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1. Introduction

The work of Dipper and James on Iwahori-Hecke algebras associated
with the finite Weyl groups of type A,, has shown that these algebras be-
have in many ways like group algebras of finite groups. Moreover, there
are “generic” features in the modular representation theory of these al-
gebras which, at present, can only be verified in examples by explicit
computations. This paper arose from an attempt to provide a concep-
tual explanation of these phenomena, in the general framework of the
representation theory of (symmetric) algebras. We will study relations
between the center of such algebras and properties of decomposition
maps, and we will use this to obtain a general result about the “gener-
icity” of the number of simple modules of Iwahori-Hecke algebras.

Usually, the formalism of decomposition maps is developed for al-
gebras over a complete discrete valuation ring. However, in our appli-
cations to Iwahori-Hecke algebras, we have to make sure that this also
works over the ring of Laurent polynomials in one indeterminate over the
integers. Roughly speaking, this will be achieved by using the theory of
Henselian rings (see [Ray]). In Section 2, we describe such a general
setting for decomposition maps of algebras over integrally closed ground
rings (see Proposition 2.11). Furthermore, we extend the standard results
on the “Brauer-Cartan triangle” to the case of orders in non-semisimple
and non-split algebras, by using enlargements of the usual Grothendieck
groups. As a formal consequence of the definition, we get a factorization
property of decomposition maps (see Proposition 2.12). Previously, this
factorization was only established using strong additional assumptions
on the realizability of representations (cf. [Gel], (2.4), (5.3)).

Let H be an algebra over a local integrally closed domain O with
residue field £. Then we have a canonical map from central functions on
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H to central functions on kH (induced by reduction modulo the maxi-
mal ideal of O). In Proposition 3.1, generalizing a theorem of Hattori,
we show that the surjectivity of this map implies that the decomposition
map has finite cokernel and that the Cartan matrix of kH has non-zero
determinant. For a symmetric algebra, this surjectivity is equivalent to
the surjectivity of the reduction map Z(H) — Z(kH). In Theorem 5.2
we prove that this surjectivity holds for Iwahori-Hecke algebras, by con-
structing a basis of the center from [Ge-Pf]. This part is inspired by the
work of [Di-Ja], where the type A, was considered. We believe that this
stability of the center under reduction is an important similarity between
group algebras and Iwahori-Hecke algebras.

In another direction we show that, under suitable hypothesis, the
number of simple modules of the algebra kH is “generic”, in the following
sense. Assume that the ground ring O has Krull dimension 2. Fix a
height 1 prime ideal p and let k, be the quotient field of O/p. Then
Theorem 3.3 gives a condition on p which implies that the number of
simple modules of k,H equals the number of simple modules of kH. In
our applications to Iwahori-Hecke algebras, O will be the localization
of the ring of Laurent polynomials over Z in one indeterminate. The
choice of height 1 and height 2 prime ideals yield algebras ¥H and k,H,
where £ is a finite field of characteristic £ and &, is a cyclotomic field of
characteristic 0 (see [Gel] for more details). In Theorem 5.4 we check
that the above hypotheses are satisfied whenever the prime ¢ is not too
small (e.g., does not divide the order of the underlying finite Weyl group).
Hence the number of simple modules of kH is determined by the algebra
k.H, ie., it is “generic’. This is one step in an attempt to prove the
more general conjecture of [Gel], (5.6), that even the decomposition
maps themselves are “generic”.

2. Decomposition maps

It is the purpose of this section to develop the basic theory of decom-
position maps for algebras over integrally closed rings. Much of what
follows is inspired by [Bra-Ne| and [Se].

2.1 Grothendieck groups and bilinear forms

Let O be a commutative local ring and H an (O-algebra, finitely gener-
ated and free as an O-module. We denote by Ky(H) the Grothendieck
group of the category of finitely generated projective left H-modules
and by Ro(H) the Grothendieck group of the category of finitely gener-
ated H-modules which are free as O-modules (such modules are called



Centers and Simple Modules for Iwahori-Hecke algebras 253

H-lattices). The imbedding of the first category into the second one
induces a map (“Cartan map”) co : Ko(H) — Ro(H). We denote by
R (H) the subset of Ro(H) given by the classes of the H-lattices. Note
that R (H) generates Ro(H).

In what follows, all modules are supposed to be finitely generated.

There is a bilinear form (-,-)o : Ko(H) X Ro(H) — Z defined by
({[P],[V])o = rankpHompy (P, V)

for P a projective H-module and V an H-lattice (where [P] and [V]
denote the classes of P and V in Ko(H) and Ro(H) respectively). The
fact that Hompy (P, V) is free over O follows from the existence of an
integer n such that P|H", since then Homy(P, V) is a direct summand
of Homy(H™, V) ~ V" as an O-module. Let us now prove that this form
is well defined. If [P] = [P] + [P,], then Homy (P, V) ~ Homy (P, V) &
Hompy (P, V). f 0 - Vi - V — V, — 0 is an exact sequence of H-
lattices, then 0 — Hompg (P, Vi) — Homg(P,V) — Hompg(P,V2) — 0 is
exact because P is projective. These two facts show that (-, -)o is indeed
well defined.

Let us denote by CF(H) = Homp(H/[H, H], ©) the module of class
functions (where [H, H] denotes the O-submodule of H generated by the
commutators hh' — h'h, h,h' € H). We introduce now a bilinear form
(,-)o : Ko(H) x CF(H) — O as follows:

Let P be a projective H-module. There exists an integer n such that
P is a direct summand of H™. Let e be the corresponding idempotent
in Endy(H™). The latter space can be canonically identified with the
space M, (H) of n x n-matrices over H. Let Tr(e) € H be the trace of
e. It is straightforward to check that the image of Tr(e) in H/[H, H|
depends only on the class [P] of P in Ko{H) and that the corresponding
map Ko(H) — H/[H,H] is additive. If f € CF(H) then we define
(IP], flo = f(Tx(e)).

