2r).

Krein does not give sum rules per se, but under suitable hypotheses, P.(r,z) —
II(z) as 7 — oo where II(z) is the outer function on the upper half-plane that obeys
[(z +140)|72 = 2#%5. This is essentially equivalent as discussed above. Lastly, the
reader should be warned that Krein’s paper contains no proofs; fortunately, details
can be found in [84, 105].

solves — 9" + Vi = 2%y

5. Point Spectrum

As first noted in [33, p. 115], it follows from (21) that the bound-state energies,
E., of a whole-line Schrodinger operator with potential V € L2 obey

2N B <t / IV (2)[2dz. (26)

This can be justified as follows: Choose V,, € C2° converging to V in L2. Then L +
V,, converges to L in strong resolvent sense, which implies (individual) convergence
of the eigenvalues. Applying Fatou’s lemma to the sum over eigenvalues and using
the fact that |a(E+40)| > 1 for any potential gives (26). The existence of non-trivial
reflectionless potentials shows that the constant in this inequality is optimal.

Inequalities of this kind are known as Lieb-Thirring inequalities and hold in
considerable generality, including higher dimensions; see [61]. Considerable atten-
tion has been paid to the question of the optimal constants. In [57], Laptev and
Weidl made a major breakthrough:

THEOREM 5.1. The negative eigenvalues of —A + V acting in L?(R9) obey

L(y+1) / 1d
E,.|" < V(z)|"t24
> |_2dﬁd/zr(,y+%d+l) |V (z)[+34 do

foranyd>1 and v > % Moreover, the constant is optimal.
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This is proved by extending the inequality (26) to operator-valued potentials
(using trace formula methods) and then employing induction in dimension. An
alternate proof of the trace formula portion of the argument appears in [5].

It is elementary to apply the reasoning described above to (17); this leads to
the following result [47, 54]:

[T.(3)) - Tu(3)] €72 = > lIE;| - 2]3/% < o0. (27)

(Analogous results can be found in [53, 81].) The particular case n = 1, treated in
[47], is the natural Jacobi-matrix analogue of (26). For further inequalities of this
type, see [41].

Tor CMV matrices and Krein systems with decaying coefficients, the essential
spectrum fills S 1 and R, respectively. Thus there is no discrete spectrum.

6. A.C. Spectrum

It is well known that a one-dimensional Schrodinger operator with sufficiently
rapidly decreasing potential has a.c. spectrum on [0, 00)—with sufficient decay it
will even be purely absolutely continuous. But how quickly is sufficiently quickly?

On the basis of sparse, [50, 68, 72}, and random, (18, 19, 51, 89, examples, it
was known that there are potentials just outside L2 which produce no a.c. spectrum
whatsoever. Indeed, Simon has shown that this is generic, [90]. Eventually, the
weight of this and other evidence led Kiselev, Last, and Simon, [50], to conjecture
that L2 was the correct borderline.

In his thesis, Kiselev made a significant step toward verifying this conjecture.
This approach was later refined in [12], while an alternate approach was developed
by Remling, [73]. The central conclusion of this work was: If |V (z)| S (1+a?)~< /4
then for almost every positive energy, all generalized eigenfunctions are bounded.
In particular, the essential support of the a.c. spectrum fills [0,00). It would be
extremely interesting to know whether eigenfunctions are bounded at almost every
positive energy when V € L?; in the regime of infinitesimal coupling, this reduces
to Carleson’s theorem on a.e. convergence of Fourier integrals. See [104] for more
on this perspective.

The spectral question for V' € L2 has been resolved using sum-rule methods,
[16]:

THEOREM 6.1. The absolutely continuous spectrum of a half-line Schrodinger
operator with potential V € L2 is essentially supported by [0,00).

PrOOF. Keeping only the imaginary part of m in (22) leads to
[Im m(k? + i0) + kJ* S
4kImm(k? +i0) —

Notice that |a| is large wherever %’% = LImm is small, but by (21), we know that
the integral of log |al is controlled by the L2 norm of the potential. The only obstacle
is that we only know (21) for compactly supported potentials; this is resolved by

choosing a sequence V;, — V and applying a simple semi-continuity argument. O

|a(k2 + 710)‘2 >

There are now many results proved by similar means; we will give a brief
overview of these and then turn to the Jacobi matrix case, where we offer a more
detailed presentation. After that we will describe the analogous results for CMV
matrices and Krein systems, which are actually the oldest of all.
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Using higher-order sum rules, [65] proves full a.c. spectrum under the hypothe-
ses VP=1) € I2 and V € LP*! for any integer p > 1. By using the connection to
Krein systems, Denisov obtained the same conclusion under the following hypothe-
ses: V is uniformly L2 and V = A’ with A € L2, see [20]; or limsup V'(z) = 0 and
V' € L?, see [21]. See also [78].

