next up previous
Next: About this document ... Up: ii_solns_8-10_II Previous: ii_solns_8-10_II



For Problem DD-10:

(a) If $ A = \left[\begin{array}{cc}a&b\\  b&d\end{array}\right]$, we can write $ p _ A(\lambda)
= \lambda ^ 2 - t \lambda + \Delta$, where $ t = a + d$ and $ \Delta = ad - b ^ 2$. The quadratic formula says the roots are $ \lambda = {\frac 1 2}(t \pm \sqrt{t^2 - 4 \Delta})$. Simplifying the discriminant (the part inside the square root), we get $ t^2
- 4 \Delta = (a+d)^2 - 4 (ad - b^2) = a^2 + 2 ad + d ^ 2 - 4 ad +
4 b^2 = (a-d) ^ 2 + (2b) ^ 2$.

(b) Since the discriminant is the sum of two squares and so is $ \geq 0$, the square root is real. Therefore the eigenvalues are real and are $ {\frac 1 2}(a + d \pm \sqrt{(a+d)^2 + (2b)^2})$.

(c) As suggested, the roots are equal when $ (a-d) ^ 2 + (2b) ^ 2 = 0$. That happens when $ a = d$ and $ b = 0$, which is when $ A = \left[\begin{array}{rr}a&0\\
0&a\end{array}\right]$, a scalar matrix.



For Problem DD-11:

$ \langle$   u$ , A$v$ \rangle =$   u$ ^ t A$   v and $ \langle A$u$ ,$   v$ \rangle = (A$u$ ) ^ t$   v$ =$   u$ ^ t A ^ t$   v$ =$   u$ ^ t A$   v (since $ A$ is symmetric), $ =
\langle$   u$ , A$v$ \rangle $.


Kirby A. Baker 2001-12-05