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Abstract

We propose here a new multiphase level set model for
image segmentation, using Mumford-Shah techniques in the
piecewise-constant case. The proposed model is also a gen-
eralization of our active contour model without edges based
on a two-phase segmentation. In order to handle multiple
individual segments and complex topologies (such as mul-
tiple junctions), we propose a new and efficient multiphase
representation by level sets: the necessary number of level
set functions is considerably reduced (we need only n level
set functions to represent 2" phases or segments), and in
addition we have overcomed the problems of vacuum and
overlap, naturally arising in multiphase problems. Finally,
we show how the model can be used in image segmentation,
Sor synthetic and real (possible noisy) pictures.

1. Introduction: meotivations and terminology

An important problem in image processing is the seg-
mentation of a picture representing a real scene, into classes
or categories, corresponding to different objects and the
background in the image. In the end, each pixel should be-
long to one class and only one. In other words, we look for
a partition of the image into distinct segments.

In this paper, we propose an efficient multiphase-level set
algorithm for image segmentation, based on the piecewise-
constant Mumford-Shah model. This is also a generaliza-
tion of our active contour model without edges, from [8]
and [7], based on a two-phase segmentation.

To illustrate our algorithm, we only present the two-
dimensional case for grey-level images, but the model can
be casily formulated and applied in any dimension (such
as volumetric images), as well as for vector-valued images
(such as color RGB images, multichannels, etc). For more
details, we refer the reader to [8), [6], [9] and [10].
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Let us first fix the notations. Let Q C R? be an open and
bounded domain (usually a rectangle in R?), and ug : Q —
R be a given image-function (usually taking values between
0 and 255). We will denote by C a set of curves in 2, and
|C| will be the total length of curves making up C. For such
C, we can denote by §; the connected components of O\ C,
such that'

Q=u;QuUC.

The piecewise-constant Mumford-Shah segmentation
model [16] is formulated as follows: given ug, find an
optimal set of curves C and a piecewise-constant image-
function v :  — R, such that u = ¢; in each ;, minimiz-
ing the energy: ‘

Fu,0)=3" /n luo - cilPdedy +v|Cl, ()

where v > 0 is a fixed parameter. By minimizing the above
energy, we look for the best global approximation of ug
by the simplest function u (piecewise-constant). The con-
straint on the set of edges C requires the regions €; to have
smooth boundaries. The segmented image-function u can
be expressed as: u(z,y) = Y, cixq;(z,y), where xq, is
the characteristic function of the set §2;. For the piecewise-
constant function u, we also have:

[ 1w wltdsdy =3 [ fuo - cildody,
Q T~ Ja

by the definition of u and because §2; is a partition of .
Minimizing F'(u, C) with respect to ¢, it is easy to ob-
tain that '

fﬂi Uo (I7 y)dzdy

¢ = meang, (uo) = T area((;)
» (]

In [8] and [7], we have proposed an active contour model
without edges, based on a two-phase segmentation. Let us



assume that C (the snake or the active contour) is the bound-
ary of an open subset of (2, and consider the interior and the
exterior sets of C, called inside(C) and outside(C). The
active contour model is defined via an energy minimization,
as follows:

inf
c1,¢2,

Fa(er, 2,C) / luo — 1[2dzdy
C inside(C)

[ lwo-cldsdy
outside(C)
v|C|.

+
+

This model performs as active contours, looking for a 2-
phase segmentation of the image. The segmented image
will be u = ¢, inside C, and u =.¢; outside C.

In order to minimize in practice F5(c;, ¢, C), the level
set method of S. Osher and J. Sethian [17] was used, com-
bined with techniques from [24]. The curve C is repre-
sented implicitly, via a level set function ¢ : @ — R (as-
sumed to be Lipschitz), such that

é(z,y) > Oinside C,
é(z,y) < 0 outside C,
@(z,y) = 0 on the curve C.:

Then, using the Heaviside function H(¢) = 1if ¢ > 0 and
H(¢) = 0if ¢ < 0, the minimization of F3(c1,c2,C) can
be written as:

inf Filev,cn8) = | luo = P H(@)dzdy
€1,62,9 Q
+ /Q luo — ¢2[2(1 — H(¢))dzdy
+ u/(;lVH(d>)|dzdy.