Assume that f is the character ch([V]) of an H-lattice V (where
we denote by ch : Ro(H) — CF(H) the character map). One has
Hompy(eH™,V) ~ eV™ as O-modules, hence ([P], [V]) = rankpeV™. But
(Pl flo = /(Tr(e)) = Lo - rankoeV™, hence ([P}, f) = ([P}, [V]) - Lo.
This proves the following :

Lemma 2.1 One has (z,ch(y)) = (z,y) - 1o for x € Ko(H) and y €
Ro(H).

We define a semi-group morphism po from RE(H) to the set
Maps(H, O[X]) of maps H — O[X] (with operation given by pointwise
multiplication of maps) as follows:
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Given an H-lattice M and = € H, we let po([M])(z) be the charac-
teristic polynomial of z acting on the free O-module M.

Let B be a commutative local O-algebra given by tg: O — B. If M
is an O-module, we denote by BM the B-module B&o M. Without spec-
ification, tensor products are taken over O, i.e., BQ® M means B ®o M.
There are canonical maps t5° : Ko(H) — Ko(BH), tfe . Ry(H) —
Ro(BH), t§F : CF(H) — CF(BH) and t¥ : Maps(H,O[X]) —
Maps(BH, B[X]) induced by extension of scalars. The following lemma
gives the compatiblities with extension of scalars:

Lemma 2.2 Let z € Ko(H), y € Ro(H) and f € CF(H). Then

ta((z, flo) = (ts(z),t8(f))B: (z,9)0 = (ts(z),tB(y))B, and

th o co = cpothe, t5Foch = chot&, ppoth =t o po.

Proof. Only the second assertion does not follow directly from the defini-
tions. If z = [P] and y = [V], then (tp(z),t5(y)) s = rankp(eV") Qo B,
where n is such that P|H™ and e is the corresponding idempotent of
Endy(H™). Since eV™ is a free O-module, one has rankp(eV") o B =
rankpeV™, hence (tp(z),tp(y))B = (Z,Y)o. O

Lemma 2.3 Assume B is flat over O. Then, the map 13 ® t§F : B®
CF(H) — CF(BH) is an isomorphism.

Proof. From the exact sequence 0 — [H,H| — H — H/[H, H] —
0, one gets the exact sequence 0 — [BH,BH|] - BH — B®
(H/[H,H]) — 0. Hence, B® (H/[H,H|) ~ BH/[BH, BH| and finally
Hompg(BH/|BH,BH|, B) ~ B ® Homo(H/[H, H],0). i

2.2 Algebras over a field

Let us first recall without proof some classical results about simple alge-
bras (cf [Bkil]). Assume that O = K is a field. We have the following
commutative diagram:

H — mod —  R${(H) % Maps(H K[X])

I [ |

(H/J(H)) ~mod — Rg(H/J(H)) - Maps(H/J(H),K[X])

where J(H) denotes the radical of H. Hence, in order to study Rf (H)
and its image in Maps(H, K[X]), we can assume that J(H) = 0.

Now, the algebra H is semisimple, i.¢., is isomorphic to a finite direct
product of simple algebras. So, let us assume that H is simple. Let V
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be a simple H-module, D = Endy (V) and n = dimp(V). Then, H is
isomorphic to the ring M,(D°) of (n x n)-matrices over the skewfield D°
opposite to D.

Let m be the integer such that [D : Z(D)] = m?. Let Trd : H —
Z (D) be the reduced trace of the central simple Z(D)-algebra H. It has
the property that if L is a neutralizing field for H, i.e., such that Z(D) C
L C D and H®zpy L >~ Mn,(L), then the usual trace M,,(L) — L is
given by Trd ® 11. Denote by chg(V') and chz(p)(V') the character of V
respectively viewed as a module over the K-algebra H and as a module
over the Z(D)-algebra H. We have

ChK(V) =TI‘Z(D)/KChZ(D)(V) and ChZ(D)(V) =mTrd

where Trz(py/k : Z(D) — K denotes the trace map of the K-algebra
Z(D), i.e., the character of the module Z(D) for the K-algebra Z(D).
Similarly, we have

px(V) = Nzyxykix)(pzp)(V))  and  pz(py(V) = Prd™

where NZ(D)[X]/K[X] : Z(D)[X] — K[X] is the norm map of the K[X]—
algebra Z(D)[X] and where Prd : H — Z(D)[X] is the reduced char-
acteristic polynomial map and pk (V') and pz(p)(V) are the character-

istic polynomial maps of V respectively viewed as a module over the
K-algebra H and as a module over the Z(D)-algebra H.

Lemma 2.4 The following statements are equivalent for H a simple
K -algebra with simple module V and D = Endy(V):

(1) the extension Z(D) of K is separable,

(2) Trzpyk # 0,

(3) Trz(py/xTrd # 0,

(4) the algebra H ®k Z(D) is semisimple,

(5) the algebra D @k Z(D) is semisimple,

(6) the H @k Z(D)-module V @k Z(D) is semisimple.

If Z(D) is a separable extension of K, then the algebra H @k Z(D)
is tsomorphic to a direct product of [Z(D) : K] central simple Z(D)-
algebras and the module V ®k Z(D) is tsomorphic to the direct sum of
[Z(D) : K| non-isomorphic simple modules.
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Let us go back to the case where H is any finite dimensional algebra
over K. From now, we assume that K is perfect (one could as well work
with the weaker assumption that given any simple H-module V| then
Z(Endg(V)) is a separable extension of K).

A basis for Ry(H) (resp. Ko(H)) is given by the images of a complete
set of representatives of isomorphism classes of simple (resp. projective
indecomposable) modules. Hence, one has an isomorphism Ro(H) —
Ky(H) given by sending the class of a simple module to the class of one
of its projective covers.

An irreducible character of H is defined as the character of a simple
H-module and we denote by Irr( H) the set of irreducible characters of H.