In [46], a modification of the trace formula method was developed that works
locally in energy. Specifically, one studies the perturbation determinant in a small
region which touches the boundary along an interval, which allows one to consider
perturbations of operators with non-zero potentials. In this way, it was shown that
the a.c. spectrum of periodic Schrédinger operators is invariant under 1.2 pertur-
bation. The Stark operator was also studied; see [69] for further developments in
this direction and for references to work on this operator that is not based on sum
rules.

Another result from [46] is the following: if V € L3 and (the distribution) V
agrees with an L? function on an interval [a2, b2}, then —82 + V has a.c. spectrum
throughout the interval [2a,2b]. See also [81], which treats Jacobi matrices. By
combining the problems for V and —V as in [83], one can see that the condition
V € L3 can be replaced by V € L*. This was pointed out to me by O. Safronov.

The most interesting recent development of the trace formula method has been
its extension to higher dimensions. For Dirac operators, there are the impressive
results of Denisov, [25, 26]. Progress for Schrédinger operators has been slower
for two reasons: bound states are especially problematic in the multi-dimensional
case and there is no satisfactory WKB theory without smoothness assumptions
on the potential. For the state of the art, see [24, 27, 55, 56, 82, 83] and the
Denisov-—Kiselev contribution to this Festschrift.

We will now present a Jacobi-matrix analogue of Theorem 6.1. The case of
discrete Schrodinger operators was discussed in [16]; however, our treatment follows
[47] with additional input from [54, 66]. The final result is from [66]. As suggested
in the last proof, the main ingredient is a semi-continuity statement:

LEMMA 6.2. Given probability measures dv and do on R,

S(dv|do) := inf/eg do — /(g +1)dy = {—flog[w] dv :dv=wdo

—00 : otherwise

where the infimum is over bounded continuous functions g. As a consequence, if
don converges weak-+ to do, then S(dv|do) > limsup S(dv|doy,).

PROOF. The case where dv is not do-a.c. is easily dealt with; we suppose
dv = wdo. Let us write g = ¢ + h where ¢ = [ gdv. By Jensen’s inequality,

S(dv|do) < ec/w_leh dv—c—1<exp{c— [loglw]dv} —c—1.
The minimizing value of ¢ is [ log[w]dv, which proves S(dv|do) < — [ log[w] dv.

The fact that this inequality can be saturated follows by choosing g to approx-
imate log[w], which corresponds to the case of equality in Jensen’s inequality. O

REMARK. By choosing g = 0, it follows that S (dv|do) < 0. Consequently,

/ log[42] dv < —S(dv|dy). (28)
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TrgoREM 6.3. Let J be the Jacobi matriz with a = 1andby=0. If J isa
Jacobi matriz with [Tn(%J) - Tn(%J)] € Jy for some integer 1 = 1, then

/ log[éd%] Va- 332\Un_1(—12—)\2 dx < 00

-2

where T, and Un represent Chebyshev polynomials as in (17).

ProoF. The result follows by combining (17) and Lemma 6.2 once we know
that there are a sequence of operators Jk each differing from J by finite rank such
that Jx — J strongly (which implies weak-x convergence of the spectral measures)
and for which T, w(3Jk) — To(3J) is bounded in Hilbert-Schmidt norm. Such a
sequence does exist because G — 1 and b, — 0. This can be shown by examining
the top three diagonals in T(3J); for details see Lemma 6.6 of [66]. d

Jacobi matrix results have developed along lines parallel to the Schrodinger
case—though the proper analogue of [65] remains particularly stubborn; see [53]
for the latest on this problem.

That the a.c. spectrum fills Sl for CMV matrices with o € 22 follows from
early work of Szegd, (102, 103]. Indeed much more is true; see Theorem 8.1.

With regard to higher-order sum rules for CMV matrices, see (22, 28, 39, 94,
101].

