next up previous
Next: h_affine_I Up: h_affine_I Previous: h_affine_I

4. Preservation properties

First, recall that if $ T$ is a homogeneous linear transformation then $ T$ preserves linear combinations: $ T(r$   v$ + s$   w$ ) = r T($v$ ) + s T($w$ )$. In fact, a transformation $ T:$   R$ ^n \rightarrow$   R$ ^m$ is homogeneous linear if and only if $ T$ preserves all linear combinations.



Affine transformations do not preserve usually linear combinations. For example, if $ T$ is a translation, given by $ T($x$ ) =$   x$ +$   b with b$ \neq$   0, then $ T(\frac{1}{2}$   v$ + {\frac{1} {4}}$   w$ )$ $ =$ $ \frac{1}{2}$   v$ + {\frac{1} {4}}$   w$ +$   b, but $ \frac{1}{2} T($v$ ) + {\frac{1} {4}} T($w$ )$ $ =$ $ \frac{1}{2} ($v$ +$   b$ ) + {\frac{1} {4}} ($w$ +$   b$ )$ $ =$ $ \frac{1}{2}$   v$ + {\frac{1} {4}}$   w$ + {\frac{3} {4}}$   b, not the same thing.



However, there is one kind of linear combination that is preserved:



Theorem 4.1 . Affine transformations preserve linear combinations in which the sum of the coefficients is 1.

Summary of proof. First check the case of a translation. Then combine that case with the case of a homogeneous linear transformation to get the conclusion for all affine transformations.



4.2 . Examples of such linear combinations:

(a) $ \frac{1}{2}$   v$ + \frac{1}{2}$   w, the average of two vectors v and w.

(a*) $ \frac{1}{2} P + \frac{1}{2} Q$, the midpoint of the line segment joining two points $ P$, $ Q$. (Remember that points and vectors are essentially the same thing: pairs of numbers, or triples of numbers, etc.)

(b) $ (1-t) P + tQ$ for $ 0 \leq t \leq 1$, the line segment joining $ P$ and $ Q$.

(b*) $ (1-t) P + tQ$ for all $ t$, the whole line through $ P$ and $ Q$.

(c) $ P - Q + R$.



Corollary 4.3 . An affine transformation takes line segments to line segments and lines to lines, if it is nonsingular. (If it is singular, it can take a line to a point.)



Actually, Corollary [*] can be improved to an ``if and only if'' statement, i.e., a $ \Leftrightarrow$ statement, in the nonsingular case:



Theorem 4.4 . A one-to-one transformation $ T:$   R$ ^n \rightarrow$   R$ ^n$ takes lines to lines $ \Leftrightarrow$ $ T$ is affine and nonsingular.



(The proof of the `` $ \Rightarrow$'' direction is quite difficult.)




next up previous
Next: h_affine_I Up: h_affine_I Previous: h_affine_I
Kirby A. Baker 2002-01-16