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Exercise 6.3.6: Let T be a linear operator on an inner product space V . Let
U1 = T + T ∗ and U2 = TT ∗. Prove that U1 = U∗

1 and U2 = U∗
2 .

Solution:

U1 = T + T ∗ = (T + T ∗)∗∗ = (T ∗ + T ∗∗)∗ = (T ∗ + T )∗ = U∗
1 ,

and
U2 = TT ∗ = (TT ∗)∗∗ = (T ∗∗T ∗)∗ = (TT ∗)∗ = U∗

2 .

Exercise 6.3.12: Let V be an inner product space, and let T be a linear
operator on V . Prove the following results. (a) R(T ∗)⊥ = N(T ). (b) If V is
finite-dimensional, then R(T ∗) = N(T )⊥.

Solution: (a) v ∈ R(T ∗)⊥ if and only if for all w ∈ V , 〈v | T ∗(w)〉 = 0.
However this is true if and only if for all w ∈ V , 〈T (v) | w〉 = 0, and this is
true if and only if T (v) = 0, i.e. v ∈ N(T ). This completes our proof. (b) By
exercise 6.2.13c, we can apply ⊥ to both sides of part (a) and then we’d be done.

Exercise 6.4.11: Assume that T is a linear operator on a complex (not neces-
sarily finite-dimensional) inner product space V with an adjoint T ∗. Prove the
following results:

(a) If T is self-adjoint, then 〈T (x) | x〉 is real for all x ∈ V .
(b) If T satisfies 〈T (x) | x〉 = 0 for all x ∈ V , then T = T0.
(c) If 〈T (x) | x〉 is real for all x ∈ V , then T = T ∗.

Solution: (a) Suppose T is self-adjoint. Then

〈T (x) | x〉 = 〈x | T (x)〉
= 〈T (x) | x〉

and hence 〈T (x) | x〉 is real.
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(b)

0 = 〈T (x + y) | x + y〉
= 〈T (x) | x〉+ 〈T (x) | y〉+ 〈T (y) | x〉+ 〈T (y) | y〉
= 〈T (x) | y〉+ 〈T (y) | x〉

and therefore 〈T (x) | y〉 = −〈T (y) | x〉. Similarly,

0 = 〈T (x + iy) | x + iy〉
= 〈T (x) | x〉 − i〈T (x) | y〉+ i〈T (y) | x〉+ 〈T (y) | y〉
= −i〈T (x) | y〉+ i〈T (y) | x〉

and therefore 〈T (x) | y〉 = 〈T (y) | x〉. Combining these results we get 〈T (x) | y〉 =
0 for all x, y ∈ V . This is enough to conclude that T = T0.

Exercise 6.4.12: (→) Let T be a normal operator on a finite-dimensional
real inner product space V whose characteristic polynomial splits. Prove that
V has an orthonormal basis of eigenvectors of T . Hence prove that T is self-
adjoint.

Solution: The proof is near identical to that of Theorem 6.16. The only differ-
ence is that in Thm. 6.16 they needed to work over a complex inner product
space because they needed their characteristic polynomial to split. We have
that as an assumption. So the rest of the proof follows word for word. Then by
Thm 6.17 it follows that T is self-adjoint.

Exercise 6.4.17a: Let T be a self-adjoint linear operator on an n-dimensional
inner product space V . Then T is positive definite [semi-definite] if and only if
all of its eigenvalues are positive [semi-positive].

Solution: Let λ be an eigenvalue of T , with corresponding eigenvector v. Then

λ〈v | v〉 = 〈T (v) | v〉
≥ 0

since v is an eigenvector, it must be nonzero. Therefore ||v||2 > 0 and so we can
conclude that λ ≥ 0. The same idea goes through for semi-definite. (←) Suppose
that all eigenvalues are positive [semi-positive]. Since T is self-adjoint, by Thm.
6.17, there exists an orthonormal basis of eigenvectors β = {β1, β2, ..., βn} with
corresponding eigenvalues λ1, λ2, ..., λn, respectively. Let x = a1β1 + · · ·+ anβn
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be arbitrary. Then

〈T (x) | x〉 = 〈T
( n∑

i=1

aiβi

)
|

n∑
j=1

ajβj〉

= 〈
n∑

i=1

aiλiβi |
n∑

j=1

ajβj〉

=
n∑

i,j=1

λiaiaj〈βi | βj〉

=
n∑

i=1

λi|ai|2

≥ [>] 0.

This completes our proof.
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