| predict.glm {base} | R Documentation | 
Obtains predictions and optionally estimates standard errors of those predictions from a fitted generalized linear model object.
predict.glm(object, newdata = NULL, type = c("link", "response", "terms"),
            se.fit = FALSE, dispersion = NULL, terms = NULL, ...)
| object | A fitted object of class inheriting from "glm". | 
| newdata | Optionally, a new data frame from which to make the predictions. If omitted, the fitted linear predictors are used. | 
| type | The type of prediction required. The default is on the
scale of the linear predictors; the alternative "response"is on the scale of the response variable. Thus for a default
binomial model the default predictions are of log-odds (probabilities
on logit scale) andtype = "response"gives the predicted
probabilities. The"terms"option returns a matrix giving the 
fitted values of each term in the model formula on the linear predictor 
scaleThe value of this argument can be abbreviated. | 
| se.fit | A switch indicating if standard errors are required. | 
| dispersion | The dispersion of the GLM fit to be assumed in
computing the standard errors. If omitted, that returned by summaryapplied to the object is used. | 
| terms | With type="terms"by default all terms are returned.
A vector of strings specifies which terms are to be returned | 
se = FALSE, a vector or matrix of predictions. If se = TRUE, a
list with components
| fit | Predictions | 
| se.fit | Estimated standard errors | 
| residual.scale | A scalar giving the square root of the dispersion used in computing the standard errors. | 
B.D. Ripley
## example from Venables and Ripley (1997, pp. 231-3.)
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
summary(budworm.lg)
plot(c(1,32), c(0,1), type="n", xlab="dose",
   ylab="prob", log="x")
text(2^ldose, numdead/20,as.character(sex))
ld <- seq(0, 5, 0.1)
lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
   sex=factor(rep("M", length(ld)), levels=levels(sex))),
   type="response"))
lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
   sex=factor(rep("F", length(ld)), levels=levels(sex))),
   type="response"))