If K’ is a field extension of K, then the canonical maps t5? : Ko(H) —
Ko(K'H) and t5% : Ro(H) — Ro(K'H) are injective. There exists a finite
Galois extension K’ of K such that K'H is split, i.e., such that for every
simple K'H-module V| the canonical map K’ — Endg (V) given by
multiplication is an isomorphism; we call such a field K’ a neutralizing
field for H. Let V be a simple H-module. Then, there are non-isomorphic
simple K'H-modules Vi,...,V; and an integer my (the Schur index of
V) such that

KVeWa--aV,)™.

Note that we have [Kv : Z(Kv)] = m? where Ky = Endg(V). Let
V' be another simple H-module, with K'V' >~ (V| & --- & V)™ where
the modules V" are simple and V; # V] for i # j. Then, if V % V’,
we have V; 2 V/, for all 4, j. Let Py be a projective cover of V. Then,
Homgy(K'Py,K'V') ~ K' ® Homy(Py,V') ~ K' @ Homy(V, V') ~
Homy/ gy (K'V,K'V'). Hence, K'Py is a projective cover of K'V| i.e.,
denoting by P; a projective cover of V;, we have

K'Py~(P®-- & P)™.

We then define Ro(H) as the subgroup of Ro(K'H) with basis
{;-[V]} where V' runs over the simple H-modules (cf [Se, §12.1]). Simi-
larly, we define Ko(H) as the subgroup of Ko(K'H) with basis {;,-[Pv]}
where V' runs over the simple H-modules. Note that the group Ro(H)
(resp. Ko(H)) is a subgroup of finite index ofRo(H) (resp. Ko(H)). In
particular, rank Ro( H) = rankRo(H) and rank Ko(H) = rankKo(H).

It is clear that ck,(-,-)k and (-, )k extend to maps Ko(H) — Ro(H),
Ko(H) x Ry(H) — Z and Ko(H) x CF(H) — K compatible with the
extension to K’. Furthermore, we define R{ (H) as Ro(H) N Ry (K'H).

Proposition 2.5 Recall that K is assumed to be perfect. Then the map
px : RS (H) — Maps(H, K[X]) is an injection.
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Proof. (cf [Bra-Ne, Lemma 2]) It is enough to prove the lemma in the
case K H split, which we assume now. Let M and N be two H-modules
such that p([M]) = p([N]). By replacing M and N with their associated
semisimple modules, one can assume that M and N are semisimple. Let
S be a set of representatives of isomorphism classes of simple H-modules.
For V € S, let ay and by be the multiplicities of V as a composition factor
of M and N. Since ch([M]) = ch([N]), one has (ay—by)-1x = 0. If O has
characteristic zero, this implies ay = by, hence [M] = [N]. Otherwise,
let p be the characteristic of K, p > 0. One has ay = by mod p.

Let us assume that p is an injection for modules of dimension at most
n and assume that M and N have dimension n + 1. If thereisa V € S
which is a submodule of M and N, then the modules M/V and N/V
are isomorphic, since their dimension is less than n. Hence, we may
assume that for every V € S, ay = 0 or by = 0. Let M’ = EBVVT-F

b
and N' = @vV'rK. Again, M’ and N’ have dimension less than n; hence
M'~ N'je,M =N =0and M = N =0, which gives a contradiction.
|
Lemma 2.6 The subgroup Ro(H) of Ro(K'H) consists of those elements
f such that pgo(f)(h) € K[X] for all h € H.

Proof. It follows from the construction of Ry(H) that, for f € Ry(H)
and h € H, p(f)(h) € K.

Let now f € Ro(K'H) such that p(f)(h) € K for all h € H. We can
clearly assume that H is semisimple, since p(f)(h+7) = p(f)(h) for h €
H and r € J(H). We can also assume that H is simple. Let V},...,V}
be a complete set of representatives of isomorphism classes of simple
K'H-modules. Then the Galois group of K’ over K acts transitively
on {ch([Vi])}, hence p(f) = a¥;_, ch([Vi]) for some a € K. Since p is
injective, by Proposition 2.5, we have f = a Y {_,[V;] for some integer a
and the lemma is proved. O

We put Irr(H) = {ch(;[V])} where V' runs over the simple H-
modules.
Proposition 2.7 The map 1k @ ch : K ® Ro(H) — CF(H) is an in-
jection, i.e., the elements of Irr(H) are linearly independent. If H is
semisimple, then the map above is an isomorphism.

Proof. One can assume that H is simple and the proposition follows
then from Lemma 2.4. 0

Assume now that for every simple H-module V, the canonical map
K — Z(Endg(V)) is an isomorphism, i.e., Endy(V) is a central K-
algebra; we say that H is a quasicentral K-algebra.
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Proposition 2.8 Assume that H is quasicentral.

(1) The form (-,) induces a perfect pairing between Ko(H) and Ro(H):
if V, V' are two simple H-modules and Py is a projective cover of
1 1 N —
V, then we have <'E;[PV], m—W[V ]) = 6[‘/],[‘/:].
(2) If K’ is an extension of K, then the maps tR . Ro(H) — Ro(K'H)
and t%0 . Ko(H) — Ko(K'H) are isomorphisms.

(3) If K' is a neutralizing field for H, then Ro(H) = Ro(K'H) and
rank Ro(H) = rank Ro(K'H).

Proof. Since Homy(Py, V') ~ Homy(V, V') and dimg Homy(V, V') =
mi 6y v, we have ([Py],[V']) = m%6jv),;v. This implies that the pair-
ing induced by (-,-} is perfect. The other statements are clear. m|

There is an easy characterization of quasicentral algebras:

Proposition 2.9 The following statements are equivalent:
(1) the K-algebra H is quasicentral;
(2) Ro(H) = Ro(K'H) for any extension K' of K;
(8) rank Ro(H) = rank Ro(K'H) for any extension K' of K;

(4) there is a finite Galois extension L of K which is a neutralizing
field for H and such that rank Ro(H) = rank Ro(LH).