For Krein systems, we have the following [52]:

THEOREM 6.4. When A e L*(dr), the spectral measure obeys

~ [ rogt] st < oo

In particular, the essential support of the a.c. spectrum is R.

7. The Step-by-Step Method

As we have seen, the a priori sum rules presented in Section 3 are ample for
applications in (forward) spectral theory. In the next section, we will be presenting
results that incorporate inverse spectral theory and for this purpose, we need to
discuss a second kind of a priori sum rule. The main idea can be found in (47, §4],
but was first emphasized in [100]. The function-theoretic essence of the argument
was distilled in [93]. We will present only the simplest case; it is not difficult to

extend the results to the generality presented in Section 3.

HypoTHESIS 7.1. We assume di is a probability measure with support [—2, 2|V
{E;} where E; obeys SUE;| - 2)3/2 < o0 and 4 > 0 almost everywhere in [—2,2].

As previously, we write m(z) = (e|(J — 2)ter) = [ & dj(t), which is a
meromorphic function on (), the complement of [—2,2] in the Riemann sphere. We
also enumerate the point spectrum {E;} so that lE’J\ is non-increasing.

A single step consists of removing the first row and column from J. We will
denote the resulting J acobi matrix by J) | its spectral measure by dp®, and m-
function, MY (2)-

LEMMA 7.2. If dji obeys Hypothesis 7.1, then so does dﬂ(l).
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PROOF. By the min-max characterization of eigenvalues,
1B} < |B| (29)

Indeed, by the theory of rank-one perturbations, the eigenvalues of J and J®
interlace. By the well-known formulae for inverting block matrices,

m(z) = [by — z — a2m®(2)] 7", (30)
In particular, taking the imaginary part we find

dag®™  di Imm®(z + i0)

—_ ~—2) ~ . —2
de ~dz  Imm(zti0) 2 Mz +i0) (31)

for a.e. z € [-2,2]. This completes the proof; Herglotz functions have non-zero
boundary values almost everywhere. 0

The step-by-step approach studies log |(2)| in very much the same manner as
we studied log|a(z)| in Section 3; its boundary values can be read off (31) while
the behaviour at infinity is governed by

LEMMA 7.3. If dji has compact support,
log[—2zm(2)] = Z —zz7k tr{jk -(0s j(l))k} (32)
k=1
for z sufficiently large. Note, 0 J1) differs from J by having a; = b; = 0.

PROOF. By writing m(z) = tr{P(J — 2)7'} with P = |e;)(e1| and expanding,

log[—2zm(z)] = Z zk Z (_;)p Z tr{ PJPJt ... Pjt’“}

k=1 p=1 tit-+tp=k
where 1, ..., t, are positive integers. Writing out the matrix product, we can regard
the trace here as a sum over m~tuples (iy,...,4%,,) where 45 = 1 whenever s belongs

totheset {1,1+¢1,...,1+¢; +---+ tp—1}. Similarly,
tr{J* = (0@ OV} = = 3" T(1, 52) T (2, 43) - - TGy )

where the sum is taken over k-tuples with js = 1 for at least one s.

To connect the two, one should perform inclusion/exclusion on the number of
times a k-tuple visits the value 1; the role of p is to restrict to k-tuples visiting 1
at least p times. O

I have not seen (32) in the literature. This is not the simplest proof; however
having typed all those indices, I am loath to delete them. A simpler proof was
suggested to me by Barry: By (8) and Cramer’s rule, m(z) can be written as a
ratio of determinants and thus log[—2m(z)] can be written as the differences of
traces. To make this fully rigorous, one first treats finite Jacobi matrices and then
observes that this suffices.
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THEOREM 7.4. Let J denote the Jacobi matriz with a; = 1 and b; =0. Let us
firn>1 and suppose dji obeys Hypothesis 7.1. Then for each k > 1,

2 - ~
-% / log[%‘;': - Q%(;] m‘Un—l(%)‘2 dxr + ZGH(EJ') _ Gn(E](-k))
—2
- tr{ [2Tn(%j) - 2Tn(%J)]2 - [2Tn(%0 @ JF) — 2Tn('12-0 @ J(k))]z} (33)
k
+ 4}: F(@j- - Gj4n-1) +Xn — x ()
=1

where 0 represents the kX k zero matriz, F(z) =z—1 —log(x) >0, Gn 1s given by
(18), and X, and X,(mk) are simple functions of the first few entries of J and J ®),
respectively.