In this formulation, the segmented image u can be ex-
pressed as: u(z,y) = c1 H(¢) + c2(1 — H(9)).

Considering H, and é. any C' approximations and reg-
ularizations of the Heaviside function H and Dirac function
8o (concentrated at 0), as ¢ — 0, such that H, = 4., and
minimizing the energy Fz(c1, ¢, ¢) with respect to ¢;, ¢z
and ¢, we obtain the equations:

o = JoueH@)dzdy [ uo(l — H(¢))dzdy
L= T H(Qydzdy * 2T [(1- H(g))dzdy

%?— = 6€(¢) [div(%) - l/(lU.o - cll2 — |U0 - 62|2)] y
where div denotes the divergence operator for the spatial
variables. Evolving the above equation in ¢, moves the
curve C' = {¢ = 0} implicitly.

This active contour model is a particular case of the
Mumford-Shah piecewise-constant model, as a two-phase

segmentation. It has the advantage of detecting contours
both with or without gradient, automatically detects interior
contours, and is robust in the presence of noise. These ad-
vantages are due to the fact that the stopping criteria is dif-
ferent than the one usually used in more classical active con-
tour models or snakes (see [3], [4], [11], [12], [14], [22]):
here, the stopping criteria is based on a global approxima-
tion of the image, and not only on local information (the
gradient, for instance).

Many other authors have done work on image segmen-
tation. We cite here only a few of them, more related with
the present paper: [25], [1], [2], [5], [13], [20}, [21]. For
a detailed exposition of the segmentation problem by vari-
ational methods, we refer the reader to [15}). Finally, we
would like to refer the reader to two related works: [23] and
[18].

2. Description of the multiphase image seg-
mentation model

The main goal of this paper is to extend the previous ac-
tive contour model without edges to images with more than
two individual segments, triple junctions, etc. The basic
idea is to use several level set functions. In this context,
we refer the reader to [24] and [19], where to each phase or
segment, a level set function is associated, and provide a so-
lution to these problems (multiple phases, triple junctions,
etc.). The work [24] was proposed for motion of multiple
junctions (triple junctions for instance) in fluid dynamics,
and the work [19] is an application of the previous one to
supervised image classification. But this can be computa-
tionally expensive, especially in image segmentation, where
we often deal with many distinct intensity levels, which re-
quires a large number of level set functions.

In addition, when working with multiple phases, the
problems of vacuum (the union of phases is not the entire
domain), and overlap (the phases are not disjoint) arise, and

~ should be avoided. In [24] (and then in [19]), these prob-

lems are solved by using additional constraints, making the
numerical problem more complicated. Our main idea here
is to propose a different multiphase formulation, having the

‘following advantages: the number of level set functions is
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considerably reduced (only n level set functions to represent
up to 2™ phases); the phases partition the domain §2 into dis-
joint sets (no overlap), whose union is 2 (no vacuum); while
still representing triple junctions, multiple segments, etc.

Let us explain our multiphase formulation next:

- using one level set function ¢ defined as above, we can
represent up to two phases, given by the disjoint regions
{¢ > 0} and {¢ < 0}, simply denoted by “+” and “~";

- using two level set functions ¢; and ¢, we can repre-
sent up to four phases, given by the disjoint regions {¢; >

0,42 > 0}, {1 > 0,¢2 < 0}, {¢1 < 0,92 > 0} and



{#1 < 0,82 < 0}, again simply denoted by “++", “+-",
U,

- using three level set functions ¢, , ¢2, @3, we can define
up to eight phases, given by the disjoint regions “+ + +”,
O =T = T = T S T S T e —
“~ — —"; and so on,

- giving  level set functions ¢, ..., ¢, we can define in
the same way up to 2™ disjoint regions.