Proof. Let L be a finite Galois extension of K which is a neutralizing
field for H. Let V be a simple H-module and D = Endy (V). Then,
V®k L is a direct sum of [Z(D) : K] non-isomorphic simple LH-modules.
If Z(D) # K, it implies rank Ro(H) < rank Ro(LH). Hence, (4) = (1).

By Proposition 2.8, (1) implies (2). Finally, (2) = (3) = (4) is
clear. |

2.3 The Brauer-Cartan square

From now on, O is an integrally closed local domain, K its field of
fractions and k its residue field. We assume K and k are perfect. Let H
be an O-algebra, free and finitely generated as an O-module.

Lemma 2.10 The image of ch : Ro(KH) — CF(KH) is con-
tained in the O-submodule CF(H) and the image of px : Rf(KH) —
Maps (KH, K[X]) is contained in the O-submodule Maps(H, O[X]).
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Proof. Let V be a simple K'H-module where K’ is a finite extension
of K, with ch(V)(z) € K for all + € KH. Then, for h € H, the
characteristic polynomial p(V')(h) divides (in K’[X]) the characteristic
polynomial p(KH)(h) = p(H)(h) associated to the regular representa-
tion. Since p(H)(h) € O[X], the roots of p(V)(h) are algebraic over O,
hence ch(V)(h) is algebraic over O. Since ch(V)(h) € K and O is inte-
grally closed in K, this implies ch(V)(h) € O. Similarly, the coefficients
of p(V)(h) are algebraic over O and are in K, hence are in O. O

The following proposition establishes the existence of the decompo-
sition map:

Proposition 2.11 There exists a unique map do : Ro(KH) — Ro(kH)
which makes the following diagram commutative:

Ro(KH) D R{(KH) 25 Maps(H,0O[X])

e ] I

Ro(kH) D Ri(kH) £ Maps(kH, k[X])

Proof. Note first that the unicity follows from the injectivity of px (cf
Proposition 2.5).

Let K’ be a finite extension of K such that K'H is split. Let ¢
be a valuation ring, O C (' C K’ with maximal ideal I such that
INO = m, the maximal ideal of O, and residue field k’. Let V be a sim-
ple K'H-module with [V] € Ry(K H). Since finitely generated torsion-
free (’-modules are free [Go, §5.2], there exists an O’ H-lattice V' such
that K'V’ ~ V. Then, pp/([k'V’]) is the reduction mod I of px([V]) €
Maps(O’H, O'[X]). Since pg([V]) is actually in Maps(OH, O[X]) by as-
sumption, we have also pp([k'V’]) in Maps(kH, k[X]), hence [k'V'] €
Ro(kH) by Lemma 2.6 and we put d([V]) = [k'V]. O

Note that the decomposition map exists not only for O integrally
closed but, more generally, when the image of px : RJ(KH) —
Maps(K H, K[X]) is contained in the O-submodule Maps(H, O[X]). The
following proposition is a direct consequence of the definition:

Proposition 2.12 Let p be a prime ideal of O such that k, = (O,)/p
is perfect and O/p is integrally closed. Then, the following diagram is
commutative:

Ro(KH) 22 Ro(kH)

o e

RO(kFH) = RO(kFH)
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Suppose now that K H is a quasicentral K-algebra. We define the
map e : Ko(kH) — Ko(KH) as the map dual to d with respect to the
pairing (-, -}, i.e., for n € Ko(kH) and x € Ro(K H), we have

{n, d(X))x = (e(m), X) k-

Let us now give an alternative definition of e, without using d.

Let O be a strict henselisation of O [Ray, Chapitre VIII]: this is
an henselian (local) ring, local extension of O, faithfully flat as an O-
module, with residue field k a separable closure of k. Furthermore, since
O is integrally closed, the ring O is an integral domain [Ray, Chapitre
IX, corollaire 1]. Let now O’ be a valuation ring, local extension of o,
contained in the field of fractions K of @, with residue field &'.

Since O is henselian, every idempotent of kH can be lifted to an
idempotent of OH, hence every projective kH-module can be lifted to
a projective OH-module. Let P be a projective kH-module and V a
K H-module. There exists an O'H-lattice M such that VQ K ~ M@ K
and a projective (O H-module @ such that Q ® k' ~ P ® k’. We have

([PLA(VI))k = ([Q® K], [M & k) = ([Q, IM])or = ([KQ], [KM])z

(Note that similarly, ([P], f ® 1z); = (e([P]), f ® 1x)k - 1z for f €
CF(H)). Hence, e([P]) = [KQ] (viewed i m Ko(KH)). Furthermore, one
has d o cx o ¢([P]) = «([P]), hence the following diagram (“Brauer-
Cartan square”) is commutative:

Ro(KH) % Ro(kH)

ch Ick

Ro(KH) < FRo(kH)

With the_additional assumption that the algebra KH is semi-simple,
one has Ko(KH) = Ro(KH) and we recover the usual Brauer-Cartan
triangle (cf [Se, §15]).

3. On the number of simple modules

We keep the assumptions above: We have O an integrally closed local
domain with residue field k£ perfect and field of fractions K perfect and
H an O-algebra, free and finitely generated as an O-module.

The following proposition generalizes a theorem of Hattori [CuRe,
Theorem 32.5] about the injectivity of the Cartan map. In Hattori’s
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theorem, it is assumed that H/[H, H] is free as an O-module (and O is
assumed to be a discrete valuation ring).

Proposition 3.1 Assume that kH is quasicentral. If the image of the
canonical map ty : CF(H) — CF(kH) contains ch(Ro(kH)), then the
map e is injective (hence, given two projective H-modules M and N, we
have KM ~ KN if and only if M ~ N ). In particular, the decomposi-
tion map d has finite cokernel and the algebra KH has at least as many

stmple modules as the algebra kH.

