next up previous
Next: kk_linear_geom Up: kk_linear_geom Previous: kk_linear_geom

5. Intersections of a line segment and a plane

Now let's apply the ideas of the last sections in three dimensions:

(1) The three-point relational form of a plane in    R$ ^ 3 $ is given by the equation $ \Delta(P,Q,R,$x$ ) $ $ = $ $ 0 $, where

$ \Delta(P,Q,R,$x$ ) =
{\left[\begin{array}{cccc}\ &P&\ &1\\  \ &Q&\ &1\\  \ &R&\ &1\\  \ &\mbox{\bf x}& \ &1\end{array}\right]}
$.

(2) $ \Delta(P,Q,R,$x$ ) > 0 $ when    x$ $ is in the same relation to $ P,Q,R $ that the origin is to $ (1,0,0) $, $ (0,1,0) $ and $ (0,0,1) $, namely, $ P $ to $ Q $ to $ R $ to $ P $ is clockwise as seen from    x$ $.

(3) A line segment $ \overline{AB} $ crosses the plane given by an affine function $ f(x,y,z) $ if $ f(A)
$ and $ f(B) $ are nonzero and have opposite signs; the crossing point $ C $ is given by $ C $ $ = $ $ A
+ t (B-A) $, where $ t $ $ = $ $ -
{\frac{\displaystyle f(A)}{\displaystyle f(B) - f(A)}} $.





Kirby A. Baker 2002-03-07