In all cases, the set of curves C is defined by:

C =U{(z,y) € Q¢i(z,y) =0},

and the union of the disjoint regions and of the curves {¢; =
0} is a covering of § (clearly, there is no vacuum and no
overlap, by definition).

Now let us show how the two-phase active contour
‘model, minimizing the energy F'(ci, c2, ¢), can be extended
to more than two phases, using the previous multiphase
formulation. For instance, the corresponding energy for 4
phases or classes (using two level set functions ¢1, ¢2 ), is:

Fi(c,®) = / luo — e1a [*H (é1) H () dedy
Q
+ / luo — c102H ($1)(1 — H(#2))dzdy
Q

+ / luo — coa |*(1 — H(¢y)) H(¢2)dedy
Q

+

/ﬂ o — coo 2 (1 ~ H(¢1))(1 — H(g))dedy
v ]Q IVH ()| +v /ﬂ IVH(#2)],

where ¢ = (c11, €10, Co1, Co0), and @ = (91, ¢2).

With these notations; we can express, similarly with
the general case, the segmented image-function u in a lin-
ear combination of the characteristic functions of the four
phases:

+

u = criH(¢1)H (¢3) + croH (1)1 — H(2))

+eor(1 — H(¢1))H(¢2) + coo(1 — H(41))(1 — H(¢2)).

The Euler-Lagrange equations obtained by minimizing
Fy(c, ®) with respect to ¢ and P are:

c11 = mean(uo) in {¢ > 0, > 0} =" ++"
c10 = mean(ug) in {¢1 > 0, ¢ < 0} =" +-"
co1 = mean(ug) in {¢1 < 0,9 >0} =" —+"
coo = mean(up) in {¢; < 0,¢2 < 0} =" —=",

8 [V

’;Tl = b(g1) ["d“’(|v¢i|)

(w0 = e11)? = (w0 — co1)? ) H(#2)

((uo — ¢10)” — (uo — C00)2)(1 - H(¢2))],

i
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and
%’2 = bu(ga) [uaiv( IgZI)

((uo —en)? - (uo - 001)2)H(¢1)
((UO —c10)? — (uo — C.oo)z) 1- H(¢1))] .

The above coupled equations for ¢; and ¢, govern the evo-
lution of the curves {¢; = 0} U {¢2 = 0}.
In an analogue fashion, we can write the energy for three
level set functions, and so on. )
We will see that we can successfully segment im-
ages with multiple segments, triple junctions, and complex

“topologies. the general model also inherits the advantages

of the active contour model without edges: detects edges
with or without gradient, automatically detects interior con-
tours, and is robust with respect to noise.

‘3. Numerical results

We present here numerical result on synthetic and real
images. We show on the left column the evolving contours
over the original image, and on the right column the de-
tected means, providing the segmentation of the image.

In Figure 1 we show a result with the 2-phase segmen-
tation (i.e. our active contour model without edges), using
one level set function. We see how interior contours are
detected automatically.

In Figure 2 we show a result w1th a 4-phase segmenta-
tion, using two level set functions; again, interior contours
are automatically detected. Here we datect four dlstmct seg-
ments.

In Figure 3, we use an 8-phase segmentation model, with
three level set functions. The algorithm depicts six final
segments. We see that triple junctions can be represented
using our multiphase formulation.

Finally, in Figure 4, we show a result on a real picture,
using the four-phase segmentation model. We plot the final
four segments individually. Here, we have used the same
type of initial curves as in the previous example.

4. Conclusions

In this work, we have proposed an efficient multiphase
level set formulation for segmentation of images, based on
the piecewise-constant Mumford-Shah model. By our for-
mulation, we can handle triple junctions, multiple segments,
and in addition, the phases cannot overlap or produce vac-
uum, by construction. We use a reduced number of level set
functions to represent the phases: we only need n level set
functions, to represent up to 2™ phases or segments. Finally,
we validated our segmentation model on various images.



Figure 1. Two-phase segmentation with one
level set function.
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