Proof. Let us prove first that e is injective. Replacing O by a strict
henselisation of O, we can assume that kH is split. Let P,Q be two
non-zero projective k H-modules with no common direct summand such
that e([P] — [Q]) = 0. Assume that P has minimal dimension with
this property. Let V be a simple kH-module and put ¢ = [V]. By
assumption, chy is the image of some f € CF(H). So we have

< [Pl, > 1k = ([P],chp)x = ([P], f - 1e)x = (e[P), f)k - 1k-

As e([P]) = e([Q]), we get < [P]—[Q], ¢ >k -1x = 0. If k has characteris-
tic zero, this implies that [P] = [Q]. Assume then that the characteristic
p of k is positive. Then, the multiplicities of a projective cover Py of
V in P and Q as a direct summand are equal modulo p. Since P and
() have no common direct summand by assumption, it implies that the
multiplicities of Py in P and Q) are both divisible by p.

So, there exists Py and Qg two projective kH-modules with P ~ P}
and Q ~ QF; hence e([Po] — [Qo]) = 0. Since Py has strictly smaller
dimension than P, it implies Py ~ Qq, hence P ~ @), which is impossible.
This completes the proof that kere = 0.

Now, by definition of e as dual of d, it follows that d has finite cok-
ernel. Since d: Ro(KH) — Ro(kH), it is clear that K H has at least as
many simple modules as kH. ]

Lemma 3.2 Assume that the canonical map t : CF(H) — CF(kH) is
surjective and that K H is quasicentral. Then kH also is a quasicentral
algebra.

Proof. Let £’ be a finite Galois extension of k neutralizing for H. Let O
be a local domain, local extension of O with residue field k&’ and field of
fractions K’. By Lemma 2.3, the canonical map CF(O’'H) — CF(k'H) is
also surjective, hence Proposition 3.1 proves that de has finite cokernel.

As KH is quasicentral, one has Ry(K'H) = Ro(KH) by Propo-
sition 2.9; hence the image by the decomposition map of Ry(K'H) is

contained in Ro(kH). Since the decomposition map der : Ro(K'H) —
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Ro(k'H) has finite cokernel, we get rank Ro(kH) = rank Ro(k'H); hence
kH is quasicentral, by Proposition 2.9. a

Assume O is noetherian and has Krull dimension 2. Let p be a height
one prime ideal of O with O/p integrally closed (i.e., O/p is a discrete
valuation ring) and k, = (O,)/p perfect.

For g a height one prime ideal of O, let kq be a finite separable exten-
sion of k, = (O,)/q neutralizing for k,H and O, a discrete valuation ring,
(unramified) extension of O, with residue field k, and field of fractions
Kq; let O, denote the completion of O, and K, its field of fractions.

Here is now the crucial result:

Theorem 3.3 Assume that KH is quasicentral and that the canonical
map CF(H) — CF(kH) is surjective.

(1) The map 1k ®doy, : k@ Ro(k,H) = k®Ro(kH) is an isomorphism

if and only if the restriction of the bilinear form (-, -)5 to Ko(O,) x
CF(H) has values in O. '

(2) If for every height one prime ideal q # p of O, the algebra k,H
is semisimple, then the two equivalent statements in (1) hold. In

particular, the number of simple k H-modules is equal to the number
of simple k,H-modules.

Proof. Note that k,H is quasicentral since k, is perfect, by Lemma 3.2.
Let q be a height one prime ideal of O. Note that 5q NK = 0O, (the
intersection is taken in K o). Since (5q is a complete discrete valuation
ring, idempotents can be lifted from k. H to 5qH . Hence, the canonical

map Ko(O,H) — Ko(k,H) is an isomorphism. We have the following
commutative diagram:

CF(H) % CF(kH) 2% Homg (kH, k)

Jo I w

CF((O/p)H) = CF((O/p)H) % Homoy,((O/s)H,O/p)
We have
CF((O/p)H) = im(tos,) + (m/p)CF((O/p) H)

(note that CF((O/p)H) is a direct summand of Home/,((O/p)H, O/p)
as O/p-modules since O/p is a discrete valuation ring); hence im(tp/,) =
CF((O/p)H) by Nakayama’s lemma. This proves that the canonical
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map CF(H) — CF((O/p)H) is surjective, hence the bilinear form (-, -)5

restricted to Ko(O,H) x CF(H) has values in O if and only if (-, ),
restricted to Ko(k,H) x CF((O/p)H) has values in O/p.

Since (-,-) induces a perfect pairing between Ko(k,H) and Ry(k,H),
the submodule ch Ry(k,H) of CF((O/p)H) is pure if and only if the
form (-, ")k, restricted to Ko(k,H) x CF((O/p)H) has values in O/p. By
Proposition 3.1, the decomposition map do/, : Ro(k,H) — Ro(kH) has
finite cokernel; hence the map 1x ® do/, is an isomorphism if and only
if it is injective, i.e., if and only if ch Ry(k,H) is a pure submodule of
CF((O/p)H). This completes the proof of (1).

Assume that for q # p, the algebra k,H is semisimple. Then, the

algebra EqH is split semisimple; hence, the algebra (5qH is isomorphic
to a direct product of matrix algebras over @q. So, the canonical map

Ko(OH) — KO(EqH) is an isomorphism and the form (-, ')f( restricted

to Ko(ﬁqH) x CF(H) has values in (5q and finally the form(-,-)x re-
stricted to Ko(KH) x CF(H) has values in Ny%,0,. Composing the

canonical map Ko(O,H) — KO(KFH) with the inverse of the canonical
map Ko(KH) — KO(KFH) (note that K H is quasicentral), we get that
the bilinear form (-, -)5 restricted to Ko(O,H) x CF(H) has values in

Mazp O N 5,,, hence in O since O is a Krull ring [Bki2, Chapitre VII, §1,
théoreme 4]. O

4. Center and class functions for symmetric algebras

Let O be a commutative ring and H an O-algebra, free and finitely gen-
erated as an O-module. Let 7 € CF(H). We say that 7 is a symmetrizing
form for H (cf [Br]) if the induced map

7: H — Homp(H,O),h — (h' — 7(hh'))

is an isomorphism. More concretely, this means that, if B is an O-basis
of H, then the determinant of the matrix (7(hh’))pnep is a unit inO.
When such a symmetrizing form exists, we say that the algebra H is
symmetric.