Proor. It suffices to prove the case k = 1 since the general case follows by
applying this successively. This case corresponds to Green’s identity with f(z) =
log |m(z)| and g(z) = Gn(2). Note that m(z) has a pole at every eigenvalue of J
and a zero at those of J. Also, 0 < G(z) S Izl — 9)3/2 for € R and so by
Lemma 7.2, the sum over each set of eigenvalues is absolutely convergent. 0O

Because of the interlacing property of the discrete spectrum and the monotonic-
ity of Gn, it is not necessary to assume that dfi has the Lieb—Thirring property.

8. Necessary and Sufficient Conditions

In this section, our presentation will most closely resemble the historical de-
velopment; though as previously, we will restrict detailed discussions to the Jacobi
case. The primary topic is the optimal versions of the sum rules we have described—
the versions with no hypotheses; the left-hand side equals the right, be they finite
or infinite.

The first sum rule to reach this stage of development is that of Verblunsky
[107]:

TaEOREM 8.1. The coefficients of a CMV matriz, ag, and its spectral measure,

dp, always obey
oo
H(l — o)) = exp{/log[%r%%] %0;}.
k=0

In particular, the right-hand side is finite if and only if o € £2.

This result admits several ‘higher order’ analogues where %’; is replaced by
]P(O)lzg—f; with P a trigonometric polynomial; see [100] and (94, §2.8].

Theorem 8.1 is often referred to as Szegd’s theorem in deference to [102, 103];
see [94] for a thorough historical discussion. There is a related sum rule which goes
under the name ‘strong Szegd theorem’. The definitive version of this is due to
Golinskii and Tbragimov, (38, 42]:

THEOREM 8.2. If du = LeM9dg, then

kﬁ;o(l — ) F = exp{f: nlﬁ(n)lz}

n=1

and the left-hand side 1s infinite if dp cannot be written in this form.

L —————————————




924 R. KILLIP

There are two more results of similar nature, although neither has a corre-
sponding trace formula. The first is due to Baxter, [4]:

THEOREM 8.3. oy € €' if and only if du = 5-eh®)dg with }, 11,

This can be interpreted as a statement about the Wiener algebra. As discussed
by Baxter, the result extends to other algebras; see also [94].
The second result is from [67]:

THEOREM 8.4. limsup o [V/* < R=1 < 1 if and only if dp = | f(e%%)|~2d6 with
f(2) an analytic function on |z| < R.

This result has recently been the subject of much study, including several ex-
tensions in the circle case, [2, 3, 17, 96], and also to Jacobi matrices, [15, 97].
See also the review article [98].

In the remainder of this section, we will discuss analogues of Theorem 8.1 for
Jacobi matrices and Schrédigner operators; I am not aware of a corresponding
result for Krein systems. It would be interesting to find analogues of Theorems 8.2
and 8.3. As far as I know, the only work on this question is [79, 80], which treats
Jacobi matrices. Note that as the rate of decay improves, the analysis becomes more
tractable; for instance, the classical theorems of forward and inverse scattering (as
used to solve KdV and the Toda lattice), (63, 106], have weighted L hypotheses.

The following result is from [66]; it extends earlier results from [47] and [54].
We give a slightly different proof.

THEOREM 8.5. Fizn > 1 and write J for the Jacobi matriz with a; =1 and
bj =0. ThenT,(1J )=Tn(3J) is Hilbert-Schmidt if and only if the spectral measure
dii obeys

(1) (Blumenthal-Weyl) supp(dfi) is compact and ess-supp(dj) = [-2,2].

(ii) (Normalization) dji is a probability measure.
(iif) (Lieb-Thirring Bound)

> (B —2)*% < o (34)
(iv) (Quasi-Szegé Condition) Let dfiac(E) = w(E)dE. Then
2
/ log[w(E)] |Un-1(3E)|*V/4 = B2 dE > —oo. (35)
2

REMARK. When n is small, the Hilbert-Schmidt condition can be reduced to
simple explicit hypotheses on the coefficients by brute force; the general case was
treated in [66] by using the recurrence relation for Chebyshev polynomials. The
reformed condition is

(uj + Ujp1+ -+ Ujpp_1) € 2, u; € €4,
(l;j + 5j+1 +-- 4 5j+n—1) S 52, and i)j € £4,
where u; = a2 — 1.