Assume now that 7 is a symmetrizing form for H. To simplify
the notations, for h € H and f € Homgp(H,O), we put h* = 7(h)
and f* = 771(f). Note that 7 induces an isomorphism of O-modules
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Z(H) —» CF(H): If Ais a commutative O-algebra, then the canonical
map CF(H) — CF(AH) is surjective if and only if the canonical map
Z(H) — Z(AH) is surjective.

If B is an O-basis of H, then the dual basis {b" }cp is defined by the
requirement 7(b,by) = 8y, for by, by € B. For f € Homp(H, O), one has
f*=Then F(D)B".

Let M be an H-module. We have a map Tr : Endp(M) — Endy (M)
given by

Te(f)(m) = ¥ bF(8Vm).

beB

We have Higman'’s lemma, following [Br] :

Lemma 4.1 The module M is projective if and only if there is f €
Endo(M) such that Tr(f) is the identity.

Assume O is an integrally closed integral domain with field of frac-
tions K perfect. Let us assume that K H is quasicentral.

Proposition 4.2 Let x € Irr(KH) and let ¢, be the scalar by which
x* € Z(KH) acts on o simple KH-module V affording a multiple of x.
Then the following hold:

(1) The element ¢, lies in O.

(2) The module V is projective if and only ifc, #0. In partic_ular, the
algebra K H is semisimple if and only if ¢, # 0 for all x € Irr(KH).

(3) Assume KH semisimple. Then, x* = cye, where e, denotes the
central primitive idempotent corresponding to x (Le., x*ex # 0).

Moreover,
1
T= ) —X.

xeTMKH) x

Proof. Let V be a simple module with character a multiple of x €
Irr(KH). The polynomial X — ¢, divides p(H)(x*): the roots of this
polynomial are algebraic over O, hence ¢, is algebraic over O. Finally,
¢y € K, hence ¢, lies in the integral closure of O in K, i.e., in O.

There is a finite extension K’ of K such that K'H is split and it is
clear that if the parts (2) and (3) of the proposition hold for K’'H, they
hold for KH. Hence, we can assume that KH is split.

Let V be a simple K H-module with character x € Irr(KH). Note
that if ¢ is a primitive idempotent of Endp(V'), then Tr(¢) = ¢, 1y. Hence,
if ¢, # 0, it follows from Lemma 4.1 that V is projective.



Centers and Simple Modules for Iwahori-Hecke algebras 265

Now, if V is a projective module and e,, the central primitive idempo-
tent of K H such that e,V # 0, then the algebras e, K H and (1—e,) KH
are symmetric algebras with symmetrizing form 7, kg and 71 _e,)k 1
and we have KH = ¢, KH @ (1 — e,)KH. It is then clear that for the
remaining part of the proposition, we can assume that K H is simple and
let x be the unique irreducible character of KH.

Then Z(KH) = K - 1, hence x* = ¢,. It impliesy = ¢, 7. If i is a
primitive idempotent of K H, we have x(¢) = 1, hence ¢, # 0 and the
proof is complete. a

Let now k be the residue field of O which we assume to be perfect.

Proposition 4.3 [Ge3| The algebra kH is semisimple if and only if for
every x € Irr(K H), we have 1xcy # 0. If kH is semisimple, then KH s
semisimple and kH 1is quasicentral.

Proof. Suppose that kH is semisimple. Then, we have dim(kH) <
Y v (dim V/my)? where V runs over a complete set of representatives of
simple kH-modules. Since KH is quasicentral, we have dim(KH) >
Y s(dim §/ms)? where S runs over a complete set of representatives of
simple K H-modules. We have d([K H]) = [kH], hence d(35[S/ms]) =
Y v ay[V/my| where S (resp. V) runs over a complete set of representa-
tives of simple K H-modules (resp. kH-modules) and oy > 0 for all V.
It follows that Y g(dim S/ms)? > ¥\ (dim V/my)? and we have equal-
ity if and only if for all S, there exists V such that d(S) = d(V) and
mg = my. Now,

2

S ms

my

(dim S dim v)2

2
) <dim(KH) =dimkH < (

Hence we have equalities everywhere above, i.e., kH is quasicentral and
K H is semisimple. Futhermore, for x € Irr(KH), then d(x) € Irr(kH).
By Proposition 4.2(2), we get ¢, 1x = cq(y) # 0.

Suppose now 1kc, # 0 for all x € Irr(K H). We have d(x)(z) = 0 for
z € J(kH). Since 7 = ¥, ix, we get 7(x) = 0 for x € J(kH), where
7=1,®7. Hence, J(kH) is an ideal of kH which is in the kernel of 7:
since T is a symmetrizing form for kH, it implies J(kH) = 0 and kH is
semisimple. O

Let P be a projective H-module. Let e be an idempotent of M, (H),
for some n, such that eH™ >~ P. Let n(P) : Z(H) — O be the restric-
tion to Z(H) of Tr(e)*. We have n(P)(z) = 7(Tr(e)z) = 2*(Tr(e)) =
([P], 2*)o- Note that it implies that n(P) depends only on P.
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Assume in addition K'H semisimple and split. Given P a projective
k H-module, J. Miiller suggested considering the map ¥(P) : Z(KH) —
K defined by
1
v(P)= 3 (e([P]),x) —wy
xelrr(K H) Cx
where w, is the one dimensional representation of Z(KH) acting (as
multiplication by scalars) on a simple K H-module with character .

Proposition 4.4 The map ¥(P) restricts to a map Z(H) — O and
1k ® Y(P) = n(P). In particular,

xelrr(KH) Cx

Proof. Let O be an henselisation of O; we have K NO' = O, where the
intersection is taken in the field of fractions of ¥, since O’ is faithfully
flat over O. Hence, to prove the proposition, we can assume that O is
henselian. There exists an idempotent e of M, (H) such that ke H™ ~ P.
Then, n(eH™) is the restriction to Z(H) of Tr(e)*. We have wy/(x*) =
8y for x,x' € Irr(K H), hence

neH™) = Y X(T—(e))w ~ w(P)

and 1; ® Y(P) = 1x @ n(eH™) = n(P). U

Note that if H = OG is a group algebra with its usual symmetrizing
form, K having characteristic zero and k characteristic p > 0, then
the integrality property above is equivalent to the statement that the
dimension of a projective kG-module is divisible by the order of a Sylow
p-subgroup of G.

When H is an Iwahori-Hecke algebra associated to a Weyl group,
with equal parameters and k has characteristic zero, this result was
proven in [Ged, Proposition 2.1] using algebraic groups.

5. Iwahori-Hecke algebras

We fix a finite Weyl group W with a corresponding set S C¢ W of simple
reflections. Let {u}ses be a set of indeterminates such that u, = u,
whenever s,t € S are conjugate in W, and A = Z[us, u;!)ses be the ring
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of Laurent polynomials in these indeterminates. The generic Iwahori-
Hecke algebra H is the A-free A-algebra with A-basis {T,}wew and
relations:

{TwTw, = Tt if l(ww') =1l(w)+l(w),
(Ts —ug)(Ts+1)=0 for s€ 8

where w — I(w) is the length function on W with respect to the gen-
erating set S. The algebra H is symmetric, with respect to the form
T : H — A defined by 7(T}) = 1 and 7(T,,) = 0 for w # 1. The
elements in the dual basis of {T,,} are given by T = ind(Ty) 'Ty-1,
where ind : H — A is the 1-dimensional representation of H defined by
ind(T;) = us for s € S. Thus, we can apply the results of the previous
section to the pair (H, 7).

5.1 Centers of Iwahori-Hecke algebras

For each conjugacy class C of W, we denote by C,.;, the set of elements
of minimal length in C, and we choose one element we € C,in. For each

class C and each w € W, there exists an element f,c € A (called class
polynomial in [Ge-Pf]) uniquely determined by the property that

O(Tw) = fucep(Tue) for all p € CF(H).
¢

(It is shown in [Ge-Pf] that, if w, w’ € Cynin then T,, and T, are conjugate
in H. In particular, every class function of H has the same values on
T, and T,r. Hence the definition of f, ¢ is independent of the choice of
We € Cmin-)

For each class C we define a function foc: H — A by

fo :Tw— fuc (weW).

By inverting the defining formula for f, ¢ above, we see that fc is in
fact a central function. Hence, given any ¢ € CF(H), one has

Y= Z <p(TwC)f07
C

i.e., the set {fc} is a basis of the A-module CF(H). Using the corre-
spondence between central functions on H and central elements in H,
we conclude that the elements {z¢ := f&} form an A-basis of the centre
of H. Explicitly, we have

ze =Y ind(Tw) " fo(Tw)Tu-1.

weWw



268 M. Geck and R. Rouquier

Note that the class polynomials have the following properties. Let C,C’
be conjugacy classes in W, and w € C’. Then

fw,C = 6C,C’ ifwe C:nin'

Moreover, if we specialize all parameters u, to 1 then the function fo
specializes to the indicator function of the conjugacy class C' and, hence,
the element z¢ specializes to the class sum of C in AW. Thus, the
elements {zc} indeed are “generic” analogues of the class sums.

Lemma 5.1 Let B be a commutative A-algebra and z = ¥ ,cw 0Ty €
Z(BH). Let C be a conjugacy class in W. Then the following hold:

(1) If w,w" € Crir, then ay = ay.

(2) If w € C does not have minimal length, then there exists an element
w' € C and an element s € S such that l(w) = l(w'), l(sw's) =
{w') —2 and 6y = ay = (1/Us)asurs + (1 — 1/t;) gy

Proof. The coefficient a,, of T, in 2 is given by 7(zT,/). Now assume
that T, and T, (for v,w € W) are conjugate by a unit, say h € BH.
Using that 7 is a central function and that z is a central element, we
deduce that

ay = 7(2T)) = T(zhTYh™Y) = 7(R7'2hTY) = 17(2T)) = ay.

Now let w,w’ € C and x € W such that [(w) = l(w'),w' = zwz?,
and {(zw) = l(z) + l(w). As in [Ge-Pf], we can compute in BH that
T,T, = TwT,, hence T,, and T,y are conjugate in BH. A similar relation
will also hold with w, w', z replaced by their inverses. Thus, T,/ and T,),
are conjugate in BH. Using [Ge-Pf, Theorem 1.1}, we conclude that T,/
andT,), are conjugate in BH, for all w,w' € C;,. Hence, (1) is proved
using the above argument.

Now let w,w” € W and s € S such that w” = sws and {(w”) < [(w).
As in [Ge-Pf] we see that, if [(w) = [(w”), the element T,, is conjugate
t0 Toys. If L(w”) = l(w) — 2 then Ty, is conjugate t0 UsT s + (s — 1) Tops-
Again, similar relations hold with w replaced by w™!. Thus, 7)Y will
be conjugate either to T, . or to (1/us)T,,, + (1 — 1/u,)T,,. Now, by
[Ge-Pf, Theorem 1.1], there exist w' € W such that l(w') = l(w), Ty
is conjugate to T, and [(sw's) = l[(w') — 2. Hence, the argument above
implies (2). a

Theorem 5.2 Let B be a commutative A-algebra. Then, the set {1 ®
zc} (where C runs over the conjugacy classes of W) forms a B-basis for
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the centre of BH. In particular, the centre of BH is free as a B-module
of rank equal to the number of conjugacy classes in W and the canonical
morphism B ® Z(H) — Z(BH) is an isomorphism.