PROOF. The forward implication follows from Weyl’s theorem (on relatively

compact perturbations), (27), and Theorem 6.3.

For the other direction, we use Theorem 7.4. The first observation is that
LHS(33) is bounded from above as k —s 00; naively, it may happen that

2
g/ log[42°7]/4 — 22|Un1(2)[* de — —o0
2
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but by (28), this sequence cannot diverge to +00. Therefore, RHS(33) must also
be bounded above as k — 00 ~

As dji has compact support, the coefficients of J are uniformly bounded. The
sequence @; 1s bounded from below, for if it were not, trace-class perturbation
theory would imply that dp is purely singular, [30, 99]. In this way, the bound on
RHS(33) translates into

k
lim sup }:<ej

k—o0 j=1

[Ta(3]) ~ Ta(3 )] es) < o0

which completes the proof. O

An analogous result for perturbations of periodic operators can be found in
(14].
The proof of Theorem 8.5 given above avoids a very interesting idea that was
employed in [54, 66), namely Denisov’s extension of Rakhmanov’s theorem, [23]:

THEOREM 8.6. Let J be a bounded Jacobi matriz, and dy its spectral measure.
If Oess(J) = [-2,2] and % > 0 a.e. there, then an — 1 and b, — 0.

The original theorem of Rakhmanov, [64, 71), says the following: if the spectral
measure of a CMV matrix obeys %’g > 0 a.e. on the unit circle, then ax — 0.

To obtain the Schrodinger analogue of Theorem 8.5, one must confront two
new difficulties.

First, every probability measure is the spectral measure for some Jacobi ma-
trix, but not every positive measure on R is the spectral measure of a Schrodinger
operator. Necessary and sufficient conditions are known, [63]; they involve the
large-energy asymptotics of the spectral measure. In addition, for technical rea-
sons, one would like a statement that guarantees the existence of an L, potential.

The second problem is the occurrence of the real part of m in the natural trace
formula. By analogy with Theorem 8.5, one would like to have a condition on the
logarithmic integrability of the Radon-Nikodym derivative of the spectral measure.

The theorem below is from [48]. But first, a few remarks about how these
difficulties are overcome.

Let dp denote the spectral measure for a half-line Schrodinger operator (or &
candidate for this role) and let dpo denote the measure for the free (V = 0) case.
We define a signed measure dv on (1,00) by

2 / Rk dv(k) = / FE)dp(E) — dpo(B)), ¥ [ €CE (o). (30

Notice that dv is parameterized by momentum, k, rather than energy, E. Using
Barry’s A-function approach to the inverse problem, (36, 76, 92}, it is possible to
show that if 3 [|v|(n,n+ 1)]? is finite, then dp is the spectral measure of a potential
V e L3, Using trace-formula methods, it is possible to show that this sum is finite
for any V € L.

Following the work of Burkholder, Gundy, and Silverstein, (6], it is understood
that LP bounds on the maximal function are equivalent to such bounds on the
conjugate function. This is progress in our setting because it removes the spectre
of cancellation. It also unifies the way one measures the size of the singular and
absolutely continuous parts of dp. The specific hypothesis below makes use of a
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short-range modification of the usual Hardy-Littlewood maximal function:

(Msv)(z) = 021;121 [vI([z _212 r+ L))

THEOREM 8.7. A positive measure dp on R is the spectral measure associated
to a (Dirichlet) half-line Schridinger operator with potential V € L?(R*) if and

only if
(1) (Weyl) supp(dp) is bounded from below and ess-supp(dp) = [0, 00).

(ii) (Normalization)
/log[l + <M+(k)>2] k? dk < oo (37)

(iii) (Lieb—Thirring)
> 1B 2 < o0 (38)
J

(iv) (Quasi-Szegd)

o 1dp 1 1dpg
log| = =2 4= 4 220 /Eug
/0 Og[4dp0+2+4dp:|\/_d < 00 (39)

One consequence of this theorem is that L2 perturbations can give rise to more
or less arbitrary embedded singular spectrum. A related result was proved in [29];
indeed, this paper was a major stimulus for [47, 48]. Other results on the nature
of embedded singular spectrum (not using trace formula methods) can be found in
(18, 49, 74, 7 5] and the Denisov—Kiselev contribution to this Festschrift.
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