Proof. Since fu.c = 6ccr, the elements 1 ® 2¢ are linearly indepen-
dent in BH. So we must show that they generate Z(BH). The strategy
for the following proof is taken from [Di-Ja].

Let 2 = ¥ yew awTw € Z(BH) (where a,, € B). Assume that z # 0
and let w € W be of minimal possible length such that a,, # 0. Then
w lies in some conjugacy class C' and we claim that w € C,,;,,. This can
be seen as follows. Assume, if possible, that w does not have miminal
length in C. By Lemma 5.1(2), there exist some w' € W and s € S
such that @, = aw = (1/ts)@sus + (1 — 1/us)as. Since l(w) = l(w')
and I(sw's) = l(w') — 2, both sw's and ws’ have length strictly smaller
than w. By the minimality of w, we conclude that ay,s = a5 = 0 and,
hence, also a,, = 0, a contradiction. Thus, a,, # 0 for some w € C,,;,.
Moreover, Lemma 5.1(1) shows that a,, = a, for all w' € Cyn.

We now consider the element 2’ := z — 3¢ awind (T ) (1B ® 2¢) €
Z(BH). The above mentioned properties of the elements f,, ¢ show that
the coefficient of T, in 2’ is zero, for any element w of minimal length in
any conjugacy class of W. Thus, 2’ = 0 and we are done. O

5.2 Number of simple modules for Iwahori—-Hecke algebras

Consider the following polynomials associated to irreducible finite Weyl
groups:

QAn = H[’L]x
i=1
n—1

OB, = H[2]x'y($i+y)[i]x

i=0

Qp, = 2[n, 1:[21]1

Qe = 6[2]1[5]1[ ] [8]1:[9]1:[12]1:

QE7 [ ]1[6]1:[ ] [10]1:[12]1:[14]1:[18]1:

QEg 30[2]1:[8]1:[12]1[14]1:[18]1[20]1[24]1:[30]1:

Qr, = 6[6]5[6]y[2]2y2(2]r2y[2]2y[2] 2242 (2] 522 (7 + y2)($2 +y)(z+y)-
(@ + )@ + ¢°)

Qe = 2[2]1[2]11[3]111(1'2 + Ty + y2)

—

where [i];=14+q+ - +¢%
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The following proposition gives a criterion for a multi-parameter
Iwahori-Hecke algebra to be semisimple. It generalizes [Gy-Uno| which
deals with the equal parameters case and characteristic zero fields.

Assume W is irreducible and let {s), s2} be a set of representatives of
conjugacy classes of elements in S, with s; corresponding to a long root in
type B,. Let B = Z[\/us, /s ‘Jses = Al\/Us)ses and K = Q(\/s)ses
the field of fractions of B. Note that, by [Di-Mi, théoréme 3.1], the
algebra K'H is quasicentral (actually, by [Ge2], the algebra KM is even
split, but we won’t need it here).

Proposition 5.3 [Ge3| Let k be a perfect field which is a B-algebra.
Then, the algebra kH is semisimple if and only if 1 - Qw(us,;, us,) # 0.

Proof. A criterion to decide when the specialized Iwahori-Hecke algebra
kH is semisimple is given by Proposition 4.3. One has to check that

[{El:}xemum)] = B[] Let us define Pw = ¥, ind(T,,). For x an

irreducible character of H, we put D, = Pw/c,: this is the generic
degree of x. The generic degrees are given in [Ca] and one checks easily
the property above. n|

To simplify the exposition, we assume now that there is a set of
integers (not all zero) {as}ses (With greatest common divisor 1) such
that u, = t* where ¢ is an indeterminate. In this case, B = Z[v/%, \/Z_l],
and the polynomial Qw is a product of cyclotomic polynomials in ¢, up
to a power of ¢.

Let ¢ be a prime and ¢ an integer with ¢ fg. Let e > 1 be minimal
with 14+g+---+¢*"! = 0mod ¢. If d is an integer, we put ®, = ®24(v/1).
Let O = B, where m is the maximal ideal of B generated by ¢ and by
Vi— /@ if q is a square or by ¢ — g otherwise.

Let I be a prime ideal of O/(®.) containing ¢. Let k = O/m
F¢(1/7), p be the (height one) prime ideal of O generated by &;, ¢/
(O/p); and k' = (O,)/p the field of fractions of (. Note that O is
integrally closed in K and (¥ is integrally closed in k’. Furthermore, the
fields K, k' and k are perfect. As explained above, the algebra KH is
quasicentral.

Theorem 5.4 Assume that £ and @4~ do not divide Qw forr > 0. Then,
the number of simple kH-modules is equal to the number of simple k'H-
modules. More precisely, the map 1, ® dov - k ® Ro(k'H) — k ® Ro(kH)
is an isomorphism.

1

Proof. This is a direct consequence of Theorem 3.3; we need to check its
assumptions. The canonical map Z(H) — Z(kH) is an isomorphism by
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Theorem 5.2, hence the canonical map CF(H) — CF(kH) is surjective,
since H is a symmetric algebra (cf §4).

Let now q be a height one prime ideal of O, q # p. The algebra
((Oq4)/a) H is semisimple if and only if Qw ¢ q, according to Proposition
5.3. If £ € q, then Qw ¢ q. If &), € q, then &), = &, for some integer r,
r > 0 since q # p. But ®.r doesn’t divide Qw, hence ®.,. doesn’t divide
Qw (as a polynomial in /%), hence Qw ¢ qa. It follows that for q # p,
then Qw ¢ q, i.e., the algebra ((O,)/a)H is semisimple and we are done.
)

Remark 5.5 The decomposition map der is the map denoted d; in [Gel].

In [Gel], it is conjectured that do : Ro(k'"H) — Ro(kH) maps actually
classes of simple modules to classes of simple modules.
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